
Extended data and supplementary information for1

Complex viral evolution as an unintended consequence of social2

distancing3

Simon Plakolb→, Patrick Mellacher4

→Corresponding author. Email: simon.plakolb@ibv.uio.no5

This PDF file includes:6

Supplementary Text7

Figures S1 to S128

Tables S1 to S59

S1



Supplementary Text10

Calculation of contact rate values11

Our model is based on an influenza reference model (1) to describe the presence of low phylogenetic12

diversification in influenza strains. This reference model utilizes an agent-based approach where13

all individuals of the population are simulated individually. These agents are distributed uniformly14

within 𝐿 = 20 geographically distinct patches. This method is computationally expensive, if the15

simulated number of people is large. We thus simplify this model to carry out the simulations in a16

more e!cient way: We assume homogeneous mixing within each geographical patch. This allows17

us to model the spread of the virus using the well-known SIR equations. However, since we are18

interested in tracking viral evolution, we also want to explicitly model a potentially large number of19

virus variants. To do so, we use an agent-based approach where we model each variant as an agent20

(instead of each person).21

To account for the di”erences in the modeling approach, we have to carefully adjust the contact22

rates in our model. The influenza reference model di”erentiates between local transmission with a23

contact rate determined by 𝑀𝑁 , mixing within a patch with 𝑀𝑂 and contact between patches with24

𝑀𝑃. The reported basic reproduction number for transmission within local groups is 𝑄0 = 5. Within25

a geographical patch, transmission is less likely with 𝑄0 = 0.4 and transmission in between patches26

is given with 𝑄0 = 0.02.27

We find our values for 𝑀𝑂 ,0 and the homophily parameter 𝑅 using equations S1 and S2 (32):28

𝑀𝑂 ,0(𝑅 +
1 ↑ 𝑅

𝐿
) = 5.4

𝑆↑1
0 + 𝑇↑1

0
(S1)

𝑀𝑂 ,0
1 ↑ 𝑅

𝐿
=

0.02
𝑆↑1

0 + 𝑇↑1
0

(S2)

The resulting parameter values are listed in Table 1 of the manuscript. To gain an intuition for these29

equations, one can rewrite their left-hand side (LHS) with 𝐿 = 20. Equation S1’s LHS then reads30

as 1
20 𝑀𝑂 ,0(19𝑅 + 1). It can be understood as the local transmission component. In a completely31

homophilic 𝑅 = 1 scenario 𝑀𝑂 ,0 equals the right-hand side (RHS) of S1. For equation S2 the LHS32
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can be rewritten as 1
20 𝑀𝑂 ,0(1 ↑ 𝑅). In a scenario with homogenous mixing between all patches33

(𝑅 = 0), 𝑀𝑂 ,0 corresponds to the RHS of S2. Intuitively, the homophily parameter 𝑅 regulates the34

balance between both extremes.35

Reproduction scenarios36

Despite our methodological changes, our model can reproduce the results of the influenza reference37

model [see (1)]. As listed above [see Methods in Section 3], all but one parameter are set to the values38

of the reference model. Our method necessitates some changes to the immunity model. Therefore,39

as described in our methods section, the cross-immunity’s minimal e”ect 𝑈0 was reduced.40

Fig. S1 shows our reproduction of the influenza reference model’s results in two key scenarios41

that follow the methodology of its source (1). A setting with low mutability and only cross-immunity42

is compared to a scenario paring high mutability with an additional non-specific immunity. Both43

scenarios were evaluated with each using 50 simulation runs over 30 virtual years.44

Pane A of Fig. S1 shows the weekly incidence in the first geographical patch. Much like in the45

influenza reference model’s associated report, the scenario excluding the non-specific immunity46

peaks between 10, 000 and 15, 000 inhabitants in the first 15 years. The incidence for the scenario47

including the non-specific immunity is lower. In the second half of the simulation, it peaks around48

3, 000 inhabitants, again resembling the reference result (1). The reference’s units are reported to49

be per 100, 000 inhabitants (1). We find that this may be an error in these units, as the percentage50

of infected inhabitants appears unrealistic. In any case, our model produces a similar di”erence51

between both scenarios. More importantly, our observations for pairwise diversity match those52

reported for the influenza reference model (1).53

In pane B of Fig. S1 a lack of non-specific immunity proves to lead to rapid diversification.54

Meanwhile, the added non-specific immunity component limits diversification drastically, despite55

a tenfold increase in mutability. In both cases, the range of the pairwise diversity closely resembles56

that reported for the influenza reference model (1).57

S3



Equations of the reproduction model58

Our model includes a pre-symptomatic phase and asymptomatic cases. In contrast, the influenza59

reference model (1) uses a single mode of symptomatic infection. Furthermore, it does not consider60

the possibility of a lethal infection outcome. Therefore, some equations listed in our manuscript’s61

methods section can be simplified to reproduce this model.62

The population that is cross-immune to variant 𝑉 and currently within the compartments specific63

to any variant can be calculated without the 𝑊𝑋,𝑉 and 𝑌𝑋,𝑉 compartments:64

𝑍𝑋,𝑉,I+F =
∑
𝑎

(𝑏𝑋,𝑉 + 𝑐𝑋,𝑉 + 𝑑𝑋,𝑉) (1 ↑ 𝑒 (𝑓𝑉, 𝑎 ))
𝑍𝑋,𝑉

𝑔𝑋
(S3)

We want to reiterate the intuition for this expression. For a variant 𝑉, the sum of the cross-immune65

population needs to be scaled to reflect a good estimate. We assume a reasonably good mixing within66

all compartments. Then, the fraction of the cross-immune individuals within the total population67

𝑍𝐿,𝑀

𝑔𝐿
can be used for the variant-specific cross-immunity compartments. However, the likelihood68

of a cross-infection is inversely correlated to the cross-immunity. Thus, an additional scaling by69

1 ↑ 𝑒 (𝑓𝑉, 𝑎 ) is necessary.70

Due to the reduction of infection compartments the normalized contagious population 𝑐tot,𝑋,𝑉71

simplifies to a mere fraction of symptomatic individuals within the population:72

𝑐tot,𝑋,𝑉 =
𝑐𝑋,𝑉
𝑔𝑋

(S4)

Since there are no more pre-symptomatic and asymptomatic cases, the exposed population in 𝑏𝑋,𝑉73

flows directly into 𝑐𝑋,𝑉:74

↓𝑐𝑋,𝑉 = 𝑕𝑉𝑏𝑋,𝑉 ↑ 𝑆𝑉 𝑐𝑋,𝑉 ↑
𝑐𝑋,𝑉
𝑁

(S5)

Likewise, the absence of lethal consequences simplifies the compartment outflow of ↓𝑐𝑋,𝑉. As in all75

compartments, the life expectancy 𝑁 governs the rate of natural death. Besides the natural deaths,76

only 𝑆𝑉 regulates the outflow by determining the mean infection duration. Consequently, the net77

recovery rate reduces to only the net flux out of the infected compartment:78
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↓𝑄↔
𝑋,𝑉 = 𝑆𝑉 𝑐𝑋,𝑉 (S6)

For the scenario excluding the non-specific immunity the model can be further simplified. In79

this scenario the non-specific immunity compartment 𝑑𝑋 and the associated, variant-specific state80

variable 𝑑𝑋,𝑉 can be excluded from the model. The component for the variant-specific susceptible81

population 𝑖𝑋,𝑉 can then be rewritten as:82

𝑖𝑋,𝑉 = 𝑖𝑋 ↑ 𝑍𝑋,𝑉 + 𝑍𝑋,𝑉,𝑐 (S7)

It uses the cross-immune population currently infected by other variants 𝑍𝑋,𝑉,𝑐 . It is an alternative83

to 𝑍𝑋,𝑉,𝑐+𝑑 that excludes the non-specific immunity compartment 𝑑𝑋:84

𝑍𝑋,𝑉,𝑐 =
∑
𝑎

(𝑏𝑋,𝑉 + 𝑐𝑋,𝑉) (1 ↑ 𝑒 (𝑓𝑉, 𝑎 ))
𝑍𝑋,𝑉

𝑔𝑋
(S8)

Excluding 𝑑𝑋 also changes the flux of recovered individuals. The recovered population flows85

directly into the susceptible compartment, for which the derivative changes to:86

↓𝑖𝑋 =
𝑔𝑋

𝑁
+
(
𝑗𝑘𝑙𝑉𝑆𝑉 𝑐𝑋,𝑉 ↑ 𝑚𝑋,𝑉𝑖𝑋,𝑉

)
↑
𝑖𝑋
𝑁

(S9)

Without the non-specific immunity, recovered individuals directly contribute to the cross-immunity.87

Therefore, the cross-immunity derivative is now given by:88

↓𝑍𝑋,𝑉 =
∑
𝑎

𝑒 (𝑓𝑉, 𝑎 )𝑆𝑎 𝑐𝑋, 𝑎 ↑
𝑍𝑋,𝑉

𝑁
(S10)

The influenza reference model (1) deals with the evolution of a pathogen with widespread antigenic89

adaption in the population. Thus, simulations start “near the single-strain equilibrium” (1). To90

reproduce this, we disable all mutations in the first 100 simulated years to arrive at the (dynamic)91

single-strain equilibrium. Afterwards, we enable mutations. As in the influenza reference model,92

in our reproduction model the epidemiological parameters are not a”ected by the mutation but93

constant. The parameters used in the reproduction model are listed in Table S2.94
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Our model under equilibration95

The substitution of the host-agents with ODEs is not the only di”erence the between the influenza96

reference model (1) and ours. Due to the focus on a di”erent, and novel, pathogen our method97

introduces new compartments and the mutation of epidemiological parameters. In addition, the98

scenarios in our study start before the single-strain equilibrium establishes itself. Arguably, there99

is a large gap between the reproduction scenarios and our main study. To bridge this gap, we100

additionally investigate a scenario of our novel model starting close to the single-strain equilibrium.101

This scenario uses the main study’s base scenario parameters. There are no pharmaceutical or102

non-pharmaceutical interventions. Note that these parameters do not di”er drastically from the103

reproduction model.104

The additional compartments of the epidemiological model exhibit only a minor impact on the105

population dynamics. The most notable di”erence to the reproduction scenarios appears to be the106

quicker establishment of a dynamic equilibrium. This is likely the e”ect of the extended latent107

period.108

Our scenario includes a non-specific immunity component. Consequently, the pairwise diversity109

is reduced. For the influenza reference model, one can show that functional constraints on the110

viral evolution do not significantly impact the results (see Supplementary Material of (1)). Using111

our model, which decouples the stylized RNA mutation from the evolution of epidemiological112

parameters, we find that only after the first ↗ 15 years the parameter mutation starts to impact the113

pairwise diversity. We, therefore, conclude that the long term e”ects of the interventions in our114

model should be investigated at the 15 year mark.115

Sensitivity Analysis116

To improve the insight into our model’s dynamics, we perform a sensitivity analysis beyond the117

scenarios shown in Fig. 2. Each parameter combination is evaluated at least 50 times with varying118

pseudo-random number generator seeding. The sensitivity analysis focuses on the state after 2 and119

4 simulated years. Some parameter combinations, however, cover a time span of 15 or 30 years to120

investigate the long term dynamics.121
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Intervention model analysis and long term results122

Our scenarios cover a large range of the two main intervention model parameters. In our main123

results figure, we show the correlation of various metrics with the peak size of the non-specific124

immunity population for a varying intervention e”ect 𝑀𝑚. The same analysis can be done for the125

intervention threshold 𝑛𝑚. Fig. S3 shows these correlation plots using a fixed intervention e”ect 𝑀𝑚126

of 90 %. Most 𝑄2 values are lower compared to the main results pane D in our manuscript. Only127

the pairwise diversity metric appears to react stronger when varying 𝑛𝑚 with a fixed 𝑀𝑚.128

Due to a lack of space in our main results figure, only two entropy metrics show the results129

after 15 years. In Fig. S3 we show the state of other key metrics in our study throughout the 15 th130

year. We find that the pairwise diversity reaches a similar equilibrium in all scenarios. The size131

of the population with non-specific immunity is, however, much larger in the scenario without132

interventions. This is reflected in the entropy metrics which are lower in these scenarios. Contrary133

to our intuition, without the interventions the linearity is lower than in any of the intervention134

scenarios on average, even though the variance is higher. This could be a latent e”ect of the delayed135

second infection wave.136

In Fig. S4, we take a look at some exemplary phylogenetic trees. All example trees show the137

500 variants with the largest recovered or infected population and their ancestry. The blue trees138

show the phylogeny after 15 years without the interventions (A) and for a scenario of category C139

(B). Significantly more diversification events are visible in the blue tree shown in B. This explains140

the di”erence in the ω values. Table S5 lists the associated metrics for the aforementioned trees.141

It is easy to see, that the entropy measures and the tree linearity focus on the entire structure142

of a phylogenetic tree. In contrast, pairwise diversity (PD) quantifies the temporary state. This143

is especially noticeable in the values for the black trees which show the state after 30 years. An144

additional example of a scenario with vaccinations is shown in pane C. At its right end this tree145

shows more concurrently circulating variants the other examples in A and B. It exhibits a pairwise146

diversity of 7.14. In comparison, this is significantly higher. This di”erence is not reflected in the147

rest of our used metrics. This points to the complementary nature of these metrics and to the benefit148

of their use in unison.149

Our simulations end after a period of 30 years. The e”ects of the parameter mutation on the150
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evolutionary patterns already explored in Fig. S2 can be revisited here. Fig. S4 D suggests that the151

scenario lacking interventions may be more resilient to the e”ect of the parameter mutation. In152

contrast to the other scenarios, its pairwise diversity is less elevated. This can also be seen in the153

example trees (A - C) that show the phylogeny after 30 years.154

Analysis of epidemiological and mutational characteristics155

The main driver for the evolutionary dynamics in our focus is the intervention model. However,156

there is a complex interplay between it and the other model parameters. We extend our analysis to157

cover the parameters that had to be changed from the source values or were newly introduced. First,158

we focus on the state after 2 years, i.e., the state immediately preceding the end of the interventions.159

The model component parametrized based on the influenza reference model (1) di”ers in two160

parameters from the source. The contact rate 𝑀𝑂 uses a homogeneous mixing based estimate. The161

minimal e”ect of the cross-immunity 𝑈0 was adapted to the di”erences in the cross-immunity162

model.163

The scenario category C covers the scenarios with the strongest e”ect of the non-pharmaceutical164

interventions on our results. Thus, we model the interventions for this category with a threshold165

of 𝑛𝑚 = 10↑6 and an intervention e”ect 𝑀𝑚 of 90 %. All other parameters are chosen in line with166

Table 1 of our manuscript with the exception of the singular parameters we vary for each analysis.167

Our analysis in Fig. S5, shows that our main results are resilient to a change in either of the two168

parameters. We attribute the small di”erences to a feedback from the intervention model.169

Our model simulates the viral mutation in a two-fold process. The stylized RNA mutation170

gives rise to new virus variants. This RNA mutability is governed by 𝑜. A new variant mutates171

its individual epidemiological parameters that it inherited from its parent variant. This parameter172

mutation distance follows a (limited) normal distribution that depends on 𝑝. The expected e”ect173

of a lower RNA mutability is a reduced evolutionary complexity. Indeed, Fig. S5 shows this e”ect.174

It also shows that reducing the parameter mutation range has a strong impact on the evolutionary175

dynamics. By setting 𝑝 = 0 we e”ectively disable the parameter mutation. The result is a strong176

reduction of the pairwise diversity and all measures of entropy.177

The e”ect of the parameter mutation cannot be attributed to a singular parameter. As shown178

in Fig. S6 A the absence of the mutation of individual parameters exhibits only a minor e”ect.179
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The biggest di”erence can be observed in a combination of the parameters directly a”ecting the180

basic reproduction number 𝑄0: 𝑀, 𝑆 and 𝑇. This, as shown in C, is not due to a rapid increase181

of the basic reproduction number. Rather, a small di”erentiation in virulence is su!cient, albeit182

vital, to produce the observed e”ect on the viral diversification. The simulated mutations cause183

𝑄0 to reach a value, shown in D, that is within the observed range for the Omicron variant of184

SARS-CoV-2 (36). Fig. S6 Fig. S6 b depicts examples of the synthetic phylogeny after four years185

with and E without the parameter mutation. As visible, a lack of the parameter mutation leads to186

an unrealistic diversification where the ancestral variant remains the most potent pathogen across187

all recurring infection waves.188

The lethality of our simulated disease interacts with the intervention model. In Fig. S7 we189

explore this relationship. We consider the example scenarios for our three intervention scenarios190

and compare them to versions with no initial lethality and no cross-protection. As expected, we find191

that the initial survival chance 𝑞0 has a strong impact on the results. An initially low lethality tends192

to reduce the phylogenetic complexity. This can be attributed to a reduction of the intervention193

prevalence. In A showing the example of the scenario category A, however, we find the opposite194

e”ect. Here, after four years the complexity is increased. The likely explanation is a larger susceptible195

population left for the variants that are children of the ancestral strain. This exemplifies the complex196

dynamics that unfold through the interplay of the epidemiological, social and evolutionary systems.197

Due to the parameter evolution, a lack of the initial lethality does not entirely remove the in-198

terventions. Contrary to our intuition, in our model 𝑞 appears to evolve towards a higher lethality199

(see Fig. S6) if the standard deviation of mutations is very high. This is likely because the initial200

value of the ability of hosts to survive the disease is close to its upper bound of 1. Our model is201

not suited to fully unravel the complexities of pathogens within human hosts. Usually, within hosts202

a trade-o” between contagiousness and host health emerges (37). What is more, since there are203

no small host communities in our model, highly lethal variants may not go extinct as quickly as204

expected. Nevertheless, our viral variants are subject to selective pressure due to the interventions205

and the susceptible population size. Our results could point towards a trade-o” on a global epidemi-206

ological level where the lethality lowers the cross-immunity through di”erentiation but inhibits the207

transmission due to the interventions. The induced delay between recovery and susceptibility due208

to the non-specific immunity may limit the evolutionary impact of the lethality on the susceptible209
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host population size.210

In other words, the non-specific immunity in combination with the lethality dependent inter-211

ventions may change the landscape of the evolutionary stable strategies such that pathogens benefit212

from (a small) lethality.213

The cross-protection against lethal infection outcomes 𝑟 shows less impact on our results. Its214

damping e”ect on the lethality can be explored in Fig. S7 B. By removing the cross-protection215

entirely, we find an increased complexity after four simulated years. With cross-protection, the216

population’s adaption to a novel pathogen leads to less lethal cases. In turn, the intervention217

prevalence drops. Removing this dynamic in the scenario category B leads to ongoing interventions218

and an infection spike after their discontinuation. This drives the example towards the scenario219

category C, which exhibits increased late stage complexity metrics.220

E!ects after four years221

The intervention discontinuation after two years causes a significant change of the resulting phylo-222

genetic complexity. In scenario category C, the infection peak that follows the end of interventions223

is especially large. Therefore, we also analyze the sensitivity two years after the end of the non-224

pharmaceutical interventions. Fig. S8 depicts the same analysis as in Section 3.0.1 but two years225

after the intervention discontinuation.226

The infection wave following an intervention cessation appears to have little e”ect on the227

qualitative analysis of our model’s sensitivity. The changed epidemiological model parameters228

remain rather inconsequential to our results. Both mutational parameters continue to drive the229

resulting complexity. While the entropy and linearity metrics may exhibit latent structural e”ects230

of early di”erences, the pairwise diversity reflects a lasting impact of these parameters after four231

years. The unweighted tree degree entropy 𝑠→ exhibits an elevated value for the scenario without232

the parameter mutation. This points to diversification events in child variants where the resulting233

sub-variants remain unfit to compete against the ancestral strain. These events are likely the result234

of the infection spike after the intervention discontinuation.235
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E!ects in other scenario categories236

The previous analysis focused on the scenario category C. In the other categories, the e”ect of the237

non-pharmaceutical interventions on the phylogenetic complexity di”ers significantly. Hence, we238

extend our analysis to two example scenarios from the categories A and B. We use the same example239

scenarios as in our main study. For the scenario category B we set the intervention threshold to240

𝑛𝑚 = 2.5 · 10↑5 and the intervention e”ect 𝑀𝑚 to 90 %. The example of the category A uses an241

intervention threshold of 𝑛𝑚 = 1 · 10↑6 and an intervention e”ect 𝑀𝑚 of 60 %.242

Figures S9 and S10 show the e”ect of various parameters on the non-pharmaceutical intervention243

phase and thereafter for examples of the scenario categories A and B. Overall, the results remain244

similar to the previous example of the category C. Again, the e”ect of the mutation parameters245

is more pronounced. Especially the category A is characterized by a reduction of interventions.246

Similarly, the e”ect of the parameter mutation on the phylogenetic complexity metrics is also247

reduced, albeit still visible.248

In both categories, the e”ect of the adapted epidemiological parameters becomes more pro-249

nounced. This is especially evident in the results after four years. An initial 𝑄0 decrease appears to250

leave more room for a later di”erentiation. As the interventions become less prevalent in category251

B and, especially, A, the minimal cross-immunity parameter 𝑈0 becomes more important for the252

epidemiological dynamics. Lowering 𝑈0 increases the resulting evolutionary complexity. This is253

expected, since this parameter induces a long-lasting non-specific immunity. The larger recovered254

population in these categories, thus, reduces the mutational complexity. In contrast, a lower re-255

covered population reduces the impact of the cross-immunity on the dynamics in category C (see256

figures S5 and S8). This emphasizes the fundamental impact of the non-specific immunity on the257

pathogenic evolutionary complexity.258

Vaccination model analysis259

We model vaccinations to gauge the possible e”ect they could have on the progress of the phylo-260

genetic complexity after the repeal of non-pharmaceutical interventions. Our vaccination model is261

rather simple. A vaccination adds (cross-)immunity against the ancestral strain and a short-lived262

non-specific immunity. The scenario shown in our main results is optimistic. In it, all citizens that263
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have not yet been infected can be vaccinated at a rate of 1% of the population per day.264

In Fig. S11 B we also cover less successful scenarios with lower vaccination rates. One scenario265

is aimed at vaccinating 81 % of the population and reaching the theoretical herd immunity for the266

initial 𝑄0 value of 5.4. By the time the vaccine can be distributed, the 𝑄0 value has shifted due to267

the parameter mutation. In a pessimistic scenario we analyze the e”ect of a low vaccination rate set268

to half of that in the optimistic scenario.269

Unsurprisingly, the peak infections are lowest in the most e”ective vaccination scenario. E”ects270

of the vaccination rate on the phylogenetic complexity are visible. In our model, the pharmaceutical271

interventions reduce the peak of the non-specific immunity that may follow a repeal of the non-272

pharmaceutical interventions. As a result, the bottleneck e”ect is reduced.273

Such a bottleneck e”ect may instead be inducible by distributing the vaccine at a very high274

rate. However, our optimistic vaccination scenario already uses the highest achieved vaccination275

rate during Covid-19 (34).276

Empirical development in SARS-CoV-2 and influenza277

As a final step in our investigation, we analyze the empirical development of viral pathogenic evo-278

lution before, during and after the Covid-19 pandemic. Our hypothesis is that non-pharmaceutical279

interventions increase the structural complexity of phylogenetic trees of viral pathogens such as280

influenza and SARS-CoV-2 due to the fact that the population builds less widespread non-specific281

immunity. Due to the global nature of the response, the pandemic presents a unique opportunity to282

study the impact of non-pharmaceutical interventions on pathogenic development.283

We study empirical phylogenetic trees from the nextstrain platform (38). To stabilize the tempo-284

ral development, we use the ready made trees based on 12 years of influenza’s evolutionary history285

for HA and NA genes respectively. For SARS-CoV-2 we use all available data, since it is only286

available for a much shorter period at the time of this writing. We prune the trees to their state287

up to each month from January 2018 to December 2024. Compared to our synthetic phylogenetic288

trees, the structure of these empirically observed trees cannot be determined with full certainty. In289

particular, the early evolution of SARS-CoV-2 can only be inferred. This explains the initial low290

linearity and higher tree degree entropy we find for its phylogenetic tree in Fig. S12 A.291
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Furthermore, the evolution of SARS-CoV-2 had been a”ected by non-pharmaceutical interven-292

tions almost from the beginning. This is why SARS-CoV-2 represents a poor case to study our293

hypothesis empirically and why we instead use a simulation approach to investigate this ‘what if?’294

type question.295

Since we have no information about the infection numbers for specific variants in these trees,296

we can only use the unweighted versions of our metrics.297

During the pandemic, tree linearity ω and the tree degree entropy 𝑠→ suggest a higher evo-298

lutionary complexity in SARS-CoV-2 compared to the influenza samples. This matches reported299

observations in the literature (2,3). The metrics seem to respond to a seasonal development. This is300

particularly evident in our linearity metric during the winters of 2020 and 2021. Qualitatively, 𝑠→
301

bears the most resemblance to our simulated vaccination example scenario. This metric also shows302

the highest correlation to the peak non-specific immunity in our simulation study. The phylogenetic303

entropy index 𝑠𝑋 shows a lower value for SARS-CoV-2 compared to influenza viruses. This is likely304

due to its comparatively low tree size. In both entropy metrics, the development of SARS-CoV-2305

appears to align with the phylogenetic trees of influenza viruses after the pandemic.306

The analyzed trees represent a filtered subset of the full evolutionary picture. Thus, a quantitative307

comparison of synthetic and observed phylogenetic trees is di!cult. Nonetheless, our analysis308

unveils characteristic changes in the pathogenic evolution (see Fig. S12 B). We test whether the309

evolution is significantly di”erent using monthly data on the change in each metric.310

Starting in March of 2020, for influenza trees, the development of the phylogenetic entropy311

index 𝑠𝑋 and our linearity metric stagnates. Furthermore, it returns, for almost all lineages that312

we consider, to its previous trend (or closer to the previous trend). This is an important finding313

which suggests that this is indeed due to the pandemic. These changes in the trend are significant314

until the end of 2022. For H3N2, this e”ect is less prominent. A significant di”erence for the trend315

in 𝑠𝑋 could only be established until October of 2021. Furthermore, the linearity metric shows316

no significant di”erences in post-pandemic development for the NA gene. Contrary to our other317

findings, the NA gene of the influenza B victoria lineage exhibits an even stronger stagnation in its318

development after the pandemic. Further research is necessary to explain these di”erences and to319

investigate whether they will persist.320

We observe a strong e”ect of the Covid-19 pandemic on the tree degree entropy metric 𝑠→.321
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From June 2020 until the end of 2022 we observe a significant mean increase of entropy in contrast322

to a decrease before and thereafter. There are no significant di”erences between the pre- and post-323

pandemic development, which again supports our hypothesis that the pandemic is the driving force324

behind these results.325

To conclude, our empirical analysis uses ready made phylogenetic trees that are pruned to326

specific dates. It shows that the phylogenetic tree structure metrics used in our analysis have a327

potential to shed light on viral pathogenic evolution. Importantly, we find that the pandemic seems328

to have a”ected influenza’s evolution, albeit this is likely of a temporary nature. While our empirical329

analysis is not able to establish a causal link, our simulations point to social distancing as a driver330

of these changes. Our findings highlight the essential link between social and natural systems and331

may act as an important stepping stone for further research.332

S14



333

Figure S1: Reproduction of the influenza reference model’s results [see (1)] using our model

with the assumption of perfect mixing withing geographical patches. Both panes show the mean

and standard deviation of 20 simulation runs comparing a scenario with low mutability but no non-

specific immunity component with a scenario using high mutability and a non-specific immunity.

(A) Incidences observed in the first geographical patch matching the reported numbers closely.

(B) Pairwise nucleotide diversity weighted by the case abundance. The e”ect of the non-specific

immunity component is evident in the low diversity exhibited despite a higher mutation rate in the

scenario with non-specific immunity.
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Figure S2: Starting simulation runs close to the single-strain equilibrium using our adapted

model without interventions shows a similar evolution to the influenza reference model [see (1)]

until approximately year 15. (A) The seasonality e”ects in the first geographical patch’s incidence

fade over time. (B) After some 15 years the e”ect of the parameter mutation drives our results

towards a higher pairwise diversity. As shown in our manuscript, it is vital to assess the impact of

the parameter mutation for a novel pathogen. However, our model does not set any limits to the

evolution of the epidemiological parameters beyond their defined range. We, therefore, conclude

that our long term analysis should focus on the model state after 15 years.
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Figure S3: The same correlation analysis exercised for the intervention e!ect 𝑀𝑚 in our

manuscript’s main results can be extended to the intervention threshold 𝑛𝑚. (A) The correlation

of most metrics is not as strong for this intervention parameter. Only the pairwise diversity metric

gives a stronger response than when varying the intervention e”ect which was set to 90 % for

this graph. (B) The state in year 15 of variables that were omitted in our main results for spatial

reasons. The long term e”ects of the interventions seem to increase our linearity metric. The

entropy metrics remain elevated. A possible explanation for this phenomenon is the increasing

number of diversification events and the comparatively late emergence of di”erentiation in the

scenario without interventions. The pairwise diversity appears to find a similar equilibrium in all

scenarios. The population with non-specific immunity is larger in the scenario without interventions.

In Fig. S4, we find that this di”erence reduced after 30 simulated years.
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Figure S4: In the 30th simulated year the complexity remains higher for scenarios with

interventions. There seems to be an increasing e”ect of the parameter mutation that drives diversity

in these scenarios. The scenario without interventions appears to remain more resilient to this e”ect.

(A) Example trees after 15 (blue) and 30 (black) years for a scenario without interventions. (B)

Synthetic phylogenetic trees for the scenario category C after 15 (blue) and 30 (black) years. (C) An

example tree for a vaccination scenario with 1 % vaccination rate after 30 years. For all phylogenetic

trees we only show the 500 variants with the largest recovered population and their ancestors. For

the sake of comparison, all trees are generated using the same random number generator seed. The

associated metrics for these trees can be found in Table S5. (D) The state of our focused metrics

after 30 simulated years. The entropy metrics are mostly di”erentiated through latent e”ects of

early diversification events. Pairwise diversity is driven higher in scenarios with interventions due

to the epidemiological parameter mutation.
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Figure S5: A sensitivity analysis of the intervention scenario with 𝑛𝑚 = 10↑6
and an inter-

vention e!ect 𝑀𝑚 of 90 % shows a large impact of changes in mutational dynamics on our

main results. The e”ect of the adapted epidemiological parameters is comparatively small. The

investigated scenario was chosen as an example of the scenario category C. The 𝑄0 values refer to

the transmission within geographical patches. The fourth column shows the three mutability values

for the stylized RNA also used by the influenza reference model [see (1)]. A lower mutability leads

to less variant o”spring and, thus, a reduction of the diversity and the opportunity for the epidemio-

logical parameters to diverge. The parameter mutation, shown in the third column, only takes e”ect

in new variants. E”ectively disabling the parameter mutations by setting 𝑝 = 0.0 strongly reduces

the e”ect of the interventions on all used metrics.
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Figure S6: The consequences of removing the parameter mutation cannot be explained by

a drastic impact on one singular parameter. Removing the mutation of singular parameters

does not show the same e”ect on the pairwise diversity. (A) Results of removing the mutation in

various combinations of epidemiological parameters. A Base scenario allows all the epidemiological

parameters to mutate. Only the absence of the mutation in all parameters a”ecting the basic

reproduction number (𝑀, 𝑆 and 𝑇) leads to a large drop of the pairwise diversity. (B) In the example

scenario for the category C, the 𝑄0 values mutate towards the range that could be observed for

the Omicron variant of SARS-CoV-2 (36). (C) Despite the large e”ect, the amplitude of these

mutations is not excessive. A visual comparison of the resulting phylogeny without (D) and with

(E) the parameter mutation underlines its e”ect and importance. In each tree we show the 200

variants with the most infections and recovered hosts and their ancestors in each tree.
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Figure S7: Raising the initial survival chance𝑞0 to 100 % decreases the evolutionary complexity

by reducing the intervention prevalence. (A) Result of a scenario without lethality and one

without cross-protection for an example of the scenario category A. (B) The example scenario for

the scenario category B, where the impact of lethality is especially visible. (C) An example of the

category C, where this e”ect is also pronounced. In contrast, (A) shows that a lowered lethality can

increase the pairwise diversity. We attribute this to a smaller impact of the large first infection wave

on the susceptible population available to the variants emerging later. Overall the cross-protection

𝑟 against lethal infection consequences appears to have less impact. In (B) its removal slightly

increases the observed mutational complexity after four years. This is likely due to the damping

e”ect e”ect of the cross-protection on the lethality. The lack of this e”ect leads to prolonged

interventions and a larger impact of their discontinuation after two years. The base scenarios refer

to the category examples with interventions but unchanged lethality parameters.
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Figure S8: Two years after the discontinuation of the non-pharmaceutical interventions there

is no drastic change in the results of our sensitivity analysis. The adapted epidemiological

parameters continue to show little e”ect on the main results. In contrast, the mutational parameters

still show a strong e”ect on the results. Lowering the mutation rate, both for the parameter mutation

as well as for the stylized RNA mutation, reduces the evolutionary complexity. This e”ect remains

somewhat visible in the pairwise diversity which is less prone to the latent e”ects of early dynamics.

However, the unweighted tree degree entropy 𝑠→ shows an increased value for the lowest parameter

mutability. This hints at speciation events where child variants spawn o”spring still unfit in their

competition against the ancestral strain.
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Figure S9: In the scenario category B the observed e!ects after 2 years of non-pharmaceutical

interventions remain mostly unchanged. A slight reduction of the parameter mutation’s e”ect

can be attributed to the lower intervention prevalence. This is also (quantitatively) evident in the

results for a higher mutability. Lowering the initial 𝑄0 value seems to leave slightly more room for

a later di”erentiation. A reduced minimal cross-immunity also impacts the long term result. This

points to the reduced bottleneck e”ect of the non-specific immunity component in this scenario.
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Figure S10: For the scenario category A we observe a reduced impact of the mutational

parameters on the phylogenetic complexity. This can be attributed to a reduction of the non-

pharmaceutical intervention prevalence. The e”ect still remains visible, pointing to the lasting

e”ect of the initial interventions. The adapted epidemiological parameters show a noticeable e”ect

after the intervention phase. Like in Fig. S9, a reduction of the initial 𝑄0 value may leave more

space for a later di”erentiation. In the category A, the cross-immunity component’s e”ect is even

more pronounced. Reducing the minimal cross-immunity parameter 𝑈0 increases the phylogenetic

complexity after four years.
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Figure S11: Di!erent vaccination rates a!ect the phylogenetic complexity by reducing the

e!ective peak size of the non-specific immunity. (A) An example of a synthetic phylogenetic

tree produced by a scenario with the highest vaccination rate. The vaccination mitigates a variant-

induced bottleneck e”ect and, thus, creates an equal playing field for all variants. This increases

the evolutionary complexity as it is quantified by our metrics. (B) The temporal development in

the first for years in three vaccination scenarios. The reduced bottleneck e”ect can be traced in

all indicators. A lower vaccination rate leads to a higher entropy, a slight increase of the pairwise

diversity and a decreased linearity. The vaccination rates were chosen based on three scenarios. In

the optimistic scenario, the population is vaccinated at a rate of 1 % per day. Not all citizens can be

vaccinated due to some having been infected recently. An additional scenario was chosen where the

theoretic herd immunity should be reached at 81 % of vaccinated citizens. Finally, the lowest rate

is set to half of the optimistic scenario in an attempt to model an insu!cient vaccination progress.
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Figure S12: Observed phylogenetic trees of influenza exhibit characteristic changes in the

development of entropy and linearity during the pandemic. (A) Temporal development of our

complexity metrics applied to phylogenetic trees of influenza viruses in comparison to SARS-CoV-

2 covering pre-pandemic to post-pandemic evolution. Our tree linearity metric ω can observe the

higher complexity of SARS-CoV-2 described in the scientific literature. It also appears to show an

e”ect of the pandemic on the evolution of influenza viruses. Their tree degree entropy 𝑠→ exhibits

a rapid initial decline with the onset of interventions followed by a subsequent growth that may be

the result of reduced non-specific immunity. The tree degree entropy of SARS-CoV-2 peaks during

2020 and starts to align with influenza results after two years. The phylogenetic entropy index 𝑠𝑋

of SARS-CoV-2 is lower due to its size. After the pandemic, the development approaches that of

influenza. All metrics exhibit seasonal e”ects with di”ering prominence. (B) The pandemic phase

significantly di”ers from its preceding and following development. However, di”erent temporal

selections have to be made. For the phylogenetic entropy index 𝑠𝑋, we find a slowed growth that

is likely due to the early, intended e”ect of interventions following March 2020, most probably

due to its correlation with tree size growth (see Table S4). Our linearity metric also exhibits a

slowed growth that lasts from March 2020 to the end of 2021. The tree degree entropy 𝑠→ shows a

significant growth from June 2020 until the end of 2022. This trend follows an initial decrease that

is likely caused by the onset of interventions.
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Table S1: The parameters used for the simulation study. Some parameters, such as the intervention

e”ect and threshold vary by simulated scenario and are not listed here.

Name Value Description Source

𝑁 30 Agent lifespan. (1)

𝐿 20 Number of geographical patches. (1)

𝑔𝑋
12,000,000

𝐿 Number of inhabitants per patch 𝑋. (1)

𝑕 0.25 Average latent period of 4 days. (12)

𝑀𝑂 ,0
289
200 Infectiousness within a patch with 𝑄0 = 5.4. (1,32)

𝑅 269
289 Infectiousness across patches with 𝑄0 = 0.02. (1,32)

𝑆0 0.5 Average 2 days of (a-)symptomatic period. (12)

𝑞0 0.99 Chance of survival. (12)

𝑇0 0.5 Average 2 days of pre-symptomatic period. (12)

𝑡0 0.7 Fraction of symptomatic infections. (12)

𝑢𝑋 ↑0.25 / 0.25 Seasonality, negative if patch 𝑋 > 𝐿/2. (1)

𝑣 0.99 Cross-protection against death. (12)

𝑛 1
270 Decay rate of non-specific immunity. (1)

𝑝 0.05 Standard deviation of parameter mutation. (12)

𝑜 10↑6 - 10↑5 Mutation rate of nucleotide bases per infectious host per day. (1)

𝑈0 0.15 Minimum cross-immunity e”ect. (See Section 3)

𝑈1 0.99 Maximum imperfect cross-immunity e”ect. (1)

𝑤𝑥 2 Antigenic distance threshold. (1)S27



Table S2: The parameters used for the reproduction model. All parameters are derived from

the influenza reference model [see (1)]. The minimal cross-immunity e”ect 𝑈0 is adapted to the

di”erences in the the cross-immunity model. The contact rate 𝑀𝑂 ,0 and the homophily 𝑅 are

derived from the influenza reference model’s values as described in Section 3.0.1.

Name Value Description

𝑁 30 Agent lifespan.

𝐿 20 Number of geographical patches.

𝑔𝑋
12,000,000

𝐿 Number of inhabitants per patch 𝑋.

𝑕 0.5 Average latent period of 2 days.

𝑀𝑂 ,0
289
200 Infectiousness within a patch with 𝑄0 = 5.4.

𝑅 269
289 Infectiousness across patches with 𝑄0 = 0.02.

𝑆0 0.25 Average 4 days of infected period.

𝑢𝑋 ↑0.25 / 0.25 Seasonality, negative if patch 𝑋 > 𝐿/2.

𝑛 1
270 Decay rate of non-specific immunity.

𝑜 10↑6 - 10↑5 Mutation rate of nucleotide bases per infectious host per day.

𝑈0 0.15 Minimum cross-immunity e”ect.

𝑈1 0.99 Maximum imperfect cross-immunity e”ect.

𝑤𝑥 2 Antigenic distance threshold.
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Table S3: Correlation between metrics and the phylogenetic tree size.

Tree size PD ω 𝑠→ 𝑠→
𝑦 𝑠𝑋

Tree size 1.000000 -0.045520 -0.216350 -0.361966 0.326739 0.536647

PD -0.045520 1.000000 -0.306345 0.343543 0.316502 0.250051

ω -0.216350 -0.306345 1.000000 -0.427979 -0.915686 -0.628884

𝑠→ -0.361966 0.343543 -0.427979 1.000000 0.424715 0.212379

𝑠→
𝑦 0.326739 0.316502 -0.915686 0.424715 1.000000 0.837813

𝑠𝑋 0.536647 0.250051 -0.628884 0.212379 0.837813 1.000000

Table S4: Correlation between temporal metrics di”erences and the phylogenetic tree size

di”erences.

ε Tree size εPD εω ε𝑠→ ε𝑠→
𝑦 ε𝑠𝑋

ε Tree size 1.000000 0.394419 -0.725089 0.102415 0.802855 0.894748

εPD 0.394419 1.000000 -0.309248 0.051063 0.391713 0.439709

εω -0.725089 -0.309248 1.000000 -0.098356 -0.934172 -0.780769

ε𝑠→ 0.102415 0.051063 -0.098356 1.000000 0.115777 0.107378

ε𝑠→
𝑦 0.802855 0.391713 -0.934172 0.115777 1.000000 0.916460

ε𝑠𝑋 0.894748 0.439709 -0.780769 0.107378 0.916460 1.000000
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Table S5: Associated values for complexity metrics of the example trees shown in Fig. S4.

Year 𝑀𝑚 [%] 𝑛𝑚 𝑜𝑧
[

%
day

]
Scen. Category ω PD 𝑠𝑋 𝑠→ 𝑠→

𝑦

15 0 - - N 0.89 0.63 25.12 0.10 2.31

15 99 10↑6 - C 0.96 2.07 266.54 0.18 4.30

30 0 - - N 0.97 0.32 646.20 0.16 4.60

30 99 10↑6 - C 0.97 2.50 1004.85 0.16 5.13

30 99 10↑6 1 V 0.99 7.14 1367.60 0.19 5.35
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