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Data input and structure preprocessing
OpenStructure accepts structural information in legacy PDB format 1 or in the preferred PDBx/mmCIF format 2. Structures are processed as described in 3.  Shortly, internal residue connectivity is established based on residue and atom names using the PDB chemical component dictionary (CCD) 4. Ligands which are part of the CCD can be extracted from PDBx/mmCIF files based on non-polymer entity annotation. However, the recommended approach is to load ligand structures from SDF files 5, which inherently provide detailed connectivity information.

For polymer chain-based scores, a cleanup step replaces non-standard residues with their corresponding parent residues as defined in the CCD (e.g. SEP=>SER). Residues without entry in the CCD are removed completely. Additionally, hydrogen atoms, terminal OXT atoms, and atoms with names that don't match the CCD are removed. Short polymer chains are excluded from scoring, with a threshold of fewer than six residues for peptides and fewer than four residues for nucleotides.

Ligand-based scores apply the same cleanup to the receptor structures, which consist of polymer chains, with the exception that non-standard residues are not replaced. Only hydrogen atoms are removed from ligands.

Structure visualization
Structural models in the manuscript figures were displayed in Mol* 6.

Sequence based grouping of polymer chains for QSMap/QSMapR
Grouping is based on pairwise sequence alignments and a straightforward sequence identity measure. To minimize the likelihood of achieving high sequence identity by chance alone,  QSMap/QSMapR only consider reference and model chains with minimum length N (default: N=6 for protein, N=4 for nucleotide). Pairwise sequence alignments are constructed via the Needleman-Wunsch dynamic programming algorithm 7 that employs the BLOSUM62 substitution matrix 8 for proteins and NUC44 for nucleotides (ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4). Alternatively, upon user request, alignments can be constructed from residue numbers which is useful for CASP or CAMEO scenarios where participants are asked to number residues according to the submitted modeling target sequence. Protein and nucleotide chains of the reference are separated and subsequently grouped by clustering with a sequence identity threshold of 95%. The longest chain in each group is considered representative.
Each model chain is assigned to a reference group based on its maximum sequence identity to the respective representative sequences. There is deliberately no minimum sequence identity threshold defined to also allow chain mapping between homologues, though this might lead to assignments of non-related chains if the model contains chains which are not represented by the reference.

QSMap
QSMap optimizes for QS-score. QS-score has protein specific parameterizations and QSMap switches to backbone LDDT (Cα for protein, C3’ for nucleotides) with increased inclusion radius (30Å) if nucleotides are involved. The default LDDT inclusion radius of 15Å would be insufficient to reflect relevant pairwise distances between nucleotide backbones. While QSMap can handle protein and nucleotide chains as well as hetero-oligomers, we describe the algorithms in terms of two equally sized homo-oligomers with N chains for simplicity. QS-score and LDDT are pairwise decomposable. That is, given a model and reference complex, the overall score can be derived by separately processing contributions from individual chains and pairwise interfaces. Enumerating the full solution space of N! possible mappings can be sped up by caching the computationally demanding score computations. Considering a model and reference complex with N chains, there are N(N-1)/2 possible chain pairs in the reference (n choose k with k=2). Given N(N-1)/2 possible chain pairs in the model, this results in N(N-1) possible assignments for each reference chain pair (two possibilities to assign a model chain pair to a reference chain pair) and a total of N2(N-1)2/2 possible interchain contributions. Single chain contributions, which are only relevant for LDDT, add up to N2. As a consequence, score computation has a polynomial complexity of O(N4). This pushes the boundary of feasible problem sizes but still necessitates the introduction of heuristics for large N. We found problem sizes with N<=8 to complete with reasonable runtimes, so those can be handled by exhaustive enumeration. Larger problems are delegated to a graph based greedy algorithm.

The greedy algorithm employs an extension strategy that starts from an initial mapping and iteratively adds pairs of model/reference chains that maximize the increase in LDDT/QS-score. For efficiency, the search can be confined to pairs of chains that are “accessible” from the continuously updated mapping. This is done by considering only model chains connected to any of the already mapped model chains in an interaction graph, applying the same criterion to reference chains. In these interaction graphs, chains are represented as nodes, and nodes are connected if they potentially contribute non-zero values to the final score. In the case of QS-score, which is for proteins only, we additionally limit these connections to chain pairs with at least 3 contacts. Contacts are defined as distance <= 8Å between representative residue positions (Cβ, Cα in case of GLY). In pseudocode:

- construct mdl_pool with accessible chains in model given mapping
- construct trg_pool with accessible chains in reference given mapping
While pools are not empty:
  - For each chain combination in trg_pool/mdl_pool:
    - Compute change in QS-score/LDDT with respect to mapping
  - Update mapping with combination of highest QS-score/LDDT increase
  - Update pools to include all accessible chains from updated mapping

In order to mitigate the risk of the algorithm being trapped in a local optimum, we use a large number of diverse starting points by using all possible reference/model chain pairs as initial mappings. The greedy extension does not guarantee a complete mapping in case of disconnected interaction graphs. The final algorithm enforces full a full mapping:

For each reference/model chain combination:
  Use combination as initial mapping and perform greedy extension
  While mapping incomplete:
    For each combination of unmapped reference/model chains:
      - add combination to mapping and perform greedy extension
    - keep mapping with highest QS-score/LDDT
  - keep complete mapping with highest QS-score/LDDT

QSMapR
A multiple sequence alignment is created for each group of equivalent chains and Cɑ (C3’ for nucleotides) positions of columns that are covered in each sequence are considered for superposition. To reduce runtime, a subsampling by only selecting n equidistant columns is performed (default: n=50). Same as for QSMap, the algorithm is explained in terms of aligning two equally sized homo-oligomers with N chains for simplicity.

The greedy chain mapping heuristic is defined as follows:

For each reference/model chain combination:
  Use combination as initial mapping
  While mapping incomplete:
    Use mapping to compute Kabsch minimal RMSD transform
    Apply transform to model coordinates
    Extend mapping by minimal RMSD reference/model chain pair
  Compute Kabsch minimal RMSD transform on full mapping
  Keep full mapping with lowest RMSD

The greedy heuristic performs N3 Kabsch minimal RMSD transformations. Naive enumeration of the solution space requires N! transformations. QSMapR therefore performs naive enumeration for N <= 5 (53=125 vs 5!=120) and switches to the described greedy heuristic for larger problem sizes.

Updated LDDT reference implementation
LDDT was completely re-implemented. Extending LDDT to support protein complexes did not require conceptual changes to the algorithm described in 9 and summarized in Supplemental section S1 but involved technical adjustments to natively handle multi-chain complexes with model/reference chain mappings from QSMap/QSMapR. However, extending LDDT to nucleotides required two modifications: 1) Ideal bond lengths and angles, along with their standard deviations for the stereochemistry preprocessing have been expanded to include nucleotides. Amino acid and nucleotide parameters are now extracted from the CCP4 MON_LIB 10 instead of the previously used amino acid parameters from Engh and Huber 11. No changes were made for clash checks. 2) The potential swapping of OP1/ OP2 atoms in a nucleotide polymer, resulting in chemically equivalent molecules, was added to a hardcoded list of symmetries that originally only included symmetries from proteinogenic amino acids.

Ligand definition and identification
We follow the definition of ligands from the PDB: small molecules such as ions, solvent molecules, drugs, enzymes, co-factors, etc. associated with biological polymers 12. In addition, the scores described here do not take biological relevance into account. This is the result of a conscious decision from our side. Other resources such as BioLiP 13, FireDB 14 or the defunct IBIS database 15 have attempted to tackle the issue. However it is very hard to address, at least in part due to the fact that relevance is relative and dependent on the context, and therefore is essentially impossible to automate in a general case. Therefore, we decided to focus on the assessment of ligand accuracy only. As a result, all small molecule ligands present in the structures are assessed.

Ligand matching and symmetry correction
We don’t rely on ligand names to identify pairs of ligands in model and reference but represent all ligands by molecular graphs. If two graphs are isomorphic, they are considered a match. However, reference ligands may be incomplete due for instance to missing density in the experimental structure, while model ligands are expected to be complete. Therefore, an option allows two graphs to be considered a match if the reference graph is an isomorphic subgraph of the model graph. All ligand scores described in the following sections of this manuscript can operate on incomplete reference ligands. However, post processing must consider coverage - the fraction of model ligand atoms that are covered by the reference ligand - to avoid nonsensical matches, such as small organic solvent molecules in the reference matching organic model ligands or co-factors by pure chance. Furthermore, enumerating graph isomorphisms produces a list of one-to-one atom mappings between reference and model ligands, allowing to account for potential symmetries that are chemically equivalent, following established methodologies 16. Ligand atom elements serve as graph node features and graph connectivity (bonds) is established in the following order of preference: 1) loaded explicitly from an input SDF file 5 2) extracted from the chemical component dictionary based on ligand name 4 3) determined by a heuristic set of rules based on van der Waals radii. All graph operations are performed using the Python NetworkX software 17.

BiSyRMSD, RMSD-LP and LDDT-LP
BiSyRMSD, the Binding site superposed Symmetry corrected RMSD, operates on ligand atom positions and corrects for symmetries as described in section “Ligand matching and symmetry correction” to report the best possible RMSD. This approach is sufficient for re-docking experiments, where the reference and model polymer chains are identical, and are already in the same frame of reference. However, when the full model has been built in the absence of any reference information, it is necessary to appropriately transform the model ligand onto the reference ligand frame before calculating the BiSyRMSD. To mitigate the impact of structural flexibility, BiSyRMSD performs a localized transformation based on the reference binding site, defined as polymer residues in close contact with the reference ligand (at least one heavy atom within 4Å of any reference ligand atom). When both the reference and model consist of a single polymer chain, the corresponding binding site residues in the model are identified via sequence alignment. These residues are then used as input for a Kabsch transformation 18, utilizing the respective Cα atoms (or C3' atoms for nucleotides), or all backbone atoms if the binding site contains 2 or fewer residues. For cases where the reference or model includes multiple polymer chains, mapping the model binding site becomes a chain mapping problem. The relevant set of reference polymer chains is determined by the reference binding site, whereas the relevant set of model polymer chains follows a more lenient contact definition (at least one heavy atom within 25A of any model ligand atom) to promote a complete mapping even with an imperfectly modeled binding site. The same sequence-based grouping used for QSMap/QSMapR (see the section “Sequence-based grouping of macromolecule chains for QSMap/QSMapR”) is applied to both sets. All possible mappings of model chains onto reference chains are processed. For each mapping, the model binding site residues are identified via the respective pairwise sequence alignments, and the best BiSyRMSD observed for any mapping is reported. 

BiSyRMSD exclusively considers ligand atom positions. Although the binding site is critical to accommodate the ligand, it only indirectly influences BiSyRMSD through its role in the superposition process. To directly compare reference and model binding sites, RMSD-LP and LDDT-LP have been introduced where LP stands for ligand pocket, and are similar to the previously described LDDT-BS score 19. These methods utilize the reference/model binding site mapping obtained from BiSyRMSD to compute a backbone RMSD (using Cα atoms for proteins and C3’ atoms for nucleotides) and an all-atom LDDT, respectively.

LDDT-PLI
LDDT-PLI is an all-atom score that, unlike BiSyRMSD, explicitly considers interactions between a ligand and its binding site. It is a symmetry-corrected LDDT score that operates on pairwise distances between ligand and binding site with standard LDDT distance difference thresholds (0.5Å, 1.0Å, 2.0Å and 4.0Å) but with a reduced inclusion radius of 6Å to emphasize the score’s local nature. While it does not perform stereochemistry checks, LDDT-PLI is distinct in one key aspect: it considers pairwise distances within the inclusion radius in the model but not in the reference. In classical LDDT, the set of distances used for score computation is solely defined by the reference,  which can be problematic for very local analyses, as intended by LDDT-PLI. For example, if a loop of a model incorrectly interacts with the ligand, the classical approach misses these interactions. LDDT-PLI addresses this by also including interatomic distances within the inclusion radius in the model, provided there is experimental evidence for both atoms involved, meaning they can be mapped to the reference.  For cases where the reference or model includes multiple polymer chains, their mapping must also be considered. All chains that potentially fulfill a contact for the final LDDT-PLI score in the reference and in the model (i.e. with at least one atom within the inclusion radius plus the maximum distance difference threshold of the reference ligand, 10Å in total) are included. The same sequence-based grouping used for QSMap/QSMapR (see the section “Sequence-based grouping of macromolecule chains for QSMap/QSMapR”) is applied to both sets. All possible mappings of model chains onto reference chains are processed. For each mapping, model polymer residues are assigned to reference polymer residues via the respective pairwise sequence alignments. If a chain potentially contributing contacts in the model can not be mapped to the reference at this point, the closest (by center of mass) chemically equivalent chain in the reference not already covered by the chain mapping is used, even if not initially included in the relevant set of reference polymer chains. When both the reference and model consist of a single polymer chain, the problem can be reduced to a simple pairwise sequence alignment. The optimal score is computed by simultaneously enumerating all chain mappings, all symmetries in the ligand as described in section “Ligand matching and symmetry correction”, as well as symmetries from the polymer chain, and the best LDDT-PLI observed for any mapping is reported.

Ligand assignment
BiSyRMSD and LDDT-PLI are initially computed for each isomorphic pair of ligands. In this manuscript, we consider three benchmarking scenarios: 1) providing a score assessing each modeled ligand pose, 2) providing a score assessing how well each reference ligand is represented in the model 3) providing a single score for comparing two macromolecular complexes with multiple ligands. All three scenarios require a one-to-one assignment between reference and model ligands. To be meaningful, this assignment must be non-redundant, ensuring that each model ligand is assigned to only one reference ligand and vice versa. Individual assignments are generated separately for LDDT-PLI and BiSyRMSD scores, and we found that a simple greedy algorithm yields satisfactory results. That approach iteratively assigns the best scoring pair of matching reference and model ligands until no more reference or model ligands remain to be assigned. For cases involving incomplete reference ligands, coverage - as described in the section “Ligand matching and symmetry correction” - is also considered. In each iteration, possible assignments are limited to pairs with coverage greater than the maximum coverage minus a user-specified threshold (default: 0.2). As a consequence, an assignment with higher score is preferred, even if the coverage is slightly lower, while nonsensical assignments between small solvent ligands in the reference and large organic model ligands are discouraged. 

Implementation of external scores in OpenStructure

DockQ / fnat/ i-RMSD/ L-RMSD: The OpenStructure implementation follows the descriptions in  20  and  21. The scores are designed to evaluate dimers with a defined chain assignment, eliminating the need for a chain mapping algorithm. Results from OpenStructure align closely with those from DockQ v2.1.3 22 as available from https://github.com/bjornwallner/DockQ, with additional details provided in supplemental section S2.

ICS / IPS: The OpenStructure implementation follows the descriptions in  23. The original description does not specify procedures for chain mapping or score aggregation for higher-order oligomers. In OpenStructure, a QSMap chain mapping is applied, and all contacts from the complete model and reference complexes are collected to compute the relevant metrics. Since no publicly available ICS / IPS implementation from the CASP community exists, we compared our results with those published by the Prediction Center (https://predictioncenter.org). Results from OpenStructure closely match for dimers. Results for higher order assemblies are qualitatively similar, with discrepancies likely due to differences in chain mapping and score aggregation (Andriy Kryshtafovych, personal communication), with additional details provided in supplemental section S2.

GDT: The Global Distance Test (GDT) reports the fraction of reference Cɑ positions that can be superposed within a specified distance threshold of the respective model positions which is an optimization problem with an implementation in the LGA tool 24. OpenStructure offers its own implementation, which largely follows LGA but allows for seamless integration into the quaternary structure and RNA scoring capabilities of OpenStructure. The algorithm relies on a strict mapping between model and reference positions (Cɑ for peptides, C3’ for nucleotides). Starting from an initial set of mapped model/reference position pairs, the following steps are iteratively applied: 1) use set to compute a minimal RMSD transformation, 2) apply the transformation to all model positions 3), update set to include all pairs within specified distance threshold, stopping if the set no longer changes, and report the largest set observed. Other than LGA, which employs the longest continuous segment (LCS) algorithm 24 to help identify good starting sets, OpenStructure simply uses sliding windows of sizes [7, 9, 12, 24, 48] on the model/reference positions. To prevent long runtimes for large structures, each sliding window is applied a maximum of 1000 times at equidistant locations.

Historically, CASP uses GDT_TS (Total Score) which averages GDT scores with distance thresholds 1, 2, 4 and 8Å. The GDT_HA (High Accuracy) variant, introduced in the high accuracy category of CASP7, uses lower distance thresholds of 0.5, 1, 2, 4Å to provide a finer-grained estimate for high quality models 25. OpenStructure provides the GDT_TS and GDT_HA scores but other than LGA which scales these scores in range [0, 100], OpenStructure scales them to [0, 1]. In case of oligomers, model/reference positions are mapped based on the QSMapR chain mapping algorithm. Results from OpenStructure align closely with those from LGA as queried from (https://predictioncenter.org), with additional details provided in supplemental section S2.

RMSD: OpenStructure employs the Kabsch algorithm 18 to compute the root mean squared deviation (RMSD) based on Cα positions for peptides and C3’ positions for nucleotides. In the case of oligomers, a chain mapping is determined by QSMapR prior to RMSD computation. Given that RMSD computation is a well established procedure, no benchmarking against reference implementations was conducted.

USalign: OpenStructure includes USalign (version 20231222, GitHub commit 444144c) natively. Alternatively, it is possible to use a locally-installed version of USalign by supplying the path to the USalign binary. 

CAD-score: the CAD-score is computed with the voronota-cadscore program 26, which must be installed separately from OpenStructure.
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