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Supplementary Figures
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crumblr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CLR ✓ ✓ ✓ ✓ ✓

Linear Model (frac) ✓ ✓ ✓ ✓ ✓
Linear Model (log) ✓ ✓ ✓ ✓ ✓

Linear Model (logit) ✓ ✓ ✓ ✓ ✓
Linear Model (asin) ✓ ✓ ✓ ✓ ✓

Binomial ✓ ✓
Beta-binomial ✓

NB ✓ ✓ ✓ ✓ ✓ ✓
Poisson ✓ ✓ ✓ ✓
scCODA ✓ ✓

Figure S1: Comparison of properties of each method. We note that incorporation of random effects,
variance partitioning analysis and multivariate testing applies to all methods using a linear model, since these
approaches are quite general. They could in principle be applied to generalized linear models as well, but
this would require substantial methodological development. For ‘Linear model‘, ‘frac‘ indicates using the cell
fraction, f , as the response, ‘log‘ indicates log(f), ‘logit‘ indicates logit(f) = log(f) − log(1 − f), and ‘asin‘
indicates arcsin(

√
f).
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Figure S 2: Comparing performance for increasing cell counts A) Area under the precision recall
curve. Dashed line indicates the performance of a random method. B) False positive rate computed as the
fraction of p-values less than the target of 0.05 under a null model. Dashed line indicates the target value.
Simulations were performed with 200 samples, 10 cell clusters, effect size of 0.2, mean of 2000 cells per sample,
batch effect of zero, overdispersion τ = 10, and 10K simulated datasets.
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Figure S3: Comparing performance for increasing cell cluster components. A) Area under the
precision recall curve. Dashed line indicates the performance of a random method. B) False positive rate
computed as the fraction of p-values less than the target of 0.05 under a null model. Dashed line indicates the
target value. Simulations were performed with 200 samples, effect size of 0.2, mean of 2000 cells per sample,
batch effect of zero, overdispersion τ = 10, and 10K simulated datasets.
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Figure S4: Comparing performance for increasing sample size. A) Area under the precision recall
curve. Dashed line indicates the performance of a random method. B) False positive rate computed as the
fraction of p-values less than the target of 0.05 under a null model. Dashed line indicates the target value.
Simulations were performed with 10 cell clusters, effect size of 0.2, mean of 2000 cells per sample, batch effect
of zero, overdispersion τ = 10, and 10K simulated datasets.

0.00

0.25

0.50

0.75

1.00

1 5 10 20
Overdispersion τ

A
U

P
R

A

0.0

0.1

0.2

1 5 10 20
Overdispersion τ

F
P

R

method

Beta−binomial

Binomial

CLR

crumblr

LM (asin)

LM (fraction)

LM (log)

LM (logit)

NB

Poisson

B

Figure S5: Comparing performance for increasing overdispersion. A) Area under the precision recall
curve. Dashed line indicates the performance of a random method. B) False positive rate computed as the
fraction of p-values less than the target of 0.05 under a null model. Dashed line indicates the target value.
Simulations were performed with 200 samples, 10 cell clusters, effect size of 0.2, mean of 2000 cells per sample,
batch effect of zero, and 10K simulated datasets.
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Figure S6: Comparing performance for increasing batch effect Results are shown when ignoring batch
effect (left), and accounting for batch as a fixed effect (center) or a random effect (right). A) Area under the
precision recall curve. Dashed line indicates the performance of a random method. B) False positive rate
computed as the fraction of p-values less than the target of 0.05 under a null model. Dashed line indicates the
target value. Simulations were performed with 200 samples, 10 cell clusters, effect size of 0.2, mean of 2000
cells per sample, overdispersion τ = 10, 50 batches, and 10K simulated datasets.
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Figure S7: Comparing compute times across methods. Run times for fixed effect models were computed
using a dataset of 500 samples, 20 clusters, 3000 cell counts per dataset, and overdispersion τ = 3.
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Figure S8: Simulations using parameters identical to Figure 1A except using only 100 simulated
datasets. scCODA is not competitive with the top methods based on area under the precision recall curve
(left). Because scCODA is a Bayesian model, it does not report p-values and therefore the false positive rate
under the null is not applicable here. The long run time prevented a more thorough investigation of the
behavior of this model.
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Figure S9: Tuberculosis infection in T cell subpopulations. Observed fractions for each cell subpop-
ulation stratified by case vs control status.
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Figure S 10: Performance of asymptotic normal approximation. Standard deviation of the CLR
transformed proportions from 1000 samples drawn from a Dirichlet multinomial model (blue points) are com-
pared to the normal approximation developed here (red line) when at least 2 counts are observed. Data was
simulated using an overdispersion τ ∈ {1, 10, 20} and total counts C ∈ {500, 5000}. Results are shown for A)
D = 2 categories and B) D = 15 categories.
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Figure S11: Comparison of variance methods. Compare exact versus approximate methods to compute
covariance for a fixed effects model using 200 samples and 1000 simulations. Left: weights are shared across
responses. Right: weights vary across responses. Red line is diagonal, blue line is the least squares fit with
coefficient β.
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Supplementary Methods

1.1 Count ratio uncertainty modeling with linear regression

Here we propose count ratio uncertainty modeling based linear regression (crumblr). When consid-
ering count ratios for multiple variables, it is desirable to compare all variables to the same baseline.
Selecting the last variable as the baseline is simple, but the count ratios will depend on the ordering
of the variables. Instead, Aitchison (1986) proposes the centered log ratio (clr) using the geometric
mean of the counts across all variables as the common baseline:

clr(pi) = log(pi)−
1

D

D∑
j=1

log(pj) (1)

There are two sources of heteroskedasticity 1) for proportions, the sample variance is related to the
value. This is clearly seen with the beta distribution. 2) Due to different count totals.

For D variables, these clr transform spans a D− 1 dimensional space. This degenerate set of variables
can be problematic in regression modeling. To address this Egozcue et al. (2003) proposed the iso-
metric log ratio (ilr) to transform the clr transformed variables into D− 1 variables. Importantly, the
transformation between clr and ilr coordinates is a linear operation.

Regression models fit using clr transformed variables as responses are easily interpretable since each
clr variable corresponds to an original variable. Conversely, ilr transformed variables have nice math-
ematical properties, but are challenging to interpret because they are linear combinations of multiple
clr variables.

It is common to include clr and ilr transformed variables as responses in regression models. However,
standard application does not account for the substantial difference in measurement precision across
observations. The standard assumption of equal measurement precision in regression models can cause
loss of power and poor control of the false positive rate.

Here, we take advantage of the interpretability of the clr transform and the mathematical properties
of the ilr transform to explicitly model measurement uncertainty in observed counts with precision
weights.

1.1.1 Asymptotic normal approximation of multinomial counts

Let p be the true vector of proportions for D components with pi being the true proportion for the
ith component. Let c be the vector of observed counts drawn based on a multinomial distribution
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with n total counts. The expected number of counts is clearly E[c] = np, and the maximum like-
lihood estimate of the proportions is p̂ = c/n, and the variance of the counts is n

[
diag(p)− ppT

]
.

Based asymptotic properties of multinomial distribution, for large n the distribution of the estimated
proportions converges to a multivariate normal distribution

p̂
d−→ N

(
p,

1

n

[
diag(p)− ppT

])
. (2)

Egozcue et al. (2020) and Graffelman et al. (2015) propose an asymptotic normal approximation of
the ilr transformed components. The ilr transform is defined by a linear transformation

ilr(p) = V T clr(p) (3)

where V is a D×D−1 matrix with orthogonal columns that projects the clr-transformed components
into a lower dimensional space (Egozcue et al., 2003). By construction V satisfies properties

V TV = ID−1 (4)

V V T = ID − 1

D
11T (5)

V + = V T (6)

where V + indicates the Moore–Penrose inverse. It follows that the inverse projection from ilr coordi-
nates back to clr coordinates is

clr(p) = V ilr(p) (7)

Egozcue et al. (2020) and Graffelman et al. (2015) use the delta method to obtain the asymptotic
normal distribution of the ilr transformed estimated proportions:

ilr(p) → N
(

ilr(np),
1

n
V Tdiag(1/p)V

)
. (8)

Given this variance matrix in ilr space, we derive the variance-covariance matrix in clr space using the
projection matrices mapping between the two spaces:

var[clr(p)] = V var[ilr(p)]V T (9)

=
1

n
V V Tdiag(1/p)V V T (10)

=
1

n

(
ID − 1

D
11T

)
diag(1/p)

(
ID − 1

D
11T

)T

(11)

=
1

n

(
diag(1/

√
p)− 1

D
11Tdiag(1/

√
p)

)(
diag(1/

√
p)− 1

D
11Tdiag(1/

√
p)

)T

(12)

=
1

n

[
diag(1/p)− 2

D
diag(1/

√
p)11Tdiag(1/

√
p) +

1

D2
11Tdiag(1/p)11T

]
(13)
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This describes the full D × D asymptotic variance-covariance matrix of the clr-transformed counts.
The sampling variance of the ith component is

var[clri(p)] =
1

n

[
1

pi
− 2

Dpi
+

1

D2

D∑
j=1

1

pj

]
(14)

For observed data, the maximum likelihood estimate of the proportion can be substituted for the true
value to obtain an estimate of the variance

̂var[clri(p)] =
1

n

[
1

p̂i
− 2

Dp̂i
+

1

D2

D∑
j=1

1

p̂j

]
(15)

Note that the variance is a function of the total number of counts, number of components, and the
proportions for each component. This value is easy to compute for each component.

1.1.2 Asymptotic normal approximation to Dirichlet Multinomial

The Dirichlet Multinomial (DMN) distribution is a more flexible model of multi-class count data that
generalizes the multinomial distribution. While the multinomial distribution assumes the underlying
proportions are fixed, in the DMN the proportions are random variables drawn from a Dirichlet
distribution. Counts from a DMN model can be drawn according to

x ∼ Multinomial(n,p) (16)
p ∼ Dirichlet(α) (17)

where α is the vector of parameters for Dirichlet distribution so that the expected proportion of
category i is αi/α0 where α0 =

∑
k αk. The sampling variance of observed counts is now

var(c) = τn
[
diag(p)− ppT

]
. (18)

where τ = n+α0

1+α0
is the overdispersion parameter. Setting τ = 1 produces the multinomial distribution

as a special case.

Since the overdispersion τ is a scalar parameter shared by all categories, the derivation from the
previous section can be adapted to show that the proportions are asymptotically normal according to

p̂
d−→ N

(
p,

τ

n

[
diag(p)− ppT

])
, (19)

so that the asymptotic variance-covariance matrix of the clr-transformed proportions is

̂var[clri(p)] =
τ

n

[
1

p̂i
− 2

Dp̂i
+

1

D2

D∑
j=1

1

p̂j

]
. (20)

This approximation is quite accurate even for small fractions when a sufficient number of total cells
are observed (Figure S10).
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1.2 Multivariate testing combining multiple cell type components

Consider a multivariate regression with n samples, c variables, and m response values using design
matrix Xn×c and responses stored as column in the matrix Yn×m. When the regression weights are all
equal to one, standard results give estimated coefficients

B̂ =
(
XTX

)−1
XTY . (21)

Letting the error covariance be C = RTR/d with d the residual degrees of freedom, the covariance
matrix of the coefficient estimates is

var(vec(B̂)) = C ⊗
(
XTX

)−1 (22)

where the vec(.) operator converts a matrix to a column vector, and ⊗ is the Kronecker product.
Examining covariance between coefficients from response i and j gives

cov
(
β̂i, β̂j

)
= Ci,j

(
XTX

)−1 (23)

= cor(ri, rj)
(
XTX

)−1
σiσj. (24)

where C = rTi rj/d, and β̂i is the ith column of B̂.

1.2.1 Weighted linear model

When weights are not equal to 1 and vary for each response, the coefficient estimates and their
covariance have a more complicated form. Letting w(i) be the vector of weights for response i, W (i) =
diag

(
w(i)

)
, and yi be the vector storing response i,

β̂i =
(
XTW (i)X

)−1
XTW (i)yi (25)

Creating a weighted version of any matrix or vector according to M̃i = Mdiag
(√

w(i)
)
, simplifies the

notation so that the estimated coefficients are

β̂i =
(
X̃T

i X̃i

)−1

X̃T
i ỹi, (26)

and the covariance between coefficients estimates is now

cov
(
β̂i, β̂j

)
= C̃i,j

(
X̃T

i X̃i

)−1 (
X̃T

i X̃j

)(
X̃T

j X̃j

)−1

. (27)

where C̃ = r̃Ti r̃j/d. When all weights equal 1, these reduce to the standard equations (21) and (21).
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1.2.2 Weighted linear mixed model

For the linear mixed model, closed form estimates don’t exist. Each coefficient vector is estimated using
numerical optimization in lme4 (Bates et al., 2015) with the covariance matrix between coefficients
for response i indicated by Σ̂i. Using the form of equation (24), the covariance in coefficient estimates
between responses i and j can be stated in terms of the covariance for each response and the correlation
between residuals when all weights are 1. The covariance between coefficients estimates for fixed effects
in the linear mixed model is approximated as

cov
(
β̂i, β̂j

)
= cor(r̃i, r̃j)Σ̂i

(
Σ̂

− 1
2

i Σ̂
− 1

2
j

)
Σ̂j (28)

When i = j, this formula reduces to the Σ̂i. In the case of linear regression, when the weights vary
across samples but are shared across responses, this method is equivalent to equation (24). In the
case of general weights, simulations indicate that approximation in equation in (28) produces accurate
estimates of the covariance in coefficient estimates across responses (Figure S11).

1.2.3 Fixed effect hypothesis testing accounting for covariance

Letting Bk,. indicate the vector of estimates for coefficient k across responses, Ω be the covariance
matrix of these coefficient estimates with values computed by equations (27) or (28). A multivariate
hypothesis test is performed for coefficient k across multiple responses using a fixed effects meta analysis
designed for correlated coefficient estimates (Han et al., 2016, Lee et al., 2017, Lin and Sullivan, 2009).
Under this model the test statistic (

1TΩ−1Bk,.

)2
1TΩ−11

, (29)

where 1 is a vector of 1’s, is distributed as a χ2
1 under the null. When Ω is diagonal, so there is

no covariance between coefficient estimates, this reduce to standard fixed effects meta-analysis (Han
et al., 2016).

1.3 Simulations

1.3.1 Univariate hypothesis testing

Counts were simulated from a Dirichlet-multinomial with a specified sample size, number of classes,
overdispersion, effect size of the trait variable, and size of the batch effect. The trait of interest was
normally distributed and samples were randomly assigned discrete batches. The coefficients for the
effect of each batch were normally distributed with a mean of zero and a variance of γ ∈ (0, 0.5, 1, 3).
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The linear predictor was created by multiplying the design matrix storing the trait and batch variables
by the coefficient vector. The linear predictor for each sample was then exponentiated to obtain the
fractions for each cell component. For each sample, the total number cell counts was drawn from a
negative binomial with specified mean and θ = 3 to give substantial variation in total cell counts as
seen in real data. Counts were drawn from a Dirichlet-multinomial based on the probabilities, total
count number per sample, and overdispersion.

1.3.2 Multivariate hypothesis testing

Results are shown for the fixed effect model incorporating correlation between test statistics (Lin
and Sullivan, 2009), Fisher’s method for combining p-values across tests (−2

∑k
i=1 log pi ∼ χ2

2k for
k p-values), and Sidak’s method for computing the minimum p-value corrected for multiple testing
(pSidak = 1 − (1 −min(p))k). Simulations were performed 100k times with with 200 samples, 2 to 12
responses, heteroskedastic measurement error, and an error correlation between response variables of
0.8. 20k simulations used an effect sizes of 0.8 shared across responses, while the rest were simulated
under the null model of no effect.

2 Implementation of other methods for comparison

Hypothesis testing for differential cell composition was performed with a range of existing methods
that either model the cell fraction or directly modeled the number of observed counts. Let y be a
vector storing the observed counts for a given cell type across all samples, C be a vector storing the
total number of cells observed for each sample, and x be the variable of interest for hypothesis testing.
Most models were fit in R as described in Table S1 for fixed effects and Table S2 for mixed effect
modeling of batches. We note that the beta-binomial model does not supported mixed effects.

The centered log ratio (CLR) method was fit by performing the CLR transform using clr() in
the compositions package available on CRAN and then fitting the regression models for each cell
type using dream() in the variancePartition package (Hoffman and Roussos, 2021, Hoffman
and Schadt, 2016). Transformations involving log, logit and asin were computed this way too. The
crumblr() function from the crumblr package was used to transform the count data and estimate
the measurement precision of the transformed abundance values before being fed into dream().

scCODA is a Bayesian method implemented in python (Büttner et al., 2021) and was called with
default parameters using the observed cell counts and design matrix.
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Supplementary Tables

Method Function Formula Arguments
Poisson glm() y ~ offset(log(C)) + x family=poisson()

Negative binomial glm.nb() y ~ offset(log(C)) + x
LM (fraction) lm() y / C ~ x

LM (log) lm() log(y / C) ~ x
LM (logit) lm() logit(y / C) ~ x
LM (asin) lm() asin(sqrt(y / C)) ~ x
Binomial glm() cbind(y, C - y) ~ x family=binomial()

Beta-binomial betabin() cbind(y, C - y) ~ x
Table S1: Implementation of each method for fixed effects models

Method Function Formula Arguments
Poisson glmer() y ~ offset(log(C)) + (1|Batch) + x family=poisson()

Negative binomial glmer.nb() y ~ offset(log(C)) + (1|Batch)+ x
LM (fraction) lmer() y / C ~ (1|Batch) + x

LM (log) lmer() log(y / C) ~ (1|Batch) + x
LM (logit) lmer() logit(y / C) ~ (1|Batch) + x
LM (asin) lmer() asin(sqrt(y / C)) ~ (1|Batch) + x
Binomial glmer() cbind(y, C - y) ~ (1|Batch) + x family=binomial()

Table S2: Implementation of each method for mixed effects models
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