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Supplementary Note 1: Calculating the ultimate precision limits

In this section, we will give the details of calculating the ultimate precision limits in Eq. (2), Eq. (4), Eq. (5),
and Eq. (7) of the main text. First, we investigate the ultimate precision limit in the standard quantum metrological

scheme with a unitary parameterizing process U'S(g). Then the canonical momentum operator in the Heisenberg
picture can be expressed as

Ts
Ks = Uk(9)KsUs(g) = iUL(9)[9,Us(9)] = / U0 = 1)[0,Hs(9)]Us (0 — t)dt,

where Hg (g) is the Hamiltonian and T is the total evolution time of the parameterizing process. We denote Vg =

8g.ﬁI s(g) as the characteristic operator of this dynamical process. Given that we only concern about the metrological
scenarios with time-independent Hamiltonians, the above momentum operator can be rewritten as

Ts N
Ks = / elfst Vs e Hst g,
0

For a probe state pg with the spectral decomposition pg = . p;|1i)(¢;|, we can calculate its average uncertainty
with respect to the canonical momentum operator g as

A’CS - sz ( MVC |1/}z> <"/Jz|K:S|wz ) szA K:Sa

where A Kg = \/(1/)Z|IC [1hs) — (1] Ks|1;)? denotes the uncertainty of the i-the eigenstate |¢);) with respect to the

canonical momentum operator Ks. Subsequently, we can calculate

TS N N s TS
AiIC2 _ <,¢}1| </ eiHst VS e—let dt) |"/)z ( "/}z|/ 1Hst Vse 1H5t dtWJ >>
0
Ts P . . Ts . .
= / (thi|est Vg e st qt - (H - Wi><¢i|) / st Vg e sty ) dt
0 0
Ts . . . Ts
= [ e e (1 ) at- /
0 0

Drawing on the Cauchy—Schwarz inequality of | fab f(x)dz|? < f |f(x)|>dx, we can derive
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(T = i iwl ) 15" Vs o715 )

T A
AJC% < TS/ <w |elet V elest ( Wh)(il) |) iHst VS efiHst|¢Z_> dt
Ts A - RPN LA
_ TS/ ((wilelet ng 6_1H5t|’(/)i> _ <’(/)i|elet VS 6_1H5t|’(/Ji>2) dt
0

Then we can derive

AKE =) pidiKs

Ts A - RPN LA
— TS/ Zpi (<¢i|elet ng e—1H5t|wi> _ <,(/)i‘elet VS 6_1H5t|1/)i>2> dt
0 i

Ts
=Tg AV52|ﬁt dt,
0

where p, = Zipie’ili’st\wi)(zbﬂeigst. Since the average uncertainty of the operator Vs is bounded by a maximum
value of AVg, i.e., AVZ < AVZ for any quantum state in the Hilbert space with respect to the probe. Then we can
determine that the uncertainty of the canonical momentum is bounded by

AK%E < AVET2 = AKg < AVsTs. (S1)



By assigning Ts = T and substituting Eq. (S1) into Eq. (1), we can ultimately derive the precision limit as shown in
Eq. (2).

Su(bs?equently, we investigate the ultimate precision limit in our quantum metrological scheme with an ITD gen-
erating process Ur = Ug @ 0)(0] + Ug ® |1)(1], where |0) and |1) are the complete orthogonal basis of the ancilla
we employed for implementing the quantum switch. Here the unitary operator Uec = exp(fif{cTC) represents the
evolution the generation process with the forward time direction, where H, ¢ is the Hamiltonian and T¢ is the evolution
time of this process. Given that the entire evolution in our scheme is written as Uy = UsUg ©0) (0] + US(A]g ®|1)(1],
the canonical momentum operator in the parameter space of the joint system of probe and ancilla (in the Heisenberg
picture) can be given by

Kr =iU0]4(9)[0,U15(9)] = ULKsUc ©10)(0] + UcKsUL @ |1)(1]. (S2)

Given that the Hamiltonian fIC of the generating process satisfies [H'C, [ﬁa f[s]] = [}A[S’ [HC7 H‘SH — 0, we have
Ts X A A
Ug/%sffc :/ ifleTe giflst 7 o—iflsto—ifHoTe gy
0

T N . L .o . .
_ / s eiHSteiHCTCe*[HCHHS]TCt VS e*[Hs.,HC]TCte*iHCTCe*iHSt dt
0
By taking the partial derivative with respect to g on both sides of the equation [f] S, [I:Ic, ﬁsﬂ = 0, we can calculate
that
Vs, [He, Hs)] + [Hs, [He, Vs]] = 0.
Given that the Hamiltonian fIC satisfies [fla Vg] =i in our scheme, we can derive that
[VSW [-E[C'7 I:ISH = Oa

which implies that the operator Vs commutes with the commutator [H’c, H s]. Therefore, we can calculate that

T
UEJCSUC = / ’ elfisteifloTe g o=iHoTe o=iflst gy (S3)
0

Given that [He, Vs] = i, we have
elflcTe Vs emiHcTo — Vs — Tc.
Substituting it into Eq. (S3), we can derive that
UlKsUo = Ks — ToTs. (S4)
Similarly, we can derive that
UcKsU}, = Ks + ToTs. (S5)
Substituting Eq. (S4) and Eq. (S5) into Eq. (S2), we obtain the expression for K as shown in Eq. (3) of the main text.

We denote the initial state of the joint system of the probe and ancilla as psa = ps ® pa = >, pil:) (Vi @ ) (@] =
> Dil W) (W5, where [¥;) = |¢b;) ® |¢), then the average uncertainty of the initial joint state pga with respect to the

canonical momentum operator K can be calculated as
AR =37 pi ((WlK ) - (wilK[w,)?)
. N . 2
= S0 [ (AlKYIV:) + TETS — o Ts(lKslbi)010.10) — (6Kl - TeTs(olo o)) |

= > i ((alKEI) — (ilKslwn)?) + TETE - TATH(6lo-l0)%,



where 6, = [0)(0| — |1)(1| is the Pauli operator of the ancilla, thus ($|5.|¢)? < 1. Given that

S pi ((ilKEl0) — (WilKslv)?) = ARS < AVETE,

(3

we can derive
AK? < AVETS +T3TE. (S6)

By assigning T = Ts = T and substituting Eq. (S6) into Eq. (1) while replacing AKs by AK;, we can ultimately
derive the precision limit as shown in Eq. (4).

Next, we sequentially apply the parameterizing process Ug(g) N times within the standard quantum metrological
scheme. Consequently, the total sequential evolution can be expressed as U éN) = [[7 s(g)N = exp[fiﬁ s(g)NTgs], given

that the Hamiltonian Hg(g) is time-independent. In this case, the canonical momentum in the Heisenberg picture
can be calculated as

() 5T 5 (N M fsip il
KEY =i [0§M] 0,08V = / st e st iy,
0
Drawing on the calculation of the upper bound of Al@%, we can derive

[A;agmr < NTy /
0

NTs

Zpi <<,¢Z_|eif[st VS2 e—iﬁst|¢i> o <1/]Z_|eiflst VS e—iﬁst|¢i>2> dt
NTg _
= NTs / AVZ|. dt.
0 Pt

where py =, pie_iH st ) (; |eiﬁ st Given that the average uncertainty of the operator Vg is bounded by a maximum
value of AVg, we can finally obtain

B 5 NTs
[AR]" < N /O AV2dt = AVIN?T2, (S7)

By normalizing Ts = 1 and substituting Eq. (S7) into Eq. (1) while replacing AKg by AI@EQN), we can ultimately
derive the precision limit as shown in Eq. (5).

Subsequently, we sequentially apply the evolution U 15, which comprises an I'TD generating process Ur prior to the
parameterizing process Ug(g), in our quantum metrological scheme. Consequently, the total sequential evolution of
the joint system of the probe and ancilla can be expressed as U}g) = (UsUc)N @ [0)(0] + (UsUL)N @ [1)(1]. In this
case, the canonical momentum operator of the joint system (in the Heisenberg picture) can be derived as

=i (0508) " Y (0s0e) " (9,05 e (Ust6) ®10)(0
1=0
N1 N—1—i i
+i(0c05) 3 (0s08) (900s) U (UsUE) © i
1=0

Given that the Hamiltonian H¢ of the generating process satisfies [He, [He, Hs]] = [Hs, [Ho, Hs]] = 0, we have

U(T;Ug — e*[ﬁc,ﬁs]TcTsU;Ué’ USUC — e*[Hs,HC]TCTsﬁCU'S'
and

UCUg - e[HC’ﬁS]TCTSU;UC7 ﬁsUé _ e[ﬁS’HC]TCTSUgUS.



Since the commutator [flc, fls] commutes with the operators ﬁc, ﬁs, and VS, it also commutes with the momentum
operator Kg = fOTS U;(O — 1)[0,Hs(9)]Us (0 — t)dt. Therefore, we can further derive l@ﬁN) as

N N1 ~ N —+1 R i+1 N 7
KW = S (08) (00) " ks (06) T (05) @ 00
1=0

Z

+ 30 (00) (0e) " ks (08) " (05) e .

i

I
o

Combining with Eq. (S4) and Eq. (S5), we can calculate

KW — S (o1 FOAY ﬁ—NiTT &
I Z( ) s(s)@ Z cls ®0;
1=0 =1

N—-1

2

)" (o) (1) o1

=0

TcTs ® 0o,

s

= 1( )NNl (Us)N_i_l (69(75) (Us>i ®]AI— N2;_NT0TS R G,
=0
0] o) o1 ¥ Ve,
=Kk el- N NTCTS ® 6,

which is exactly the expression as shown in Eq. (S6). Furthermore, we can calculate its uncertainty of the initial joint
state psa = 32, pi| Vi) (W] as

el = o (IR P — (IR}

(N? 4+ N)?

= 0 (RSP ) = ilK§|0)?) + = T2T3 (1 - (6]5:10)°)

Combining with Eq. (S7), we can finally obtain

B 2 B 2 N2 N 2
[MM < [A/cgN)} L WA N Z 122
(N2 + N)2

< AVEN?TS + 1

TATZ. (S8)

By normalizing To = Tis = 1 and substituting Eq. (S8) into Eq. (1) while replacing AKg by Al@yv), we can ultimately
derive the precision limit as shown in Eq. (7).

Supplementary Note 2: Average uncertainty of final probe state with respect to Vs

In the standard quantum metrologlcal scheme with a parameterlzlng process US( ), the average uncertainty of the
final probe state py = >, szSW ><w2|US with respect to operator Vs can be expressed as

AVE,, =X on (Wl O3V 0slss) — (il O8VsUshen?) (59)

while the average uncertainty of the final probe state pf =5 piU (N)|wi><¢i|(UéN))T when applying the parame-
terizing process N times can be expressed as

AVE |0 =D pi [<wi|(U§N) V3OS ) - <wi|(UéN>)TVsUéN>|wi>2}

=S [t (0) 92 (0) " ) = 0t (00" s (05)” 1o (s10)



In our scheme, the initial state of the joint system of the probe and ancilla is denoted as psa = ps ® pa =
> Dila) (il @ [0) (P = D2, pil Vi) (¥;], where |¥;) = 1) ® |¢) and the initial ancilla state can be expressed as
|¢) = |0) + B[1) with |a|? + |82 = 1. By going through a single-shot evolution Ug, which comprises an ITD
generating process and a parameterizing process, the final state of the joint system is denoted as U ISﬁSAU;S =
ZZpJA]15|\I/l><\Ill\U}LS Then the final probe state in our scheme can be obtained as

Py =Tra (UISﬁSAU}Ls) = ZPJQFUSUCWJWHUEU; + ZPH»BFUSUB%M%WCU;-
In this case, the average uncertainty of the final probe state ,6’f with respect to the operator Vs can be calculated as

AV

5, = Sopilal? (I0LOLVEUs Ul — (wilOLULVsOsUcls:)?)
+ ZPiW\Q (<¢i‘UCU;V§USUg|¢i> - <¢i\UCU;VSUSﬁg|¢i>2) .

Given that the Hamiltonian Hc¢ of the generating process satisfies [He, [He, Hs)] = [Hs, [He, Hs]] = 0 and the
commutator [He, Hg] commutes with the operators He, Hg, and Vg, we can further calculate

AV3|,, = S pilal? [0 (Vs = Te)Oslws) — (el 05(Vs - Te)Os[v)?]

+ D P8P [l UL (Vs + Te)2Uslo) = (walU3(Vs + Te)Us?]
=" v (laf?* +181) (WilU5V30s[) = (iU VsUs hi)?)
= > o1 (Wil05V30s ) — (il OLVsUs hi?)

which equals AV52|pf in Eq. (89).

Subsequently, when applying the evolution Us in our scheme N times, the final probe state can be obtained as
(N SN N
p’S« )= Tr, [(Ufs) Psa (UITS) ]
2 (11 i 2 (proit )Y AN
= S wilaf? (0s0c) " e (0108)" + 32wl (0508) " 1) (il (0c0%)
Then its average uncertainty with respect to the operator Vs can be calculated as

AVE

o = Sl [t (020)" 2 (050) " ) - 0 (020)" Vs (050) "]
# SSnIaP (0 (Fo01) V3 (8508) o ol (60E) " Vs (9508 o
= Sl {0 (2)" 7 =N (8 ) — 0 (02) 05 T2 (05) 1w
# S [t (02) (s N7 (05) 0 — ol (02)” 05 ) (05) ]
=2 (of" + 13P) [w (04) 02 (05) ™ ey — sl (08) " Vs (05) wﬂ
= St (62) V2 (T) " o — ol (02) Vs (85) 102,

which equals AVS?‘[)(N) in Eq. (S10).
s



_ Consequently, our scheme strictly complies with the average uncertainty constraint with respect to the operator
Vs throughout the metrological process. Notably, the ITD generating process we utilized does not incur additional
resource costs in the probe state compared to the standard quantum metrological scheme.

Supplementary Note 3: Calculating experimental precision and RMSE

In this section, we utilize the classical Fisher information (CFI) to determine the theoretical precision limits of
our experimental setup, as illustrated in Eq. (11) and Eq. (14) of the main text. Subsequently, we present the
optimal estimator for the unknown parameter g in our experiments, along with the methodology for calculating their
root-mean-square error (RMSE).

First, based on the classical estimation theory, the CFI for the unknown parameter g with respect to the measure-
ment probabilities {P;| . P; = 1} can be calculated by

F(g) :2; (‘Z];) (s11)

Substituting P, and P_ from Eq. (10) into Eq. (S11), we can calculate the CFI for the parameter g with respect
to various time lengths T of a single-shot evolution, which comprises a I'TD generating process and a parameterizing
process, in our experiments as

4cos? (29T
Flg) = 7+ G
1 —sin® (2¢77?)

Then drawing on the classical Cramér-Rao bound theory, the precision limit of estimating the parameter g in the
experiments can be obtained as

1
o exp = = y
Jexp yF(g) 2\/;T2

where v is the number of measured photons

Next, by substituting P(N) and P%Y) from Eq. (13) into Eq. (S11), we can calculate the CFT for the parameter g
(which equals the rotation angle « in this setting) with respect to various numbers N of sequential evolutions in our
experiments as

, COS [( )a}

Fla) = (N*+N) 1 — sin? [(N2+N) al

= (N? + N)%

Then, drawing on the classical Cramér-Rao bound theory, the precision limit of estimating the parameter g in the
experiments can be obtained as

1 1
6N = o > = )
gexp I/F(OZ) \/;(NZ _|_N)

In the experiments, the estimated value g of the parameter g can be obtained from the detected photons number
4 under the projection I and the detected photons number 7_ under the projection II_. To derive the expression
of the estimator ¢ from the measurement results 7, and 7_, we first calculate the log-likelihood function for the
unknown parameter g as

Ug{D4,0-}) =In [ Po H Py
=, —

=InPy + Z v Py,

i=+,—

where

)

InPy = (% IN;?



accounts for all possible permutations. Then, by solving the likelihood equation
Solal{e ) =0,

we can obtain the estimated value § from measured data 7y and 7_. The RMSE of estimating the parameter g in
the experiments can be calculated from

RMSE(g) = \/ % Z (59 = go),

where gq is the true value of parameter g we set in the experiments, M is the number of the measurements repeated
(which is 30 in our experiments), and G is the estimated value of i-th measurement.

Furthermore, by substituting P, and P_ from Eq. (10) into the likelihood equation, we can calculate the estimator
of the parameter g with respect to various time lengths T of a single-shot evolution, which comprises a ITD generating
process and a parameterizing process, in our experiments as

~ 1 (D — i
xp = —— arcsin | ——— | .
Jexp = 572 U+ D

Next, by substituting PJ(FN) and PEN) from Eq. (13) into the likelihood equation, we can calculate the estimator of
the parameter g (which equals the rotation angle « in this setting) with respect to various numbers N of sequential
evolutions in our experiments as

N i 1 (D — D
gé)](\fp) = Qlexp = m arcsin (M) .

Algorithm 1: Calculation of coincidence counts

/* Assume that SPD A detects the herald photons and SPD B detects the signal photons. For a
single-photon pair, the herald photon should be detected by SPD A before the signal photon is

detected by SPD B. */
Input: Timestamps from SPD A and SPD B: T4 = {t%A),tgA), e ,t%”}, T = {t:(lB),téB), e ,tSLB)}.
Output: Coincidence counts C = {c1,¢2, -+ ,cx} between SPD A and SPD B; Corresponding delay times

T = {t1,t2,--- ,tx} of signal photons.
Initialize T" ; /* The step size is set to 5ps and the span ranges from lns to 50ns in our experiments. */

Initialize C ; /* The values of coincidence counts are all set to 0. */
Define 77 = {t(ll),tél)7--- ,t(nl)} ; /* Tr is the set of the time intervals between every detected
single-photon pair. */

Set w ; /* w is the gate width for coincidence counting, which is set to 2ns in our experiments. */
/* Search the time intervals between every detected single-photon pair. */

for i + 1 ton do

for j < 1 to m do
if 17 — 'Y > 0 then
‘ 1D (B (A
7 [ J
else
| Break to the outter for loop
end
end
end
/* Calculate the coincidence counts with different delay times in T */

for i + 1 to k do
for j + 1 ton do
if t;l) >t —w/2 and t;l) < t; +w/2 then
| co=c+1
end
end
end




Supplementary Note 4: Algorithm of calculating coincidence counts

In our experiments, we recorded the timestamps of the detected photons for each single-photon detector (SPD) using
the Moku:Pro device provided by Liquid Instruments, which offers a time jitter of less than 20 ps. We supplemented
the original timestamp data detected by the three SPDs with eight individual files. These files correspond to an
evolution time length T of 1, 2, 3, and 4 for a single-shot evolution (N = 1), and an iteration numbers N of 1, 2,
3, and 4 for a normalized time length (T = 1), respectively. Each file contains three columns of timestamp data,
corresponding to the timestamps of pulse signals outputted by SPD 1, SPD 2, and SPD 3, respectively. Subsequently,
we calculated the coincidence counts between SPD 2 and SPD 1, as well as between SPD 3 and SPD 1, using the
timestamp data in each file.

In this work, we developed an algorithm for calculating the coincidence counts between the timestamp data of two
different SPDs. This algorithm searches the time intervals between every detected single-photon pair and then deter-
mines the coincidence counts with various delay times of the signal photons. This method offers lower computational
complexity and reduced computation time compared to the traditional approach of shifting the timestamps of signal
photons to calculate the coincidence counts. The detailed algorithm is presented in Algorithm 1.

Based on this algorithm, we calculated the coincidence counts between SPD 2 and SPD 1, as well as between SPD
3 and SPD 1, with varying delay times of the signal photons. In our calculations, the delay times range from 1ns
to 50ns, with a step size of 5ps. Considering the time jitter in SPDs, the gate width for coincidence counting in
our calculations is set to 2ns. Subsequently, the number of detected photons, 7+, under the projection II+ and the
number of detected photons, —, under the projection II— can be determined from the peak values of the coincidence
counts between SPD 2 and SPD 1, and between SPD 3 and SPD 1, respectively.

In our experiments, we recorded the event timestamps from SPD 1, SPD 2, and SPD 3 over a duration of 30s
for each set of T and N. The data were then divided into 600 groups, with each group representing the timestamps
of photon counts within 50 ms. For each set of T and N, we calculated the coincidence counts for these 600 groups
between SPD 2 and SPD 1, and between SPD 3 and SPD 1, using a sampling time length of 50 ms.

The results are provided in eight individual files, corresponding to an evolution time length 7" of 1, 2, 3, and 4 for a
single-shot evolution (N = 1), and iteration numbers N of 1, 2, 3, and 4 for a normalized time length (7" = 1). In each
file, data labeled as 'Time’ represents the delay time axis, data labeled as ’CoinCountl’ represents the coincidence
counts between SPD 2 and SPD 1 for the 600 groups, and data labeled as ’CoinCount2’ represents the coincidence
counts between SPD 3 and SPD 1 for the 600 groups.
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Figure S1. Experimental results of coincidence counts with different evolution time length T' of the ITD generating
process and the parameterizing process and iteration number N of the identical evolution. The blue curves represent
the coincidence counts C; between SPD 2 and SPD 1, i.e., the detected results under the projection I, and the
orange curves represent the coincidence counts C_ between SPD 3 and SPD 1, i.e., the detected results under the
projection II_.
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As shown in Figure S1, we present the experimental results of coincidence counts between SPD 2 and SPD 1, and
between SPD 3 and SPD 1, for various sets of T and N. These results are averaged over the corresponding 600
groups, where the blue curves represent the coincidence counts C+ between SPD 2 and SPD 1, and the orange curves
represent the coincidence counts C— between SPD 3 and SPD 1. The peak values in each curve are marked, which
determine the number of detected photons + under the projection II+ and the number of detected photons v—
under the projection II— for each set of T" and N, respectively.



