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Supplementary Note 1: Calculating the ultimate precision limits

In this section, we will give the details of calculating the ultimate precision limits in Eq. (2), Eq. (4), Eq. (5),
and Eq. (7) of the main text. First, we investigate the ultimate precision limit in the standard quantum metrological

scheme with a unitary parameterizing process ÛS(g). Then the canonical momentum operator in the Heisenberg
picture can be expressed as

K̂S = Û†
S(g)K̂SÛS(g) = iÛ†

S(g)[∂gÛS(g)] =

∫ TS

0

Û†
S(0 → t)[∂gĤS(g)]ÛS(0 → t)dt,

where ĤS(g) is the Hamiltonian and TS is the total evolution time of the parameterizing process. We denote V̂S =

∂gĤS(g) as the characteristic operator of this dynamical process. Given that we only concern about the metrological
scenarios with time-independent Hamiltonians, the above momentum operator can be rewritten as

K̂S =

∫ TS

0

eiĤSt V̂S e−iĤSt dt.

For a probe state ρ̂S with the spectral decomposition ρ̂S =
∑

i pi|ψi⟩⟨ψi|, we can calculate its average uncertainty
with respect to the canonical momentum operator KS as

∆K̄2
S =

∑
i

pi

(
⟨ψi|K̂2

S |ψi⟩ − ⟨ψi|K̂S |ψi⟩2
)
=
∑
i

pi∆iK2
S ,

where ∆iKS =
√
⟨ψi|K̂2

S |ψi⟩ − ⟨ψi|K̂S |ψi⟩2 denotes the uncertainty of the i-the eigenstate |ψi⟩ with respect to the

canonical momentum operator K̂S . Subsequently, we can calculate

∆iK2
S = ⟨ψi|

(∫ TS

0

eiĤSt V̂S e−iĤSt dt

)2

|ψi⟩ −

(
⟨ψi|

∫ TS

0

eiĤSt V̂S e−iĤSt dt|ψi⟩

)2

=

∫ TS

0

⟨ψi|eiĤSt V̂S e−iĤSt dt ·
(
Î− |ψi⟩⟨ψi|

)
·
∫ TS

0

eiĤSt V̂S e−iĤSt|ψi⟩dt

=

∫ TS

0

⟨ψi|eiĤSt V̂S e−iĤSt
(
Î− |ψi⟩⟨ψi|

)
dt ·

∫ TS

0

(
Î− |ψi⟩⟨ψi|

)
eiĤSt V̂S e−iĤSt|ψi⟩dt.

Drawing on the Cauchy–Schwarz inequality of |
∫ b

a
f(x)dx|2 ≤ (b− a)

∫ b

a
|f(x)|2dx, we can derive

∆iK2
S ≤ TS

∫ TS

0

⟨ψi|eiĤSt V̂S e−iĤSt
(
Î− |ψi⟩⟨ψi|

)
eiĤSt V̂S e−iĤSt|ψi⟩dt

= TS

∫ TS

0

(
⟨ψi|eiĤSt V̂ 2

S e−iĤSt|ψi⟩ − ⟨ψi|eiĤSt V̂S e−iĤSt|ψi⟩2
)
dt.

Then we can derive

∆K̄2
S =

∑
i

pi∆iK2
S

= TS

∫ TS

0

∑
i

pi

(
⟨ψi|eiĤSt V̂ 2

S e−iĤSt|ψi⟩ − ⟨ψi|eiĤSt V̂S e−iĤSt|ψi⟩2
)
dt

= TS

∫ TS

0

∆V̄ 2
S

∣∣
ρ̂t

dt,

where ρ̂t =
∑

i pie
−iĤSt|ψi⟩⟨ψi|eiĤSt. Since the average uncertainty of the operator V̂S is bounded by a maximum

value of ∆VS , i.e., ∆V̄
2
S ≤ ∆V2

S for any quantum state in the Hilbert space with respect to the probe. Then we can
determine that the uncertainty of the canonical momentum is bounded by

∆K̄2
S ≤ ∆V2

ST
2
S ⇒ ∆KS ≤ ∆VSTS . (S1)
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By assigning TS = T and substituting Eq. (S1) into Eq. (1), we can ultimately derive the precision limit as shown in
Eq. (2).

Subsequently, we investigate the ultimate precision limit in our quantum metrological scheme with an ITD gen-

erating process ÛI = ÛC ⊗ |0⟩⟨0| + Û†
C ⊗ |1⟩⟨1|, where |0⟩ and |1⟩ are the complete orthogonal basis of the ancilla

we employed for implementing the quantum switch. Here the unitary operator ÛC = exp(−iĤCTC) represents the

evolution the generation process with the forward time direction, where ĤC is the Hamiltonian and TC is the evolution

time of this process. Given that the entire evolution in our scheme is written as ÛIS = ÛSÛC ⊗|0⟩⟨0|+ ÛSÛ
†
C ⊗|1⟩⟨1|,

the canonical momentum operator in the parameter space of the joint system of probe and ancilla (in the Heisenberg
picture) can be given by

K̂I = iÛ†
IS(g)[∂gÛIS(g)] = Û†

CK̂SÛC ⊗ |0⟩⟨0|+ ÛCK̂SÛ
†
C ⊗ |1⟩⟨1|. (S2)

Given that the Hamiltonian ĤC of the generating process satisfies [ĤC , [ĤC , ĤS ]] = [ĤS , [ĤC , ĤS ]] = 0, we have

Û†
CK̂SÛC =

∫ TS

0

eiĤCTC eiĤSt V̂S e−iĤSte−iĤCTC dt

=

∫ TS

0

eiĤSteiĤCTC e−[ĤC ,ĤS ]TCt V̂S e−[ĤS ,ĤC ]TCte−iĤCTC e−iĤSt dt.

By taking the partial derivative with respect to g on both sides of the equation [ĤS , [ĤC , ĤS ]] = 0, we can calculate
that

[V̂S , [ĤC , ĤS ]] + [ĤS , [ĤC , V̂S ]] = 0.

Given that the Hamiltonian ĤC satisfies [ĤC , V̂S ] = i in our scheme, we can derive that

[V̂S , [ĤC , ĤS ]] = 0,

which implies that the operator V̂S commutes with the commutator [ĤC , ĤS ]. Therefore, we can calculate that

Û†
CK̂SÛC =

∫ TS

0

eiĤSteiĤCTC V̂S e−iĤCTC e−iĤSt dt. (S3)

Given that [ĤC , V̂S ] = i, we have

eiĤCTC V̂S e−iĤCTC = V̂S − TC .

Substituting it into Eq. (S3), we can derive that

Û†
CK̂SÛC = K̂S − TCTS . (S4)

Similarly, we can derive that

ÛCK̂SÛ
†
C = K̂S + TCTS . (S5)

Substituting Eq. (S4) and Eq. (S5) into Eq. (S2), we obtain the expression for K̂I as shown in Eq. (3) of the main text.
We denote the initial state of the joint system of the probe and ancilla as ρ̂SA = ρ̂S ⊗ ρ̂A =

∑
i pi|ψi⟩⟨ψi| ⊗ |ϕ⟩⟨ϕ| =∑

i pi|Ψi⟩⟨Ψi|, where |Ψi⟩ = |ψi⟩ ⊗ |ϕ⟩, then the average uncertainty of the initial joint state ρ̂SA with respect to the

canonical momentum operator K̂I can be calculated as

∆K̄2
I =

∑
i

pi

(
⟨Ψi|K̂2

I |Ψi⟩ − ⟨Ψi|K̂I |Ψi⟩2
)

=
∑
i

pi

[
⟨ψi|K̂2

S |ψi⟩+ T 2
CT

2
S − 2TCTS⟨ψi|K̂S |ψi⟩⟨ϕ|σ̂z|ϕ⟩ −

(
⟨ψi|K̂S |ψi⟩ − TCTS⟨ϕ|σ̂z|ϕ⟩

)2]
=
∑
i

pi

(
⟨ψi|K̂2

S |ψi⟩ − ⟨ψi|K̂S |ψi⟩2
)
+ T 2

CT
2
S − T 2

CT
2
S⟨ϕ|σ̂z|ϕ⟩2,
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where σ̂z = |0⟩⟨0| − |1⟩⟨1| is the Pauli operator of the ancilla, thus ⟨ϕ|σ̂z|ϕ⟩2 ≤ 1. Given that∑
i

pi

(
⟨ψi|K̂2

S |ψi⟩ − ⟨ψi|K̂S |ψi⟩2
)
= ∆K̄2

S ≤ ∆V2
ST

2
S ,

we can derive

∆K̄2
I ≤ ∆V2

ST
2
S + T 2

CT
2
S . (S6)

By assigning TC = TS = T and substituting Eq. (S6) into Eq. (1) while replacing ∆K̄S by ∆K̄I , we can ultimately
derive the precision limit as shown in Eq. (4).

Next, we sequentially apply the parameterizing process ÛS(g) N times within the standard quantum metrological

scheme. Consequently, the total sequential evolution can be expressed as Û
(N)
S = [ÛS(g)]

N = exp[−iĤS(g)NTS ], given

that the Hamiltonian ĤS(g) is time-independent. In this case, the canonical momentum in the Heisenberg picture
can be calculated as

K̂(N)
S = i

[
Û

(N)
S

]† [
∂gÛ

(N)
S

]
=

∫ NTS

0

eiĤStV̂Se
−iĤSt dt.

Drawing on the calculation of the upper bound of ∆K̄2
S , we can derive[

∆K̄(N)
S

]2
≤ NTS

∫ NTS

0

∑
i

pi

(
⟨ψi|eiĤSt V̂ 2

S e−iĤSt|ψi⟩ − ⟨ψi|eiĤSt V̂S e−iĤSt|ψi⟩2
)
dt

= NTS

∫ NTS

0

∆V̄ 2
S

∣∣
ρ̂t

dt.

where ρ̂t =
∑

i pie
−iĤSt|ψi⟩⟨ψi|eiĤSt. Given that the average uncertainty of the operator V̂S is bounded by a maximum

value of ∆VS , we can finally obtain[
∆K̄(N)

S

]2
≤ NTS

∫ NTS

0

∆V2
S dt = ∆V2

SN
2T 2

S . (S7)

By normalizing TS = 1 and substituting Eq. (S7) into Eq. (1) while replacing ∆K̄S by ∆K̄(N)
S , we can ultimately

derive the precision limit as shown in Eq. (5).

Subsequently, we sequentially apply the evolution ÛIS , which comprises an ITD generating process ÛI prior to the
parameterizing process ÛS(g), in our quantum metrological scheme. Consequently, the total sequential evolution of

the joint system of the probe and ancilla can be expressed as Û
(N)
IS = (ÛSÛC)

N ⊗ |0⟩⟨0|+ (ÛSÛ
†
C)

N ⊗ |1⟩⟨1|. In this
case, the canonical momentum operator of the joint system (in the Heisenberg picture) can be derived as

K̂(N)
I = i

[
Û

(N)
IS

]† [
∂gÛ

(N)
IS

]
= i
(
Û†
CÛ

†
S

)N N−1∑
i=0

(
ÛSÛC

)N−1−i (
∂gÛS

)
ÛC

(
ÛSÛC

)i
⊗ |0⟩⟨0|

+ i
(
ÛCÛ

†
S

)N N−1∑
i=0

(
ÛSÛ

†
C

)N−1−i (
∂gÛS

)
Û†
C

(
ÛSÛ

†
C

)i
⊗ |1⟩⟨1|

=

N−1∑
i=0

(
Û†
CÛ

†
S

)i
Û†
CK̂SÛC

(
ÛSÛC

)i
⊗ |0⟩⟨0|+

N−1∑
i=0

(
ÛCÛ

†
S

)i
ÛCK̂SÛ

†
C

(
ÛSÛ

†
C

)i
⊗ |1⟩⟨1|.

Given that the Hamiltonian ĤC of the generating process satisfies [ĤC , [ĤC , ĤS ]] = [ĤS , [ĤC , ĤS ]] = 0, we have

Û†
CÛ

†
S = e−[ĤC ,ĤS ]TCTS Û†

SÛ
†
C , ÛSÛC = e−[ĤS ,ĤC ]TCTS ÛCÛS .

and

ÛCÛ
†
S = e[ĤC ,ĤS ]TCTS Û†

SÛC , ÛSÛ
†
C = e[ĤS ,ĤC ]TCTS Û†

CÛS .
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Since the commutator [ĤC , ĤS ] commutes with the operators ĤC , ĤS , and V̂S , it also commutes with the momentum

operator K̂S =
∫ TS

0
Û†
S(0 → t)[∂gĤS(g)]ÛS(0 → t)dt. Therefore, we can further derive K̂(N)

I as

K̂(N)
I =

N−1∑
i=0

(
Û†
S

)i (
Û†
C

)i+1

K̂S

(
ÛC

)i+1 (
ÛS

)i
⊗ |0⟩⟨0|

+

N−1∑
i=0

(
Û†
S

)i (
ÛC

)i+1

K̂S

(
Û†
C

)i+1 (
ÛS

)i
⊗ |1⟩⟨1|.

Combining with Eq. (S4) and Eq. (S5), we can calculate

K̂(N)
I =

N−1∑
i=0

(
Û†
S

)i
K̂S

(
ÛS

)i
⊗ Î−

N∑
i=1

i TCTS ⊗ σ̂z

= i

N−1∑
i=0

(
Û†
S

)i+1 (
∂gÛS

)(
ÛS

)i
⊗ Î− N2 +N

2
TCTS ⊗ σ̂z

= i
(
Û†
S

)N N−1∑
i=0

(
ÛS

)N−i−1 (
∂gÛS

)(
ÛS

)i
⊗ Î− N2 +N

2
TCTS ⊗ σ̂z

= i
[
Û

(N)
S

]† [
∂gÛ

(N)
S

]
⊗ Î− N2 +N

2
TCTS ⊗ σ̂z

= K̂(N)
S ⊗ Î− N2 +N

2
TCTS ⊗ σ̂z,

which is exactly the expression as shown in Eq. (S6). Furthermore, we can calculate its uncertainty of the initial joint
state ρ̂SA =

∑
i pi|Ψi⟩⟨Ψi| as[
∆K̄(N)

I

]2
=
∑
i

pi

(
⟨Ψi|[K̂(N)

I ]2|Ψi⟩ − ⟨Ψi|K̂(N)
I |Ψi⟩2

)
=
∑
i

pi

(
⟨ψi|[K̂(N)

S ]2|ψi⟩ − ⟨ψi|K̂(N)
S |ψi⟩2

)
+

(N2 +N)2

4
T 2
CT

2
S

(
1− ⟨ϕ|σ̂z|ϕ⟩2

)
.

Combining with Eq. (S7), we can finally obtain[
∆K̄(N)

I

]2
≤
[
∆K̄(N)

S

]2
+

(N2 +N)2

4
T 2
CT

2
S

≤ ∆V2
SN

2T 2
S +

(N2 +N)2

4
T 2
CT

2
S . (S8)

By normalizing TC = TS = 1 and substituting Eq. (S8) into Eq. (1) while replacing ∆K̄S by ∆K̄(N)
I , we can ultimately

derive the precision limit as shown in Eq. (7).

Supplementary Note 2: Average uncertainty of final probe state with respect to V̂S

In the standard quantum metrological scheme with a parameterizing process ÛS(g), the average uncertainty of the

final probe state ρ̂f =
∑

i piÛS |ψi⟩⟨ψi|Û†
S with respect to operator V̂S can be expressed as

∆V̄ 2
S

∣∣
ρ̂f

=
∑
i

pi

(
⟨ψi|Û†

S V̂
2
S ÛS |ψi⟩ − ⟨ψi|Û†

S V̂SÛS |ψi⟩2
)
, (S9)

while the average uncertainty of the final probe state ρ̂
(N)
f =

∑
i piÛ

(N)
S |ψi⟩⟨ψi|(Û (N)

S )† when applying the parame-
terizing process N times can be expressed as

∆V̄ 2
S

∣∣
ρ̂
(N)
f

=
∑
i

pi

[
⟨ψi|

(
Û

(N)
S

)†
V̂ 2
S Û

(N)
S |ψi⟩ − ⟨ψi|

(
Û

(N)
S

)†
V̂SÛ

(N)
S |ψi⟩2

]
=
∑
i

pi

[
⟨ψi|

(
Û†
S

)N
V̂ 2
S

(
ÛS

)N
|ψi⟩ − ⟨ψi|

(
Û†
S

)N
V̂S

(
ÛS

)N
|ψi⟩2

]
(S10)
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In our scheme, the initial state of the joint system of the probe and ancilla is denoted as ρ̂SA = ρ̂S ⊗ ρ̂A =∑
i pi|ψi⟩⟨ψi| ⊗ |ϕ⟩⟨ϕ| =

∑
i pi|Ψi⟩⟨Ψi|, where |Ψi⟩ = |ψi⟩ ⊗ |ϕ⟩ and the initial ancilla state can be expressed as

|ϕ⟩ = α|0⟩ + β|1⟩ with |α|2 + |β|2 = 1. By going through a single-shot evolution ÛIS , which comprises an ITD

generating process and a parameterizing process, the final state of the joint system is denoted as ÛIS ρ̂SAÛ
†
IS =∑

i piÛIS |Ψi⟩⟨Ψi|Û†
IS . Then the final probe state in our scheme can be obtained as

ρ̂′f = TrA

(
ÛIS ρ̂SAÛ

†
IS

)
=
∑
i

pi|α|2ÛSÛC |ψi⟩⟨ψi|Û†
CÛ

†
S +

∑
i

pi|β|2ÛSÛ
†
C |ψi⟩⟨ψi|ÛCÛ

†
S .

In this case, the average uncertainty of the final probe state ρ̂′f with respect to the operator V̂S can be calculated as

∆V̄ 2
S

∣∣
ρ̂′
f

=
∑
i

pi|α|2
(
⟨ψi|Û†

CÛ
†
S V̂

2
S ÛSÛC |ψi⟩ − ⟨ψi|Û†

CÛ
†
S V̂SÛSÛC |ψi⟩2

)
+
∑
i

pi|β|2
(
⟨ψi|ÛCÛ

†
S V̂

2
S ÛSÛ

†
C |ψi⟩ − ⟨ψi|ÛCÛ

†
S V̂SÛSÛ

†
C |ψi⟩2

)
.

Given that the Hamiltonian ĤC of the generating process satisfies [ĤC , [ĤC , ĤS ]] = [ĤS , [ĤC , ĤS ]] = 0 and the

commutator [ĤC , ĤS ] commutes with the operators ĤC , ĤS , and V̂S , we can further calculate

∆V̄ 2
S

∣∣
ρ̂′
f

=
∑
i

pi|α|2
[
⟨ψi|Û†

S(V̂S − TC)
2ÛS |ψi⟩ − ⟨ψi|Û†

S(V̂S − TC)ÛS |ψi⟩2
]

+
∑
i

pi|β|2
[
⟨ψi|Û†

S(V̂S + TC)
2ÛS |ψi⟩ − ⟨ψi|Û†

S(V̂S + TC)ÛS |ψi⟩2
]

=
∑
i

pi
(
|α|2 + |β|2

) (
⟨ψi|Û†

S V̂
2
S ÛS |ψi⟩ − ⟨ψi|Û†

S V̂SÛS |ψi⟩2
)

=
∑
i

pi

(
⟨ψi|Û†

S V̂
2
S ÛS |ψi⟩ − ⟨ψi|Û†

S V̂SÛS |ψi⟩2
)
,

which equals ∆V̄ 2
S

∣∣
ρ̂f

in Eq. (S9).

Subsequently, when applying the evolution ÛIS in our scheme N times, the final probe state can be obtained as

ρ̂′
(N)
f = TrA

[(
ÛIS

)N
ρ̂SA

(
Û†
IS

)N]
=
∑
i

pi|α|2
(
ÛSÛC

)N
|ψi⟩⟨ψi|

(
Û†
CÛ

†
S

)N
+
∑
i

pi|β|2
(
ÛSÛ

†
C

)N
|ψi⟩⟨ψi|

(
ÛCÛ

†
S

)N
.

Then its average uncertainty with respect to the operator V̂S can be calculated as

∆V̄ 2
S

∣∣
ρ̂′(N)

f

=
∑
i

pi|α|2
[
⟨ψi|

(
Û†
CÛ

†
S

)N
V̂ 2
S

(
ÛSÛC

)N
|ψi⟩ − ⟨ψi|

(
Û†
CÛ

†
S

)N
V̂S

(
ÛSÛC

)N
|ψi⟩2

]
+
∑
i

pi|β|2
[
⟨ψi|

(
ÛCÛ

†
S

)N
V̂ 2
S

(
ÛSÛ

†
C

)N
|ψi⟩ − ⟨ψi|

(
ÛCÛ

†
S

)N
V̂S

(
ÛSÛ

†
C

)N
|ψi⟩2

]
=
∑
i

pi|α|2
[
⟨ψi|

(
Û†
S

)N
(V̂S −NTC)

2
(
ÛS

)N
|ψi⟩ − ⟨ψi|

(
Û†
S

)N
(V̂S −NTC)

(
ÛS

)N
|ψi⟩2

]
+
∑
i

pi|β|2
[
⟨ψi|

(
Û†
S

)N
(V̂S +NTC)

2
(
ÛS

)N
|ψi⟩ − ⟨ψi|

(
Û†
S

)N
(V̂S +NTC)

(
ÛS

)N
|ψi⟩2

]
=
∑
i

pi
(
|α|2 + |β|2

) [
⟨ψi|

(
Û†
S

)N
V̂ 2
S

(
ÛS

)N
|ψi⟩ − ⟨ψi|

(
Û†
S

)N
V̂S

(
ÛS

)N
|ψi⟩2

]
=
∑
i

pi

[
⟨ψi|

(
Û†
S

)N
V̂ 2
S

(
ÛS

)N
|ψi⟩ − ⟨ψi|

(
Û†
S

)N
V̂S

(
ÛS

)N
|ψi⟩2

]
,

which equals ∆V̄ 2
S

∣∣
ρ̂
(N)
f

in Eq. (S10).
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Consequently, our scheme strictly complies with the average uncertainty constraint with respect to the operator
V̂S throughout the metrological process. Notably, the ITD generating process we utilized does not incur additional
resource costs in the probe state compared to the standard quantum metrological scheme.

Supplementary Note 3: Calculating experimental precision and RMSE

In this section, we utilize the classical Fisher information (CFI) to determine the theoretical precision limits of
our experimental setup, as illustrated in Eq. (11) and Eq. (14) of the main text. Subsequently, we present the
optimal estimator for the unknown parameter g in our experiments, along with the methodology for calculating their
root-mean-square error (RMSE).

First, based on the classical estimation theory, the CFI for the unknown parameter g with respect to the measure-
ment probabilities {Pi|

∑
i Pi = 1} can be calculated by

F (g) =
∑
i

1

Pi

(
∂Pi

∂g

)2

. (S11)

Substituting P+ and P− from Eq. (10) into Eq. (S11), we can calculate the CFI for the parameter g with respect
to various time lengths T of a single-shot evolution, which comprises a ITD generating process and a parameterizing
process, in our experiments as

F (g) = T 4 4 cos2
(
2gT 2

)
1− sin2 (2gT 2)

= 4T 4.

Then drawing on the classical Cramér-Rao bound theory, the precision limit of estimating the parameter g in the
experiments can be obtained as

δgexp ≥ 1√
νF (g)

=
1

2
√
νT 2

,

where ν is the number of measured photons.

Next, by substituting P
(N)
+ and P

(N)
− from Eq. (13) into Eq. (S11), we can calculate the CFI for the parameter g

(which equals the rotation angle α in this setting) with respect to various numbers N of sequential evolutions in our
experiments as

F (α) = (N2 +N)2
cos2

[
(N2 +N)2α

]
1− sin2 [(N2 +N)2α]

= (N2 +N)2.

Then, drawing on the classical Cramér-Rao bound theory, the precision limit of estimating the parameter g in the
experiments can be obtained as

δg(N)
exp = δα ≥ 1√

νF (α)
=

1√
ν(N2 +N)

.

In the experiments, the estimated value g̃ of the parameter g can be obtained from the detected photons number
ν̃+ under the projection Π̂+ and the detected photons number ν̃− under the projection Π̂−. To derive the expression
of the estimator g̃ from the measurement results ν̃+ and ν̃−, we first calculate the log-likelihood function for the
unknown parameter g as

ℓ(g|{ν̃+, ν̃−}) = ln

P0

∏
i=+,−

P ν̃i
i


= lnP0 +

∑
i=+,−

ν̃iPi,

where

lnP0 =
(
∑

i ν̃i)!∏
i ν̃i!

,
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accounts for all possible permutations. Then, by solving the likelihood equation

∂

∂g
ℓ(g|{ν̃+, ν̃−}) = 0,

we can obtain the estimated value g̃ from measured data ν̃+ and ν̃−. The RMSE of estimating the parameter g in
the experiments can be calculated from

RMSE(g) =

√
1

M

∑
i

(
g̃(i) − g0

)
,

where g0 is the true value of parameter g we set in the experiments, M is the number of the measurements repeated
(which is 30 in our experiments), and g̃(i) is the estimated value of i-th measurement.

Furthermore, by substituting P+ and P− from Eq. (10) into the likelihood equation, we can calculate the estimator
of the parameter g with respect to various time lengths T of a single-shot evolution, which comprises a ITD generating
process and a parameterizing process, in our experiments as

g̃exp =
1

2T 2
arcsin

(
ν̃+ − ν̃−
ν̃+ + ν̃−

)
.

Next, by substituting P
(N)
+ and P

(N)
− from Eq. (13) into the likelihood equation, we can calculate the estimator of

the parameter g (which equals the rotation angle α in this setting) with respect to various numbers N of sequential
evolutions in our experiments as

g̃(N)
exp = α̃exp =

1

N2 +N
arcsin

(
ν̃+ − ν̃−
ν̃+ + ν̃−

)
.

Algorithm 1: Calculation of coincidence counts

/* Assume that SPD A detects the herald photons and SPD B detects the signal photons. For a

single-photon pair, the herald photon should be detected by SPD A before the signal photon is

detected by SPD B. */

Input: Timestamps from SPD A and SPD B: TA =
{
t
(A)
1 , t

(A)
2 , · · · , t(A)

m

}
, TB =

{
t
(B)
1 , t

(B)
2 , · · · , t(B)

n

}
.

Output: Coincidence counts C = {c1, c2, · · · , ck} between SPD A and SPD B; Corresponding delay times
T = {t1, t2, · · · , tk} of signal photons.

Initialize T ; /* The step size is set to 5 ps and the span ranges from 1 ns to 50 ns in our experiments. */

Initialize C ; /* The values of coincidence counts are all set to 0. */

Define TI =
{
t
(I)
1 , t

(I)
2 , · · · , t(I)n

}
; /* TI is the set of the time intervals between every detected

single-photon pair. */

Set w ; /* w is the gate width for coincidence counting, which is set to 2 ns in our experiments. */

/* Search the time intervals between every detected single-photon pair. */

for i← 1 to n do
for j ← 1 to m do

if t
(B)
i − t

(A)
j > 0 then

t
(I)
i ← t

(B)
i − t

(A)
j

else
Break to the outter for loop

end

end

end

/* Calculate the coincidence counts with different delay times in T */

for i← 1 to k do
for j ← 1 to n do

if t
(I)
j > ti − w/2 and t

(I)
j < ti + w/2 then

ci = ci + 1
end

end

end
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Supplementary Note 4: Algorithm of calculating coincidence counts

In our experiments, we recorded the timestamps of the detected photons for each single-photon detector (SPD) using
the Moku:Pro device provided by Liquid Instruments, which offers a time jitter of less than 20 ps. We supplemented
the original timestamp data detected by the three SPDs with eight individual files. These files correspond to an
evolution time length T of 1, 2, 3, and 4 for a single-shot evolution (N = 1), and an iteration numbers N of 1, 2,
3, and 4 for a normalized time length (T = 1), respectively. Each file contains three columns of timestamp data,
corresponding to the timestamps of pulse signals outputted by SPD 1, SPD 2, and SPD 3, respectively. Subsequently,
we calculated the coincidence counts between SPD 2 and SPD 1, as well as between SPD 3 and SPD 1, using the
timestamp data in each file.

In this work, we developed an algorithm for calculating the coincidence counts between the timestamp data of two
different SPDs. This algorithm searches the time intervals between every detected single-photon pair and then deter-
mines the coincidence counts with various delay times of the signal photons. This method offers lower computational
complexity and reduced computation time compared to the traditional approach of shifting the timestamps of signal
photons to calculate the coincidence counts. The detailed algorithm is presented in Algorithm 1.

Based on this algorithm, we calculated the coincidence counts between SPD 2 and SPD 1, as well as between SPD
3 and SPD 1, with varying delay times of the signal photons. In our calculations, the delay times range from 1ns
to 50 ns, with a step size of 5 ps. Considering the time jitter in SPDs, the gate width for coincidence counting in
our calculations is set to 2 ns. Subsequently, the number of detected photons, ν̃+, under the projection Π̂+ and the
number of detected photons, ν̃−, under the projection Π̂− can be determined from the peak values of the coincidence
counts between SPD 2 and SPD 1, and between SPD 3 and SPD 1, respectively.

In our experiments, we recorded the event timestamps from SPD 1, SPD 2, and SPD 3 over a duration of 30 s
for each set of T and N . The data were then divided into 600 groups, with each group representing the timestamps
of photon counts within 50ms. For each set of T and N , we calculated the coincidence counts for these 600 groups
between SPD 2 and SPD 1, and between SPD 3 and SPD 1, using a sampling time length of 50ms.

The results are provided in eight individual files, corresponding to an evolution time length T of 1, 2, 3, and 4 for a
single-shot evolution (N = 1), and iteration numbers N of 1, 2, 3, and 4 for a normalized time length (T = 1). In each
file, data labeled as ’Time’ represents the delay time axis, data labeled as ’CoinCount1’ represents the coincidence
counts between SPD 2 and SPD 1 for the 600 groups, and data labeled as ’CoinCount2’ represents the coincidence
counts between SPD 3 and SPD 1 for the 600 groups.

Figure S1. Experimental results of coincidence counts with different evolution time length T of the ITD generating
process and the parameterizing process and iteration number N of the identical evolution. The blue curves represent
the coincidence counts C+ between SPD 2 and SPD 1, i.e., the detected results under the projection Π̂+, and the
orange curves represent the coincidence counts C− between SPD 3 and SPD 1, i.e., the detected results under the

projection Π̂−.
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As shown in Figure S1, we present the experimental results of coincidence counts between SPD 2 and SPD 1, and
between SPD 3 and SPD 1, for various sets of T and N . These results are averaged over the corresponding 600
groups, where the blue curves represent the coincidence counts C+ between SPD 2 and SPD 1, and the orange curves
represent the coincidence counts C− between SPD 3 and SPD 1. The peak values in each curve are marked, which
determine the number of detected photons ν̃+ under the projection Π̂+ and the number of detected photons ν̃−
under the projection Π̂− for each set of T and N , respectively.


