

1 **Extended data and supplementary information for**
2 **Complex viral evolution as an unintended consequence of social**
3 **distancing**

4 Simon Plakolb*, Patrick Mellacher

5 *Corresponding author. Email: simon.plakolb@ibv.uio.no

6 **This PDF file includes:**

7 Supplementary Text

8 Figures S1 to S12

9 Tables S1 to S5

10 **Supplementary Text**

11 **Calculation of contact rate values**

12 Our model is based on an influenza reference model (1) to describe the presence of low phylogenetic
13 diversification in influenza strains. This reference model utilizes an agent-based approach where
14 all individuals of the population are simulated individually. These agents are distributed uniformly
15 within $M = 20$ geographically distinct patches. This method is computationally expensive, if the
16 simulated number of people is large. We thus simplify this model to carry out the simulations in a
17 more efficient way: We assume homogeneous mixing within each geographical patch. This allows
18 us to model the spread of the virus using the well-known SIR equations. However, since we are
19 interested in tracking viral evolution, we also want to explicitly model a potentially large number of
20 virus variants. To do so, we use an agent-based approach where we model each variant as an agent
21 (instead of each person).

22 To account for the differences in the modeling approach, we have to carefully adjust the contact
23 rates in our model. The influenza reference model differentiates between local transmission with a
24 contact rate determined by β_L , mixing within a patch with β_W and contact between patches with
25 β_B . The reported basic reproduction number for transmission within local groups is $R_0 = 5$. Within
26 a geographical patch, transmission is less likely with $R_0 = 0.4$ and transmission in between patches
27 is given with $R_0 = 0.02$.

28 We find our values for $\beta_{W,0}$ and the homophily parameter h using equations S1 and S2 (32):

$$\beta_{W,0}(h + \frac{1 - h}{M}) = \frac{5.4}{\gamma_0^{-1} + \mu_0^{-1}} \quad (S1)$$

$$\beta_{W,0} \frac{1 - h}{M} = \frac{0.02}{\gamma_0^{-1} + \mu_0^{-1}} \quad (S2)$$

29 The resulting parameter values are listed in Table 1 of the manuscript. To gain an intuition for these
30 equations, one can rewrite their left-hand side (LHS) with $M = 20$. Equation S1's LHS then reads
31 as $\frac{1}{20}\beta_{W,0}(19h + 1)$. It can be understood as the local transmission component. In a completely
32 homophilic $h = 1$ scenario $\beta_{W,0}$ equals the right-hand side (RHS) of S1. For equation S2 the LHS

33 can be rewritten as $\frac{1}{20}\beta_{W,0}(1 - h)$. In a scenario with homogenous mixing between all patches
34 ($h = 0$), $\beta_{W,0}$ corresponds to the RHS of S2. Intuitively, the homophily parameter h regulates the
35 balance between both extremes.

36 **Reproduction scenarios**

37 Despite our methodological changes, our model can reproduce the results of the influenza reference
38 model [see (1)]. As listed above [see Methods in Section 3], all but one parameter are set to the values
39 of the reference model. Our method necessitates some changes to the immunity model. Therefore,
40 as described in our methods section, the cross-immunity's minimal effect θ_0 was reduced.

41 Fig. S1 shows our reproduction of the influenza reference model's results in two key scenarios
42 that follow the methodology of its source (1). A setting with low mutability and *only* cross-immunity
43 is compared to a scenario paring high mutability with an additional non-specific immunity. Both
44 scenarios were evaluated with each using 50 simulation runs over 30 virtual years.

45 Pane **A** of Fig. S1 shows the weekly incidence in the first geographical patch. Much like in the
46 influenza reference model's associated report, the scenario excluding the non-specific immunity
47 peaks between 10,000 and 15,000 inhabitants in the first 15 years. The incidence for the scenario
48 including the non-specific immunity is lower. In the second half of the simulation, it peaks around
49 3,000 inhabitants, again resembling the reference result (1). The reference's units are reported to
50 be per 100,000 inhabitants (1). We find that this may be an error in these units, as the percentage
51 of infected inhabitants appears unrealistic. In any case, our model produces a similar difference
52 between both scenarios. More importantly, our observations for pairwise diversity match those
53 reported for the influenza reference model (1).

54 In pane **B** of Fig. S1 a lack of non-specific immunity proves to lead to rapid diversification.
55 Meanwhile, the added non-specific immunity component limits diversification drastically, despite
56 a tenfold increase in mutability. In both cases, the range of the pairwise diversity closely resembles
57 that reported for the influenza reference model (1).

58 **Equations of the reproduction model**

59 Our model includes a pre-symptomatic phase and asymptomatic cases. In contrast, the influenza
 60 reference model (I) uses a single mode of symptomatic infection. Furthermore, it does not consider
 61 the possibility of a lethal infection outcome. Therefore, some equations listed in our manuscript's
 62 methods section can be simplified to reproduce this model.

63 The population that is cross-immune to variant i and currently within the compartments specific
 64 to any variant can be calculated without the $P_{p,i}$ and $A_{p,i}$ compartments:

$$C_{p,i,I+F} = \sum_j (E_{p,i} + I_{p,i} + F_{p,i})(1 - f(d_{i,j})) \frac{C_{p,i}}{N_p} \quad (S3)$$

65 We want to reiterate the intuition for this expression. For a variant i , the sum of the cross-immune
 66 population needs to be scaled to reflect a good estimate. We assume a reasonably good mixing within
 67 all compartments. Then, the fraction of the cross-immune individuals within the total population
 68 $\frac{C_{p,i}}{N_p}$ can be used for the variant-specific cross-immunity compartments. However, the likelihood
 69 of a cross-infection is inversely correlated to the cross-immunity. Thus, an additional scaling by
 70 $1 - f(d_{i,j})$ is necessary.

71 Due to the reduction of infection compartments the normalized contagious population $I_{tot,p,i}$
 72 simplifies to a mere fraction of symptomatic individuals within the population:

$$I_{tot,p,i} = \frac{I_{p,i}}{N_p} \quad (S4)$$

73 Since there are no more pre-symptomatic and asymptomatic cases, the exposed population in $E_{p,i}$
 74 flows directly into $I_{p,i}$:

$$\dot{I}_{p,i} = \alpha_i E_{p,i} - \gamma_i I_{p,i} - \frac{I_{p,i}}{L} \quad (S5)$$

75 Likewise, the absence of lethal consequences simplifies the compartment outflow of $\dot{I}_{p,i}$. As in all
 76 compartments, the life expectancy L governs the rate of natural death. Besides the natural deaths,
 77 only γ_i regulates the outflow by determining the mean infection duration. Consequently, the net
 78 recovery rate reduces to only the net flux out of the infected compartment:

$$\dot{R}'_{p,i} = \gamma_i I_{p,i} \quad (\text{S6})$$

79 For the scenario excluding the non-specific immunity the model can be further simplified. In
 80 this scenario the non-specific immunity compartment F_p and the associated, variant-specific state
 81 variable $F_{p,i}$ can be excluded from the model. The component for the variant-specific susceptible
 82 population $S_{p,i}$ can then be rewritten as:

$$S_{p,i} = S_p - C_{p,i} + C_{p,i,I} \quad (\text{S7})$$

83 It uses the cross-immune population currently infected by other variants $C_{p,i,I}$. It is an alternative
 84 to $C_{p,i,I+F}$ that excludes the non-specific immunity compartment F_p :

$$C_{p,i,I} = \sum_j (E_{p,i} + I_{p,i})(1 - f(d_{i,j})) \frac{C_{p,i}}{N_p} \quad (\text{S8})$$

85 Excluding F_p also changes the flux of recovered individuals. The recovered population flows
 86 directly into the susceptible compartment, for which the derivative changes to:

$$\dot{S}_p = \frac{N_p}{L} + (sum_i \gamma_i I_{p,i} - b_{p,i} S_{p,i}) - \frac{S_p}{L} \quad (\text{S9})$$

87 Without the non-specific immunity, recovered individuals directly contribute to the cross-immunity.
 88 Therefore, the cross-immunity derivative is now given by:

$$\dot{C}_{p,i} = \sum_j f(d_{i,j}) \gamma_j I_{p,j} - \frac{C_{p,i}}{L} \quad (\text{S10})$$

89 The influenza reference model (1) deals with the evolution of a pathogen with widespread antigenic
 90 adaption in the population. Thus, simulations start “near the single-strain equilibrium” (1). To
 91 reproduce this, we disable all mutations in the first 100 simulated years to arrive at the (dynamic)
 92 single-strain equilibrium. Afterwards, we enable mutations. As in the influenza reference model,
 93 in our reproduction model the epidemiological parameters are not affected by the mutation but
 94 constant. The parameters used in the reproduction model are listed in Table S2.

95 **Our model under equilibration**

96 The substitution of the host-agents with ODEs is not the only difference the between the influenza
97 reference model (*I*) and ours. Due to the focus on a different, and novel, pathogen our method
98 introduces new compartments and the mutation of epidemiological parameters. In addition, the
99 scenarios in our study start before the single-strain equilibrium establishes itself. Arguably, there
100 is a large gap between the reproduction scenarios and our main study. To bridge this gap, we
101 additionally investigate a scenario of our novel model starting close to the single-strain equilibrium.
102 This scenario uses the main study's base scenario parameters. There are no pharmaceutical or
103 non-pharmaceutical interventions. Note that these parameters do not differ drastically from the
104 reproduction model.

105 The additional compartments of the epidemiological model exhibit only a minor impact on the
106 population dynamics. The most notable difference to the reproduction scenarios appears to be the
107 quicker establishment of a dynamic equilibrium. This is likely the effect of the extended latent
108 period.

109 Our scenario includes a non-specific immunity component. Consequently, the pairwise diversity
110 is reduced. For the influenza reference model, one can show that functional constraints on the
111 viral evolution do not significantly impact the results (see Supplementary Material of (*I*)). Using
112 our model, which decouples the stylized RNA mutation from the evolution of epidemiological
113 parameters, we find that only after the first ~ 15 years the parameter mutation starts to impact the
114 pairwise diversity. We, therefore, conclude that the long term effects of the interventions in our
115 model should be investigated at the 15 year mark.

116 **Sensitivity Analysis**

117 To improve the insight into our model's dynamics, we perform a sensitivity analysis beyond the
118 scenarios shown in Fig. 2. Each parameter combination is evaluated at least 50 times with varying
119 pseudo-random number generator seeding. The sensitivity analysis focuses on the state after 2 and
120 4 simulated years. Some parameter combinations, however, cover a time span of 15 or 30 years to
121 investigate the long term dynamics.

122 **Intervention model analysis and long term results**

123 Our scenarios cover a large range of the two main intervention model parameters. In our main
124 results figure, we show the correlation of various metrics with the peak size of the non-specific
125 immunity population for a varying intervention effect β_b . The same analysis can be done for the
126 intervention threshold τ_b . Fig. S3 shows these correlation plots using a fixed intervention effect β_b
127 of 90 %. Most R^2 values are lower compared to the main results pane **D** in our manuscript. Only
128 the pairwise diversity metric appears to react stronger when varying τ_b with a fixed β_b .

129 Due to a lack of space in our main results figure, only two entropy metrics show the results
130 after 15 years. In Fig. S3 we show the state of other key metrics in our study throughout the 15 th
131 year. We find that the pairwise diversity reaches a similar equilibrium in all scenarios. The size
132 of the population with non-specific immunity is, however, much larger in the scenario without
133 interventions. This is reflected in the entropy metrics which are lower in these scenarios. Contrary
134 to our intuition, without the interventions the linearity is lower than in any of the intervention
135 scenarios on average, even though the variance is higher. This could be a latent effect of the delayed
136 second infection wave.

137 In Fig. S4, we take a look at some exemplary phylogenetic trees. All example trees show the
138 500 variants with the largest recovered or infected population and their ancestry. The blue trees
139 show the phylogeny after 15 years without the interventions (**A**) and for a scenario of category C
140 (**B**). Significantly more diversification events are visible in the blue tree shown in **B**. This explains
141 the difference in the Λ values. Table S5 lists the associated metrics for the aforementioned trees.
142 It is easy to see, that the entropy measures and the tree linearity focus on the entire structure
143 of a phylogenetic tree. In contrast, pairwise diversity (PD) quantifies the temporary state. This
144 is especially noticeable in the values for the black trees which show the state after 30 years. An
145 additional example of a scenario with vaccinations is shown in pane **C**. At its right end this tree
146 shows more concurrently circulating variants the other examples in **A** and **B**. It exhibits a pairwise
147 diversity of 7.14. In comparison, this is significantly higher. This difference is not reflected in the
148 rest of our used metrics. This points to the complementary nature of these metrics and to the benefit
149 of their use in unison.

150 Our simulations end after a period of 30 years. The effects of the parameter mutation on the

151 evolutionary patterns already explored in Fig. S2 can be revisited here. Fig. S4 **D** suggests that the
152 scenario lacking interventions may be more resilient to the effect of the parameter mutation. In
153 contrast to the other scenarios, its pairwise diversity is less elevated. This can also be seen in the
154 example trees (**A** - **C**) that show the phylogeny after 30 years.

155 **Analysis of epidemiological and mutational characteristics**

156 The main driver for the evolutionary dynamics in our focus is the intervention model. However,
157 there is a complex interplay between it and the other model parameters. We extend our analysis to
158 cover the parameters that had to be changed from the source values or were newly introduced. First,
159 we focus on the state after 2 years, *i.e.*, the state immediately preceding the end of the interventions.
160 The model component parametrized based on the influenza reference model (*I*) differs in two
161 parameters from the source. The contact rate β_W uses a homogeneous mixing based estimate. The
162 minimal effect of the cross-immunity θ_0 was adapted to the differences in the cross-immunity
163 model.

164 The scenario category C covers the scenarios with the strongest effect of the non-pharmaceutical
165 interventions on our results. Thus, we model the interventions for this category with a threshold
166 of $\tau_b = 10^{-6}$ and an intervention effect β_b of 90 %. All other parameters are chosen in line with
167 Table 1 of our manuscript with the exception of the singular parameters we vary for each analysis.
168 Our analysis in Fig. S5, shows that our main results are resilient to a change in either of the two
169 parameters. We attribute the small differences to a feedback from the intervention model.

170 Our model simulates the viral mutation in a two-fold process. The stylized RNA mutation
171 gives rise to new virus variants. This RNA mutability is governed by δ . A new variant mutates
172 its individual epidemiological parameters that it inherited from its parent variant. This parameter
173 mutation distance follows a (limited) normal distribution that depends on σ . The expected effect
174 of a lower RNA mutability is a reduced evolutionary complexity. Indeed, Fig. S5 shows this effect.
175 It also shows that reducing the parameter mutation range has a strong impact on the evolutionary
176 dynamics. By setting $\sigma = 0$ we effectively disable the parameter mutation. The result is a strong
177 reduction of the pairwise diversity and all measures of entropy.

178 The effect of the parameter mutation cannot be attributed to a singular parameter. As shown
179 in Fig. S6 **A** the absence of the mutation of individual parameters exhibits only a minor effect.

180 The biggest difference can be observed in a combination of the parameters directly affecting the
181 basic reproduction number R_0 : β , γ and μ . This, as shown in **C**, is not due to a rapid increase
182 of the basic reproduction number. Rather, a small differentiation in virulence is sufficient, albeit
183 vital, to produce the observed effect on the viral diversification. The simulated mutations cause
184 R_0 to reach a value, shown in **D**, that is within the observed range for the Omicron variant of
185 SARS-CoV-2 (36). Fig. S6 Fig. **S6 b** depicts examples of the synthetic phylogeny after four years
186 with and **E** without the parameter mutation. As visible, a lack of the parameter mutation leads to
187 an unrealistic diversification where the ancestral variant remains the most potent pathogen across
188 all recurring infection waves.

189 The lethality of our simulated disease interacts with the intervention model. In Fig. S7 we
190 explore this relationship. We consider the example scenarios for our three intervention scenarios
191 and compare them to versions with no initial lethality and no cross-protection. As expected, we find
192 that the initial survival chance λ_0 has a strong impact on the results. An initially low lethality tends
193 to reduce the phylogenetic complexity. This can be attributed to a reduction of the intervention
194 prevalence. In **A** showing the example of the scenario category A, however, we find the opposite
195 effect. Here, after four years the complexity is increased. The likely explanation is a larger susceptible
196 population left for the variants that are children of the ancestral strain. This exemplifies the complex
197 dynamics that unfold through the interplay of the epidemiological, social and evolutionary systems.

198 Due to the parameter evolution, a lack of the initial lethality does not entirely remove the in-
199 terventions. Contrary to our intuition, in our model λ appears to evolve towards a higher lethality
200 (see Fig. S6) if the standard deviation of mutations is very high. This is likely because the initial
201 value of the ability of hosts to survive the disease is close to its upper bound of 1. Our model is
202 not suited to fully unravel the complexities of pathogens within human hosts. Usually, within hosts
203 a trade-off between contagiousness and host health emerges (37). What is more, since there are
204 no small host communities in our model, highly lethal variants may not go extinct as quickly as
205 expected. Nevertheless, our viral variants are subject to selective pressure due to the interventions
206 and the susceptible population size. Our results could point towards a trade-off on a global epidemi-
207 ological level where the lethality lowers the cross-immunity through differentiation but inhibits the
208 transmission due to the interventions. The induced delay between recovery and susceptibility due
209 to the non-specific immunity may limit the evolutionary impact of the lethality on the susceptible

210 host population size.

211 In other words, the non-specific immunity in combination with the lethality dependent inter-
212 ventions may change the landscape of the evolutionary stable strategies such that pathogens benefit
213 from (a small) lethality.

214 The cross-protection against lethal infection outcomes ϕ shows less impact on our results. Its
215 damping effect on the lethality can be explored in Fig. S7 B. By removing the cross-protection
216 entirely, we find an increased complexity after four simulated years. With cross-protection, the
217 population's adaption to a novel pathogen leads to less lethal cases. In turn, the intervention
218 prevalence drops. Removing this dynamic in the scenario category B leads to ongoing interventions
219 and an infection spike after their discontinuation. This drives the example towards the scenario
220 category C, which exhibits increased late stage complexity metrics.

221 **Effects after four years**

222 The intervention discontinuation after two years causes a significant change of the resulting phylo-
223 genetic complexity. In scenario category C, the infection peak that follows the end of interventions
224 is especially large. Therefore, we also analyze the sensitivity two years after the end of the non-
225 pharmaceutical interventions. Fig. S8 depicts the same analysis as in Section 3.0.1 but two years
226 after the intervention discontinuation.

227 The infection wave following an intervention cessation appears to have little effect on the
228 qualitative analysis of our model's sensitivity. The changed epidemiological model parameters
229 remain rather inconsequential to our results. Both mutational parameters continue to drive the
230 resulting complexity. While the entropy and linearity metrics may exhibit latent structural effects
231 of early differences, the pairwise diversity reflects a lasting impact of these parameters after four
232 years. The unweighted tree degree entropy H^* exhibits an elevated value for the scenario without
233 the parameter mutation. This points to diversification events in child variants where the resulting
234 sub-variants remain unfit to compete against the ancestral strain. These events are likely the result
235 of the infection spike after the intervention discontinuation.

236 **Effects in other scenario categories**

237 The previous analysis focused on the scenario category C. In the other categories, the effect of the
238 non-pharmaceutical interventions on the phylogenetic complexity differs significantly. Hence, we
239 extend our analysis to two example scenarios from the categories A and B. We use the same example
240 scenarios as in our main study. For the scenario category B we set the intervention threshold to
241 $\tau_b = 2.5 \cdot 10^{-5}$ and the intervention effect β_b to 90 %. The example of the category A uses an
242 intervention threshold of $\tau_b = 1 \cdot 10^{-6}$ and an intervention effect β_b of 60 %.

243 Figures S9 and S10 show the effect of various parameters on the non-pharmaceutical intervention
244 phase and thereafter for examples of the scenario categories A and B. Overall, the results remain
245 similar to the previous example of the category C. Again, the effect of the mutation parameters
246 is more pronounced. Especially the category A is characterized by a reduction of interventions.
247 Similarly, the effect of the parameter mutation on the phylogenetic complexity metrics is also
248 reduced, albeit still visible.

249 In both categories, the effect of the adapted epidemiological parameters becomes more pro-
250 nounced. This is especially evident in the results after four years. An initial R_0 decrease appears to
251 leave more room for a later differentiation. As the interventions become less prevalent in category
252 B and, especially, A, the minimal cross-immunity parameter θ_0 becomes more important for the
253 epidemiological dynamics. Lowering θ_0 increases the resulting evolutionary complexity. This is
254 expected, since this parameter induces a long-lasting non-specific immunity. The larger recovered
255 population in these categories, thus, reduces the mutational complexity. In contrast, a lower re-
256 covered population reduces the impact of the cross-immunity on the dynamics in category C (see
257 figures S5 and S8). This emphasizes the fundamental impact of the non-specific immunity on the
258 pathogenic evolutionary complexity.

259 **Vaccination model analysis**

260 We model vaccinations to gauge the possible effect they could have on the progress of the phylo-
261 genetic complexity after the repeal of non-pharmaceutical interventions. Our vaccination model is
262 rather simple. A vaccination adds (cross-)immunity against the ancestral strain and a short-lived
263 non-specific immunity. The scenario shown in our main results is optimistic. In it, all citizens that

264 have not yet been infected can be vaccinated at a rate of 1% of the population per day.

265 In Fig. S11 **B** we also cover less successful scenarios with lower vaccination rates. One scenario
266 is aimed at vaccinating 81 % of the population and reaching the theoretical herd immunity for the
267 initial R_0 value of 5.4. By the time the vaccine can be distributed, the R_0 value has shifted due to
268 the parameter mutation. In a pessimistic scenario we analyze the effect of a low vaccination rate set
269 to half of that in the optimistic scenario.

270 Unsurprisingly, the peak infections are lowest in the most effective vaccination scenario. Effects
271 of the vaccination rate on the phylogenetic complexity are visible. In our model, the pharmaceutical
272 interventions reduce the peak of the non-specific immunity that may follow a repeal of the non-
273 pharmaceutical interventions. As a result, the bottleneck effect is reduced.

274 Such a bottleneck effect may instead be inducible by distributing the vaccine at a very high
275 rate. However, our optimistic vaccination scenario already uses the highest achieved vaccination
276 rate during Covid-19 (34).

277 **Empirical development in SARS-CoV-2 and influenza**

278 As a final step in our investigation, we analyze the empirical development of viral pathogenic evo-
279 lution before, during and after the Covid-19 pandemic. Our hypothesis is that non-pharmaceutical
280 interventions increase the structural complexity of phylogenetic trees of viral pathogens such as
281 influenza and SARS-CoV-2 due to the fact that the population builds less widespread non-specific
282 immunity. Due to the global nature of the response, the pandemic presents a unique opportunity to
283 study the impact of non-pharmaceutical interventions on pathogenic development.

284 We study empirical phylogenetic trees from the nextstrain platform (38). To stabilize the tempo-
285 ral development, we use the ready made trees based on 12 years of influenza's evolutionary history
286 for HA and NA genes respectively. For SARS-CoV-2 we use all available data, since it is only
287 available for a much shorter period at the time of this writing. We prune the trees to their state
288 up to each month from January 2018 to December 2024. Compared to our synthetic phylogenetic
289 trees, the structure of these empirically observed trees cannot be determined with full certainty. In
290 particular, the early evolution of SARS-CoV-2 can only be inferred. This explains the initial low
291 linearity and higher tree degree entropy we find for its phylogenetic tree in Fig. S12 **A**.

292 Furthermore, the evolution of SARS-CoV-2 had been affected by non-pharmaceutical interventions almost from the beginning. This is why SARS-CoV-2 represents a poor case to study our hypothesis empirically and why we instead use a simulation approach to investigate this ‘what if?’ type question.

296 Since we have no information about the infection numbers for specific variants in these trees, 297 we can only use the unweighted versions of our metrics.

298 During the pandemic, tree linearity Λ and the tree degree entropy H^* suggest a higher evolutionary complexity in SARS-CoV-2 compared to the influenza samples. This matches reported 299 observations in the literature (2, 3). The metrics seem to respond to a seasonal development. This is 300 particularly evident in our linearity metric during the winters of 2020 and 2021. Qualitatively, H^* 301 bears the most resemblance to our simulated vaccination example scenario. This metric also shows 302 the highest correlation to the peak non-specific immunity in our simulation study. The phylogenetic 303 entropy index H_p shows a lower value for SARS-CoV-2 compared to influenza viruses. This is likely 304 due to its comparatively low tree size. In both entropy metrics, the development of SARS-CoV-2 305 appears to align with the phylogenetic trees of influenza viruses after the pandemic.

307 The analyzed trees represent a filtered subset of the full evolutionary picture. Thus, a quantitative 308 comparison of synthetic and observed phylogenetic trees is difficult. Nonetheless, our analysis 309 unveils characteristic changes in the pathogenic evolution (see Fig. S12 B). We test whether the 310 evolution is significantly different using monthly data on the change in each metric.

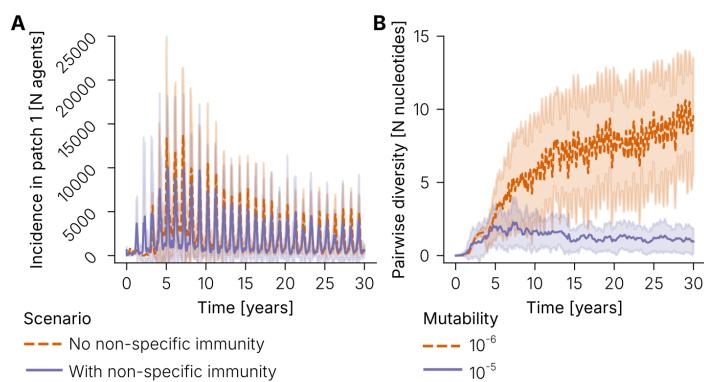
311 Starting in March of 2020, for influenza trees, the development of the phylogenetic entropy 312 index H_p and our linearity metric stagnates. Furthermore, it returns, for almost all lineages that 313 we consider, to its previous trend (or closer to the previous trend). This is an important finding 314 which suggests that this is indeed due to the pandemic. These changes in the trend are significant 315 until the end of 2022. For H3N2, this effect is less prominent. A significant difference for the trend 316 in H_p could only be established until October of 2021. Furthermore, the linearity metric shows 317 no significant differences in post-pandemic development for the NA gene. Contrary to our other 318 findings, the NA gene of the influenza B victoria lineage exhibits an even stronger stagnation in its 319 development after the pandemic. Further research is necessary to explain these differences and to 320 investigate whether they will persist.

321 We observe a strong effect of the Covid-19 pandemic on the tree degree entropy metric H^* .

322 From June 2020 until the end of 2022 we observe a significant mean increase of entropy in contrast
323 to a decrease before and thereafter. There are no significant differences between the pre- and post-
324 pandemic development, which again supports our hypothesis that the pandemic is the driving force
325 behind these results.

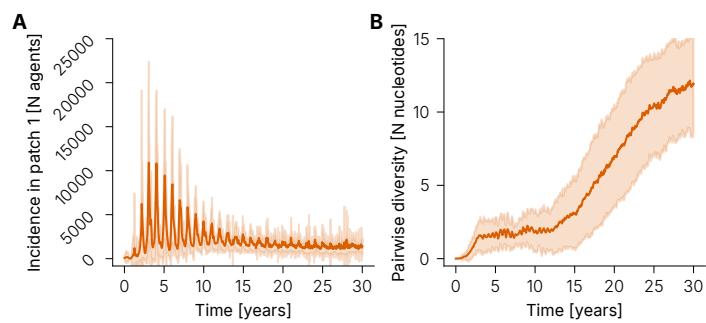
326 To conclude, our empirical analysis uses ready made phylogenetic trees that are pruned to
327 specific dates. It shows that the phylogenetic tree structure metrics used in our analysis have a
328 potential to shed light on viral pathogenic evolution. Importantly, we find that the pandemic seems
329 to have affected influenza's evolution, albeit this is likely of a temporary nature. While our empirical
330 analysis is not able to establish a causal link, our simulations point to social distancing as a driver
331 of these changes. Our findings highlight the essential link between social and natural systems and
332 may act as an important stepping stone for further research.

333

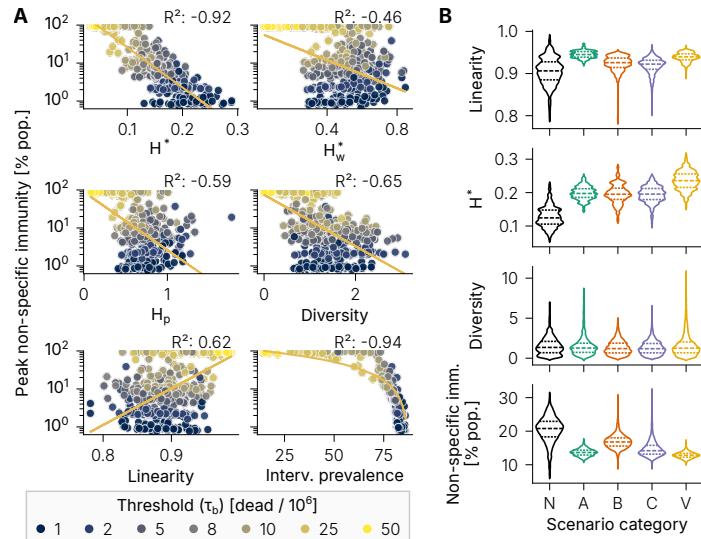


334 **Figure S1: Reproduction of the influenza reference model's results [see (1)] using our model**
 335 **with the assumption of perfect mixing withing geographical patches.** Both panes show the mean
 336 and standard deviation of 20 simulation runs comparing a scenario with low mutability but no non-
 337 specific immunity component with a scenario using high mutability and a non-specific immunity.
 338 (A) Incidences observed in the first geographical patch matching the reported numbers closely.
 339 (B) Pairwise nucleotide diversity weighted by the case abundance. The effect of the non-specific
 340 immunity component is evident in the low diversity exhibited despite a higher mutation rate in the
 341 scenario with non-specific immunity.

342

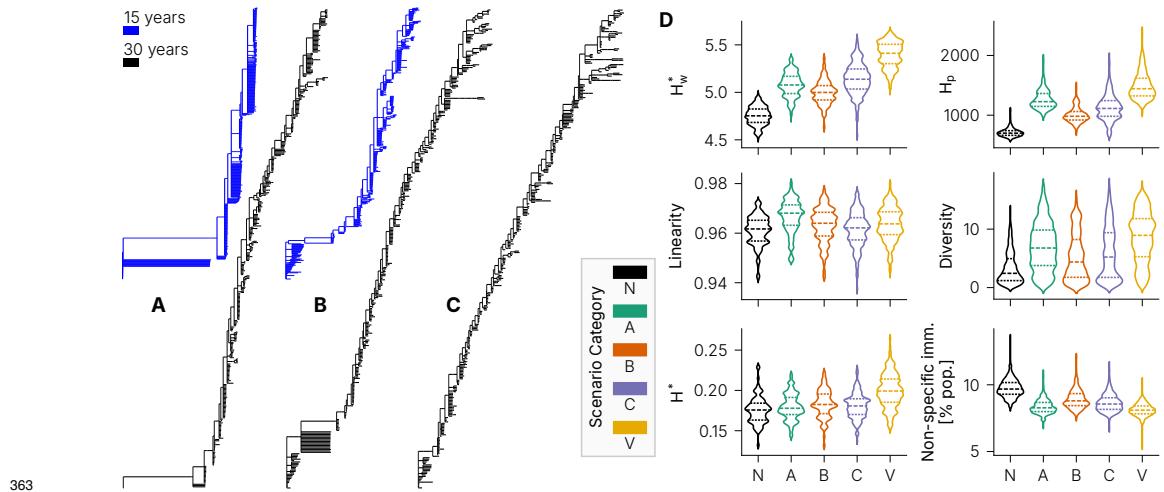


343 **Figure S2: Starting simulation runs close to the single-strain equilibrium using our adapted**
344 **model without interventions shows a similar evolution to the influenza reference model [see (1)]**
345 **until approximately year 15. (A)** The seasonality effects in the first geographical patch's incidence
346 fade over time. **(B)** After some 15 years the effect of the parameter mutation drives our results
347 towards a higher pairwise diversity. As shown in our manuscript, it is vital to assess the impact of
348 the parameter mutation for a novel pathogen. However, our model does not set any limits to the
349 evolution of the epidemiological parameters beyond their defined range. We, therefore, conclude
350 that our long term analysis should focus on the model state after 15 years.

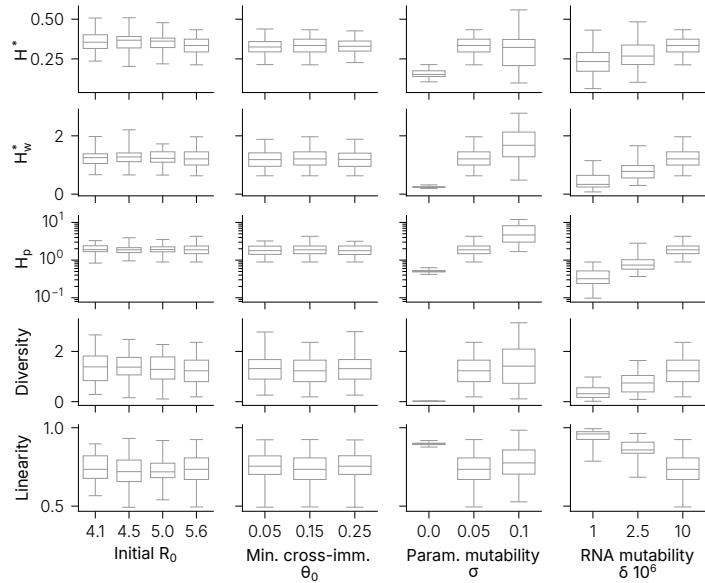


351

352 **Figure S3: The same correlation analysis exercised for the intervention effect β_b in our**
 353 **manuscript's main results can be extended to the intervention threshold τ_b . (A)** The correlation
 354 of most metrics is not as strong for this intervention parameter. Only the pairwise diversity metric
 355 gives a stronger response than when varying the intervention effect which was set to 90 % for
 356 this graph. **(B)** The state in year 15 of variables that were omitted in our main results for spatial
 357 reasons. The long term effects of the interventions seem to increase our linearity metric. The
 358 entropy metrics remain elevated. A possible explanation for this phenomenon is the increasing
 359 number of diversification events and the comparatively late emergence of differentiation in the
 360 scenario without interventions. The pairwise diversity appears to find a similar equilibrium in all
 361 scenarios. The population with non-specific immunity is larger in the scenario without interventions.
 362 In Fig. S4, we find that this difference reduced after 30 simulated years.



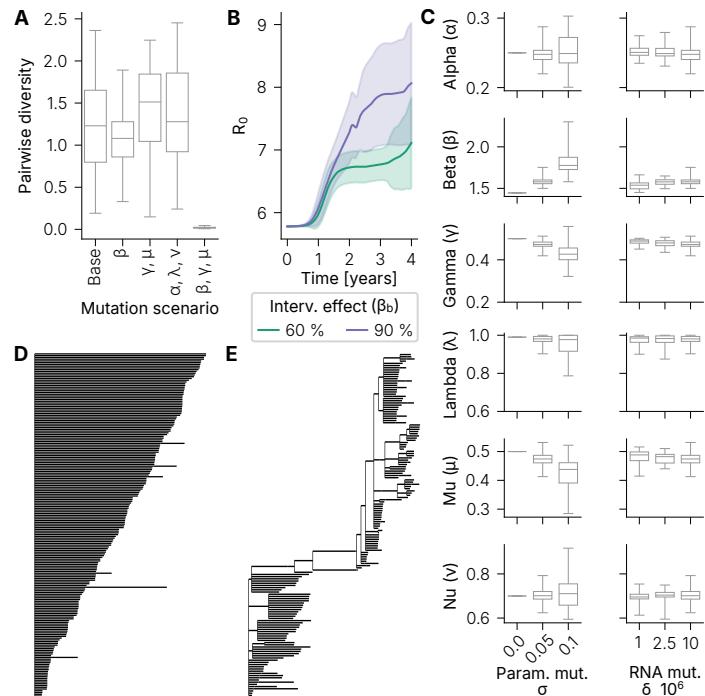
364 **Figure S4: In the 30th simulated year the complexity remains higher for scenarios with**
 365 **interventions.** There seems to be an increasing effect of the parameter mutation that drives diversity
 366 in these scenarios. The scenario without interventions appears to remain more resilient to this effect.
 367 (A) Example trees after 15 (blue) and 30 (black) years for a scenario without interventions. (B)
 368 Synthetic phylogenetic trees for the scenario category C after 15 (blue) and 30 (black) years. (C) An
 369 example tree for a vaccination scenario with 1 % vaccination rate after 30 years. For all phylogenetic
 370 trees we only show the 500 variants with the largest recovered population and their ancestors. For
 371 the sake of comparison, all trees are generated using the same random number generator seed. The
 372 associated metrics for these trees can be found in Table S5. (D) The state of our focused metrics
 373 after 30 simulated years. The entropy metrics are mostly differentiated through latent effects of
 374 early diversification events. Pairwise diversity is driven higher in scenarios with interventions due
 375 to the epidemiological parameter mutation.



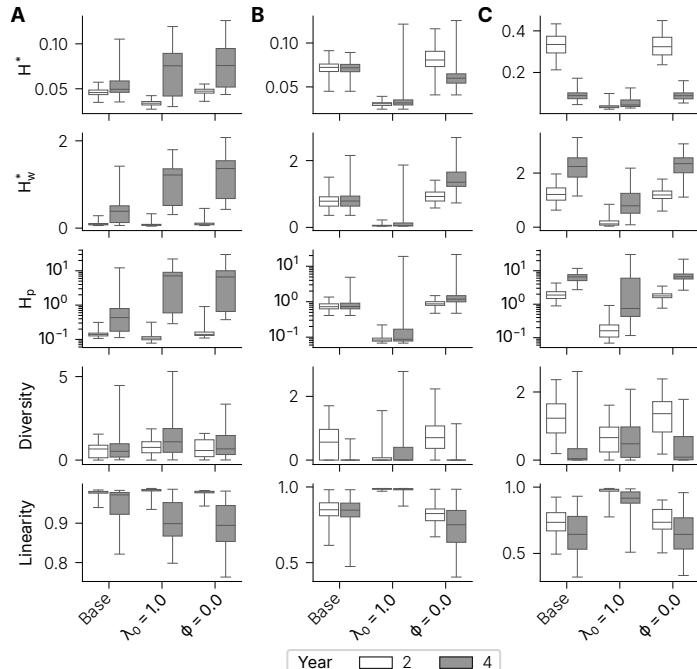
376

377 **Figure S5: A sensitivity analysis of the intervention scenario with $\tau_b = 10^{-6}$ and an inter-**
 378 **vention effect β_b of 90 % shows a large impact of changes in mutational dynamics on our**
 379 **main results.** The effect of the adapted epidemiological parameters is comparatively small. The
 380 investigated scenario was chosen as an example of the scenario category C. The R_0 values refer to
 381 the transmission within geographical patches. The fourth column shows the three mutability values
 382 for the stylized RNA also used by the influenza reference model [see (1)]. A lower mutability leads
 383 to less variant offspring and, thus, a reduction of the diversity and the opportunity for the epidemi-
 384 logical parameters to diverge. The parameter mutation, shown in the third column, only takes effect
 385 in new variants. Effectively disabling the parameter mutations by setting $\sigma = 0.0$ strongly reduces
 386 the effect of the interventions on all used metrics.

387

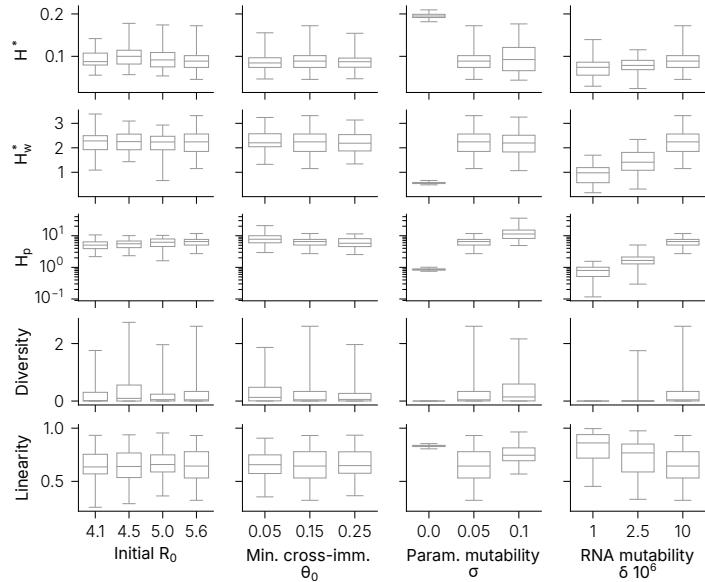


388 **Figure S6: The consequences of removing the parameter mutation cannot be explained by**
 389 **a drastic impact on one singular parameter.** Removing the mutation of singular parameters
 390 does not show the same effect on the pairwise diversity. **(A)** Results of removing the mutation in
 391 various combinations of epidemiological parameters. A *Base* scenario allows all the epidemiological
 392 parameters to mutate. Only the absence of the mutation in all parameters affecting the basic
 393 reproduction number (β , γ and μ) leads to a large drop of the pairwise diversity. **(B)** In the example
 394 scenario for the category C, the R_0 values mutate towards the range that could be observed for
 395 the Omicron variant of SARS-CoV-2 (36). **(C)** Despite the large effect, the amplitude of these
 396 mutations is not excessive. A visual comparison of the resulting phylogeny without **(D)** and with
 397 **(E)** the parameter mutation underlines its effect and importance. In each tree we show the 200
 398 variants with the most infections and recovered hosts and their ancestors in each tree.



399

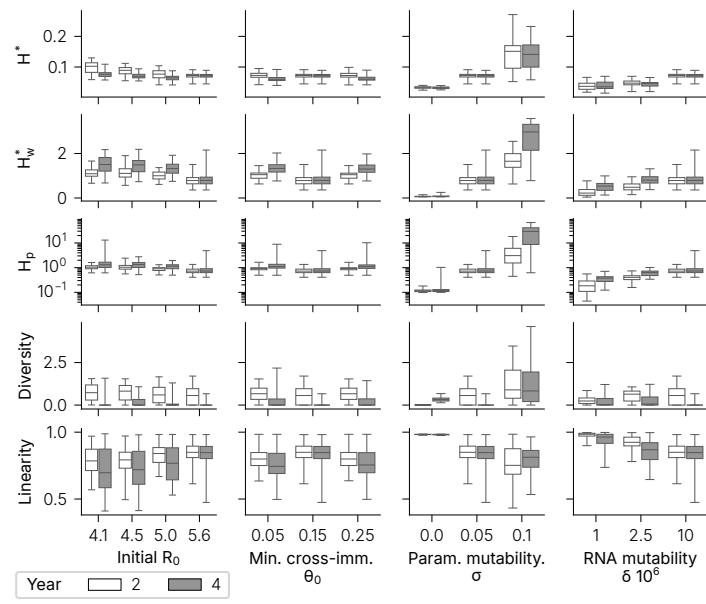
400 **Figure S7: Raising the initial survival chance λ_0 to 100 % decreases the evolutionary complexity**
 401 **by reducing the intervention prevalence.** (A) Result of a scenario without lethality and one
 402 without cross-protection for an example of the scenario category A. (B) The example scenario for
 403 the scenario category B, where the impact of lethality is especially visible. (C) An example of the
 404 category C, where this effect is also pronounced. In contrast, (A) shows that a lowered lethality can
 405 increase the pairwise diversity. We attribute this to a smaller impact of the large first infection wave
 406 on the susceptible population available to the variants emerging later. Overall the cross-protection
 407 ϕ against lethal infection consequences appears to have less impact. In (B) its removal slightly
 408 increases the observed mutational complexity after four years. This is likely due to the damping
 409 effect effect of the cross-protection on the lethality. The lack of this effect leads to prolonged
 410 interventions and a larger impact of their discontinuation after two years. The base scenarios refer
 411 to the category examples with interventions but unchanged lethality parameters.



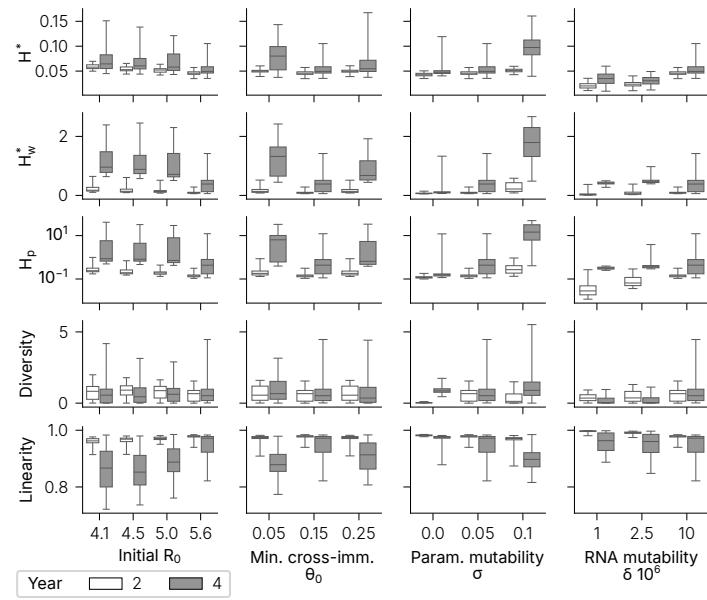
412

413 **Figure S8: Two years after the discontinuation of the non-pharmaceutical interventions there**
 414 **is no drastic change in the results of our sensitivity analysis.** The adapted epidemiological
 415 parameters continue to show little effect on the main results. In contrast, the mutational parameters
 416 still show a strong effect on the results. Lowering the mutation rate, both for the parameter mutation
 417 as well as for the stylized RNA mutation, reduces the evolutionary complexity. This effect remains
 418 somewhat visible in the pairwise diversity which is less prone to the latent effects of early dynamics.
 419 However, the unweighted tree degree entropy H^* shows an increased value for the lowest parameter
 420 mutability. This hints at speciation events where child variants spawn offspring still unfit in their
 421 competition against the ancestral strain.

422



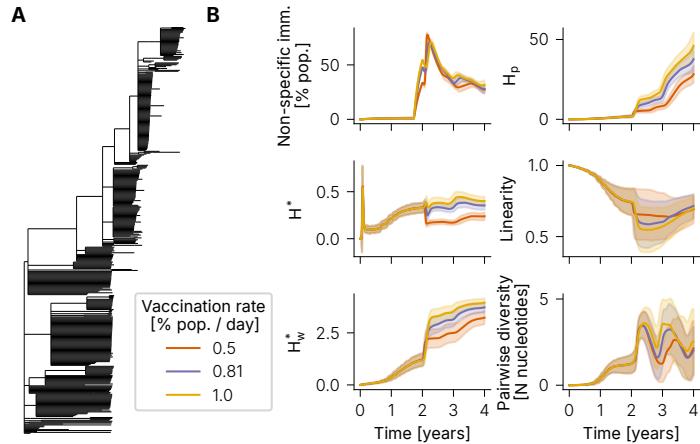
423 **Figure S9: In the scenario category B the observed effects after 2 years of non-pharmaceutical**
 424 **interventions remain mostly unchanged.** A slight reduction of the parameter mutation's effect
 425 can be attributed to the lower intervention prevalence. This is also (quantitatively) evident in the
 426 results for a higher mutability. Lowering the initial R_0 value seems to leave slightly more room for
 427 a later differentiation. A reduced minimal cross-immunity also impacts the long term result. This
 428 points to the reduced bottleneck effect of the non-specific immunity component in this scenario.



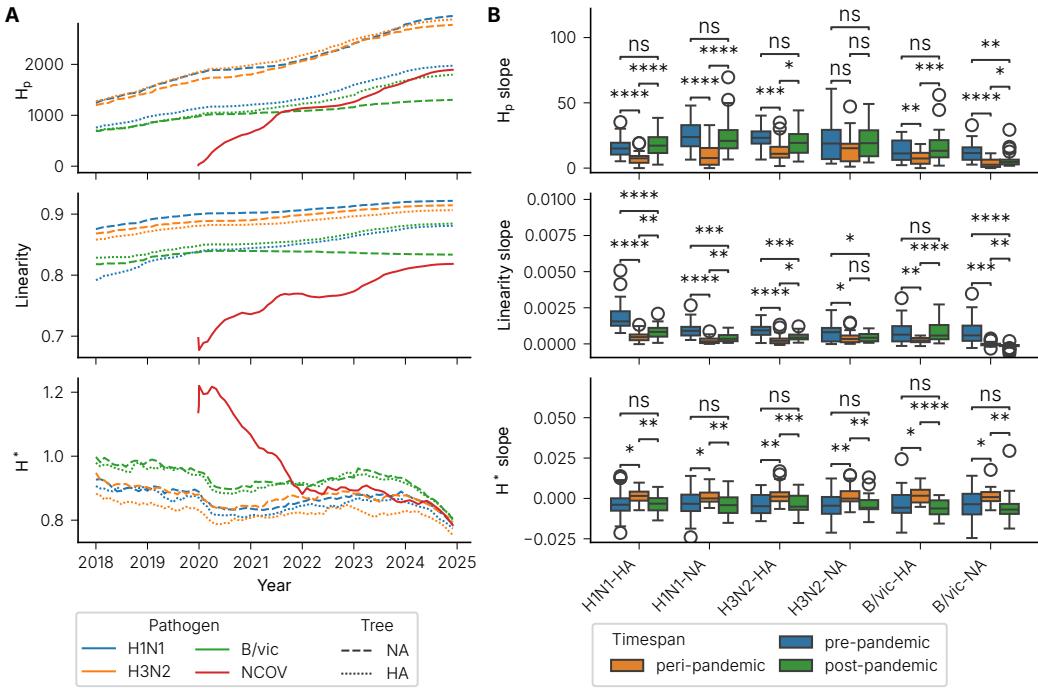
429

430 **Figure S10: For the scenario category A we observe a reduced impact of the mutational**
 431 **parameters on the phylogenetic complexity.** This can be attributed to a reduction of the non-
 432 pharmaceutical intervention prevalence. The effect still remains visible, pointing to the lasting
 433 effect of the initial interventions. The adapted epidemiological parameters show a noticeable effect
 434 after the intervention phase. Like in Fig. S9, a reduction of the initial R_0 value may leave more
 435 space for a later differentiation. In the category A, the cross-immunity component's effect is even
 436 more pronounced. Reducing the minimal cross-immunity parameter θ_0 increases the phylogenetic
 437 complexity after four years.

438



439 **Figure S11: Different vaccination rates affect the phylogenetic complexity by reducing the**
 440 **effective peak size of the non-specific immunity.** (A) An example of a synthetic phylogenetic
 441 tree produced by a scenario with the highest vaccination rate. The vaccination mitigates a variant-
 442 induced bottleneck effect and, thus, creates an equal playing field for all variants. This increases
 443 the evolutionary complexity as it is quantified by our metrics. (B) The temporal development in
 444 the first 4 years in three vaccination scenarios. The reduced bottleneck effect can be traced in
 445 all indicators. A lower vaccination rate leads to a higher entropy, a slight increase of the pairwise
 446 diversity and a decreased linearity. The vaccination rates were chosen based on three scenarios. In
 447 the optimistic scenario, the population is vaccinated at a rate of 1 % per day. Not all citizens can be
 448 vaccinated due to some having been infected recently. An additional scenario was chosen where the
 449 theoretic herd immunity should be reached at 81 % of vaccinated citizens. Finally, the lowest rate
 450 is set to half of the optimistic scenario in an attempt to model an insufficient vaccination progress.



451

452 **Figure S12: Observed phylogenetic trees of influenza exhibit characteristic changes in the**
 453 **development of entropy and linearity during the pandemic. (A)** Temporal development of our
 454 complexity metrics applied to phylogenetic trees of influenza viruses in comparison to SARS-CoV-
 455 2 covering pre-pandemic to post-pandemic evolution. Our tree linearity metric Λ can observe the
 456 higher complexity of SARS-CoV-2 described in the scientific literature. It also appears to show an
 457 effect of the pandemic on the evolution of influenza viruses. Their tree degree entropy H^* exhibits
 458 a rapid initial decline with the onset of interventions followed by a subsequent growth that may be
 459 the result of reduced non-specific immunity. The tree degree entropy of SARS-CoV-2 peaks during
 460 2020 and starts to align with influenza results after two years. The phylogenetic entropy index H_p
 461 of SARS-CoV-2 is lower due to its size. After the pandemic, the development approaches that of
 462 influenza. All metrics exhibit seasonal effects with differing prominence. **(B)** The pandemic phase
 463 significantly differs from its preceding and following development. However, different temporal
 464 selections have to be made. For the phylogenetic entropy index H_p , we find a slowed growth that
 465 is likely due to the early, intended effect of interventions following March 2020, most probably
 466 due to its correlation with tree size growth (see Table S4). Our linearity metric also exhibits a
 467 slowed growth that lasts from March 2020 to the end of 2021. The tree degree entropy H^* shows a
 468 significant growth from June 2020 until the end of 2022. This trend follows an initial decrease that
 469 is likely caused by the onset of interventions. S26

Table S1: The parameters used for the simulation study. Some parameters, such as the intervention effect and threshold vary by simulated scenario and are not listed here.

Name	Value	Description	Source
L	30	Agent lifespan.	(I)
M	20	Number of geographical patches.	(I)
N_p	$\frac{12,000,000}{M}$	Number of inhabitants per patch p .	(I)
α	0.25	Average latent period of 4 days.	(12)
$\beta_{W,0}$	$\frac{289}{200}$	Infectiousness within a patch with $R_0 = 5.4$.	(I, 32)
h	$\frac{269}{289}$	Infectiousness across patches with $R_0 = 0.02$.	(I, 32)
γ_0	0.5	Average 2 days of (a-)symptomatic period.	(12)
λ_0	0.99	Chance of survival.	(12)
μ_0	0.5	Average 2 days of pre-symptomatic period.	(12)
ν_0	0.7	Fraction of symptomatic infections.	(12)
ϵ_p	-0.25 / 0.25	Seasonality, negative if patch $p > M/2$.	(I)
ψ	0.99	Cross-protection against death.	(12)
τ	$\frac{1}{270}$	Decay rate of non-specific immunity.	(I)
σ	0.05	Standard deviation of parameter mutation.	(12)
δ	$10^{-6} - 10^{-5}$	Mutation rate of nucleotide bases per infectious host per day.	(I)
θ_0	0.15	Minimum cross-immunity effect.	(See Section 3)
θ_1	0.99	Maximum imperfect cross-immunity effect.	(I)
n_t	2	Antigenic distance threshold.	(I)

Table S2: The parameters used for the reproduction model. All parameters are derived from the influenza reference model [see (1)]. The minimal cross-immunity effect θ_0 is adapted to the differences in the cross-immunity model. The contact rate $\beta_{W,0}$ and the homophily h are derived from the influenza reference model's values as described in Section 3.0.1.

Name	Value	Description
L	30	Agent lifespan.
M	20	Number of geographical patches.
N_p	$\frac{12,000,000}{M}$	Number of inhabitants per patch p .
α	0.5	Average latent period of 2 days.
$\beta_{W,0}$	$\frac{289}{200}$	Infectiousness within a patch with $R_0 = 5.4$.
h	$\frac{269}{289}$	Infectiousness across patches with $R_0 = 0.02$.
γ_0	0.25	Average 4 days of infected period.
ϵ_p	-0.25 / 0.25	Seasonality, negative if patch $p > M/2$.
τ	$\frac{1}{270}$	Decay rate of non-specific immunity.
δ	$10^{-6} - 10^{-5}$	Mutation rate of nucleotide bases per infectious host per day.
θ_0	0.15	Minimum cross-immunity effect.
θ_1	0.99	Maximum imperfect cross-immunity effect.
n_t	2	Antigenic distance threshold.

Table S3: Correlation between metrics and the phylogenetic tree size.

	Tree size	PD	Λ	H^*	H_w^*	H_p
Tree size	1.000000	-0.045520	-0.216350	-0.361966	0.326739	0.536647
PD	-0.045520	1.000000	-0.306345	0.343543	0.316502	0.250051
Λ	-0.216350	-0.306345	1.000000	-0.427979	-0.915686	-0.628884
H^*	-0.361966	0.343543	-0.427979	1.000000	0.424715	0.212379
H_w^*	0.326739	0.316502	-0.915686	0.424715	1.000000	0.837813
H_p	0.536647	0.250051	-0.628884	0.212379	0.837813	1.000000

Table S4: Correlation between temporal metrics differences and the phylogenetic tree size differences.

	Δ Tree size	ΔPD	$\Delta \Lambda$	ΔH^*	ΔH_w^*	ΔH_p
Δ Tree size	1.000000	0.394419	-0.725089	0.102415	0.802855	0.894748
ΔPD	0.394419	1.000000	-0.309248	0.051063	0.391713	0.439709
$\Delta \Lambda$	-0.725089	-0.309248	1.000000	-0.098356	-0.934172	-0.780769
ΔH^*	0.102415	0.051063	-0.098356	1.000000	0.115777	0.107378
ΔH_w^*	0.802855	0.391713	-0.934172	0.115777	1.000000	0.916460
ΔH_p	0.894748	0.439709	-0.780769	0.107378	0.916460	1.000000

Table S5: Associated values for complexity metrics of the example trees shown in Fig. S4.

Year	β_b [%]	τ_b	δ_v $\left[\frac{\%}{\text{day}} \right]$	Scen. Category	Λ	PD	H_p	H^*	H_w^*
15	0	-	-	N	0.89	0.63	25.12	0.10	2.31
15	99	10^{-6}	-	C	0.96	2.07	266.54	0.18	4.30
30	0	-	-	N	0.97	0.32	646.20	0.16	4.60
30	99	10^{-6}	-	C	0.97	2.50	1004.85	0.16	5.13
30	99	10^{-6}	1	V	0.99	7.14	1367.60	0.19	5.35