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[bookmark: OLE_LINK1]Supplementary Figure 1 | Photos of a prepared CsPbI3 bulk crystal at different temperatures. a, A yellow δ-CsPbI3 crystal at room temperature. b, A black CsPbI3 crystal at 610 K heating from (a). c-i, The black CsPbI3 crystal from (b) rapidly transformed to the yellow phase as it cooled naturally in air at 30 s (c), 40 s (d), 50 s (e), 60 s (f), 2 min (g), 5 min (h) and 10 min (i).
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Supplementary Figure 2 | Rietveld refinement results of XRD patterns of δ-CsPbI3 measured between 300 K and 550 K during heating. a, 300 K; b, 350 K; c, 400 K; d, 450 K; e, 500 K; and f, 550 K. The observed profile is marked by black crosses, while the calculated profile is represented by a red line. Bragg peak positions of δ-CsPbI3 crystals are labeled by green marks. The difference diffractogram (experimental minus calculated profile) is shown in light blue.
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[bookmark: OLE_LINK4]Supplementary Figure 3 | Lattice parameters and cell volume for both black and yellow CsPbI3 crystals between 100 K and 650 K, demonstrating the yellow δ-CsPbI3 to black α-CsPbI3 transition during heating, and Pmm (α) ↔P4/mbm (β) ↔Pnma (γ) transition of black CsPbI3 during cooling. a, Lattice parameters for yellow δ-CsPbI3 as a function of temperature, including data from this study and Liu et al.1 The black and red axes on the right side represent the lattice parameters of b and c, respectively, while the left axis represents the lattice parameter a. b, Cell volume variations compiled from this study, Liu et al.1, and Marronnier et al.2 The yellow δ-CsPbI3 (Pnma) to black α-CsPbI3 (Pmm) phase transition occurs at ~600 K, consistent with the DSC results in Figure 1a, showing a significant increase in cell volume during heating. The reference parameter V0 was determined by extrapolating a linear fit to the cubic lattice parameters at high temperatures. c, Lattice parameters from Marronnier et al.2 and Straus et al.3 during cooling. Curved dotted lines represent variations of ao, obtained from fits of Eq. (2) to the lattice parameter of the parent cubic structure, with s fixed at 150 K. d, Variations of the unit cell volumes of black CsPbI3 during cooling.
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Supplementary Figure 4 | Crystallographic axes for the Pnma and P4/mbm space groups. Relationships between crystallographic axes and reference axes, for definition of strains used in Eq. (1), for the space groups Pnma (0q20 q40q6) (a) and P4/mbm (0q20 000) (b) (after Carpenter 2007 Am Min 92 309)4.
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[bookmark: OLE_LINK2]Supplementary Figure 5 | Volume strains calculated from the lattice parameters of Marronnier et al.2 of a black CsPbI3 perovskite. a, Variations of volume strain, ea. The curve through data in the temperature interval 465-544 K is a fit of Eq. (4) for a first order transition, assuming eatet  Q2. Extrapolation of this fit to lower temperature provides a baseline which allows the volume strain associated with the P4/mbm  Pnma transition, eaorth, to be estimated. b, The variation of eaorth, from (a) is linear within experimental error, signifying that the P4/mbm  Pnma transition can be represented approximately as a second order transition in one order parameter with eaorth  Q2. However, extrapolation of the fit to zero gives Tc = 500 K, which is above the actual transition temperature 456 K.
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Supplementary Figure 6 | Variations of volume strain, ea, above room temperature from Marronnier et al.2 of a black CsPbI3 perovskite. The curve through data in the temperature interval 465-544 K is a fit of Eq. (4) for a first order transition, assuming eatet  Q2. Extrapolation of this fit to 0 K gives the value of ea for the tetragonal phase, eatet, as -0.0042 at 0 K, where Q = 1.
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Supplementary Figure 7 | Relationship of etxtet and eatet in the tetragonal structure of a black CsPbI3 perovskite. etxtet does not scale linearly with eatet in the temperature interval 544-466 K as expected from the relationship etx  eatet  Q2 in Supplementary Table 2.
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Supplementary Figure 8 | (e1-e2)2 of black γ-CsPbI3. An alternative representation of the same result shows (e1-e2)2 has a rounded minimum at ~325 K.
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Supplementary Figure 9 | Rietveld refinement results of XRD patterns of three CsPbI3-based thin films. a-c, XRD patterns along with theie corresponding Rietveld refinement fitting for CsPbI3 (a), CsPbI3 on transport layers (NiOx/Me-4PACz) (b), and CsPbI2.7Br0.3 (c) thin films on silica glass. The observed profile is marked by black crosses, while the calculated profile is shown by a red line. Bragg peak positions of γ-CsPbI3 and δ-CsPbI3 are labeled by deep blue and light blue symbols, respectively. The difference diffractogram, obtained by substracting calculated profies from experimental data, is shown in green.



[image: ]
[bookmark: OLE_LINK19]Supplementary Figure 10 | Black CsPbI3-based thin films, grown on silica glass, transport layers, or incorporating bromines, were stored in a nitrogen-filled glovebox. CsPbI3 and Br-doped CsPbI2.7Br0.3 thin films on silica glass or transport layers (silica/NiOx/Me-4PACz substrates) were prepared and stored in a nitrogen-filled glovebox. All films maintained their black state for up to 14 days in a nitrogen atmosphere. Photos were taken immediately after preparation (fresh), after 1 day (1d), and after 14 days (14d).
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Supplementary Figure 11 | Photoluminescent (PL) properties of CsPbI3-based thin films. PL intensities and peak positions of CsPbI3 and CsPbI2.7Br0.3 thin films on silica glass or transport layers (silica/NiOx/Me-4PACz substrates) were collected from thin films prepared for 24 hours and excited uder a 405 nm laser.




Supplementary Table 1 | The enthalpy values at the phase-transitions of a CsPbI3 crystal.
	
	
	Exothermic
	Endothermic

	Processes
	Phase transitions
	Temperature (K)
	|△H| (kJ/mol)
	Temperature (K)
	|△H| (kJ/mol)

	First heat
	δ → α
	
	
	~601
	~16.6

	First cool
	α → β
	~545
	~0.25
	
	

	
	β → γ
	~456
	~0.20
	
	

	Second heat
	[bookmark: OLE_LINK12]γ → α
	~456-~500 K
	~16.08
	
	

	
	α → γ
	
	
	~602
	~16.5



Supplementary Table 2 | Relationships between strain components and order parameter components derived from Equation 1 by setting the equilibrium condition , and expressions for strain components in terms of lattice parameters for the settings shown in Figure 3 (following Carpenter et al 2001 Am Mineral 865, 348–363, McKnight et al 2009 JPCM 21 0159016).
	P4/mbm
	Pnma

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	



[bookmark: _Hlk189050508]Supplementary Table 3 | Lattice parameters and spontaneous strains of black CsPbI3-based films in Supplementary Figure 9, and the strains are calculated using the equations from Supplementary Table 2.
	Lattice parameters and strains
	CsPbI3
	CsPbI3 with transport layers
	CsPbI2.7Br0.3

	a
	8.873606 Å
	8.877571 Å
	8.774514 Å

	b
	12.494306 Å
	12.497684 Å
	12.26754 Å

	c
	8.574962 Å
	8.577571 Å
	8.563174 Å

	e1
	0.008526494
	0.008455802
	0.000481456

	e2
	0.012955374
	0.013063065
	0.012021245

	e1-e2
	-0.00442888
	-0.004607263
	-0.011539789
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