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[bookmark: _Toc1411279142][bookmark: _Toc1985754192][bookmark: _Toc1973393757][bookmark: _Toc1202069655]A. Research Hypotheses
[bookmark: _Toc1806024256][bookmark: _Toc527346917][bookmark: _Toc411658479][bookmark: _Toc1091429631]A.1 Air quality information triggers travel avoidance behaviours
Environmental information disclosure is a fundamental measure of environmental governance. The disclosure of air quality information alleviates the gap between public perception and actual levels of air pollution1. For instance, particulate matter (PM) causes visible haze and respiratory discomfort, making it perceptible, whereas harmful gases, such as CO and NO2, are not easily detected by the public. Thus, air quality information disclosure helps the public make optimal behavioural decisions. Consequently, governments worldwide have adopted various measures, such as air pollution alerts, to disclose air pollution information to the public.
As part of the war against pollution, China has implemented an air quality monitoring program and has been disclosing air quality information since 2013. This air quality monitoring program deploys a nationwide network of monitoring equipment and provides a real-time Air Quality Index (AQI) to the public2. The AQI is a comprehensive index that represents the overall level of air pollution, based on which air quality can be divided into six different levels. Moreover, the program provides information on corresponding health hazards and recommended actions for each air quality category (Table B2).  
Air quality information can raise awareness and willingness for self-protection3 and behavioural changes4. Air quality alerts, such as smog alerts, reduce outdoor activities and time spent outdoors5,6. In our context, the change in air quality is information that the public can easily notice. There is a dramatic change in the air quality category and health risks perceived by the public, on different sides of the cutoff, although air pollution changes slightly. For example, when the AQI is 99, the air quality level is “Good” and only a very small minority of exceptionally sensitive individuals are recommended to reduce outdoor activities. However, when the AQI reaches 101, the air quality level becomes “Lightly Polluted”. A broader group, including children, the elderly, and individuals with heart or respiratory diseases, is advised to reduce prolonged and high-intensity outdoor exercises, as shown in Table B2. Consequently, air quality could significantly trigger avoidance behaviours, including travel. Therefore, we propose the following hypothesis:
Hypothesis 1: Air pollution information triggers travel avoidance behaviours.
[bookmark: _Toc1315803894][bookmark: _Toc1699229566][bookmark: _Toc454622850][bookmark: _Toc1999979190]A.2 Unequal impact of air quality information
Although high AQI levels significantly increase people’s precaution intentions7-9, avoidance behaviours may differ based on income. Triggering avoidance behaviours using information may require both avoidance awareness and capability. Varying levels of environmental and health concerns contribute to awareness disparities between income groups. Compared to low-income individuals, high-income individuals tend to be more concerned about the environment10,11, have greater awareness of air pollution indicators12, and possess higher health protection consciousness13. Thus, high-income individuals are more likely to develop avoidance awareness related to varying air quality information.
Furthermore, financial constraints create avoidance capability disparities between income groups. To mitigate health damage in response to worsening air pollution, people may choose to migrate14, increase short-distance travel15,16, purchase air purifiers17, buy insurance18, and reduce labour supply19. However, engaging in these avoidance behaviours requires sufficient economic resources, providing high-income individuals a clear advantage. Thus, high-income individuals are likely to have greater avoidance capabilities than low-income ones, leading to more pronounced travel avoidance behaviours. 
People’s responses to air pollution information depend on a combination of their priorities regarding air pollution and health and their utility maximisation after considering the costs and benefits. Therefore, we propose the following hypotheses:
Hypothesis 2: Air pollution information affects avoidance behaviours more significantly in the high-income group than in the low-income group. 
Hypothesis 3: This disparity arises because high-income individuals have greater avoidance awareness and capability than low-income individuals.



[bookmark: _Toc2076933299][bookmark: _Toc99423924][bookmark: _Toc1236203486][bookmark: _Toc1713777956]B. China’s air quality monitoring program and the AQI
In 2013, China implemented an air quality monitoring program. The primary objective of this initiative is to establish air quality monitoring stations nationwide, enabling real-time air quality monitoring and providing the public with updated information. To support the implementation of the program, the Ministry of Ecology and Environment (formerly the Ministry of Environmental Protection) issued two foundational documents: Ambient Air Quality Standards (GB 3095-2012)20 and Technical Regulation on Ambient Air Quality Index (on trial) (HJ 633-2012)21. These documents provide detailed guidelines on pollutant indicators, monitoring methods, and AQI grading and serve as the cornerstone of air quality monitoring initiatives.
This study focuses on the AQI. According to the Technical Regulation on Ambient Air Quality Index (on trial) (HJ 633-2012)21, the AQI is calculated by evaluating six key dimensions: SO2, NO2, CO, O3, PM10, and PM2.5. The AQI is determined by first calculating the Individual Air Quality Index () for each pollutant based on its concentration and then identifying the maximum  among these pollutants. 
IAQI levels and the corresponding pollutant concentration limits are presented in Table B1.  is calculated as follows:
	  	 (S1)
where  is the IAQI of pollutant P;  is the mass concentration value of pollutant P;  is the high value of the concentration limits of pollutants, corresponding to  in Table B1;  is the low value of the low-concentration limit of pollutants, corresponding to  in Table B1;  is the IAQI corresponding to  in Table B1; and  is the IAQI corresponding to  in Table B1.
As previously mentioned, the AQI is defined as the maximum  among these pollutants. After calculating the AQI, it is categorised into six levels based on thresholds of 50, 100, 150, 200, and 300: Excellent, Good, Lightly Polluted, Moderately Polluted, Heavily Polluted, and Severely Polluted. Each level is accompanied by specific action recommendations, as shown in Table B2.

Table B1 Classification of Individual Air Quality Index (IAQI)
	IAQI
	SO2 24-hour average / (μg/m3)
	SO2 one-hour average / (μg/m3)a
	NO2 24-hour average / (μg/m3)
	NO2 one-hour average / (μg/m3)a
	PM1024-hour average / (μg/m3)
	CO 24-hour average / (mg/m3)
	CO one-hour average / (mg/m3)a
	O3 one-hour average / (μg/m3)
	O3 eight-hour average / (μg/m3)
	PM2.5 24-hour average / (μg/m3)

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	50
	50
	150
	40
	100
	50
	2
	5
	160
	100
	35

	100
	150
	500
	80
	200
	150
	4
	10
	200
	160
	75

	150
	475
	650
	180
	700
	250
	14
	35
	300
	215
	115

	200
	800
	800
	280
	1200
	350
	24
	60
	400
	265
	150

	300
	1600
	b
	565
	2340
	420
	36
	90
	800
	800
	250

	400
	2100
	b
	750
	3090
	500
	48
	120
	1000
	c
	350

	500
	2620
	b
	940
	3840
	600
	60
	150
	1200
	c
	500


a One-hour average concentration limits for SO2, NO2, and CO are used in hourly reports only; 24-hour average concentration limits for the corresponding pollutants are used in daily reports.
b If the one-hour average concentration of SO2 is higher than 800μg/m3, then IAQI of SO2 one-hour average is not calculated. IAQI of SO2 is reported based on the 24-hour average concentration.
c If the eight-hour average concentration of O3 is higher than 800 μg/m3, then IAQI of O3 eight-hour average is not calculated. IAQI of O3 is reported based on the one-hour average concentration.

Table B2 Air Quality Index (AQI) and related information
	AQI
	AQI levels
	AQI categories and colours
	Health effect
	Recommended activities

	0–50
	One
	Excellent
	Green
	The air quality is satisfactory, with minimal air pollution.

	All people can engage in regular activities without restriction.

	51–100
	Two
	Good
	Yellow
	The air quality is acceptable; however, certain pollutants may have a slight impact on the health of a small group of exceptionally sensitive individuals.
	A small group of exceptionally sensitive individuals should reduce outdoor activities.

	101–150
	Three
	Lightly Polluted
	Orange
	Symptoms in sensitive individuals may worsen slightly, and healthy individuals may experience mild irritation symptoms.
	Children, older individuals, and individuals with heart or respiratory system diseases should reduce prolonged and high-intensity outdoor exercises.

	151–200
	Four
	Moderately Polluted
	Red
	Further exacerbation of symptoms in sensitive individuals is possible, with potential effects on the cardiovascular and respiratory systems of healthy individuals.
	Children, older individuals, and individuals with heart or respiratory system diseases should avoid prolonged and high-intensity outdoor exercises, and the general population should moderately reduce outdoor activities.

	201–300
	Five
	Heavily Polluted
	Purple
	Symptoms in individuals with heart and lung diseases are significantly exacerbated, including reduced exercise tolerance, and symptoms are prevalent among the general population.
	Children, older individuals, and individuals with heart or lung conditions should remain indoors and refrain from outdoor activities. The general population should reduce outdoor activities.

	>300
	Six
	Severely Polluted
	Maroon
	Healthy individuals experience reduced exercise tolerance and exhibit noticeable and intense symptoms, predisposing them to the early onset of certain diseases.
	Children, older individuals, and individuals with illnesses should stay indoors to avoid physical exertion, while the general population should refrain from outdoor activities.




[bookmark: _Toc275613302][bookmark: _Toc1818757955][bookmark: _Toc1415432928][bookmark: _Toc2115188124]C. Data characteristics 
[bookmark: _Toc110540135][bookmark: _Toc522507630][bookmark: _Toc582718287][bookmark: _Toc1504863077]C.1 Descriptive statistics
[bookmark: _Toc1220819289]Table C1 Descriptive statistics
	Variable
	N
	Mean
	Median
	SD
	Min
	Max

	AQI
	93777
	113.6
	84
	80.18
	31
	381

	Travel dummy (0/1)
	93777
	0.820
	1
	0.390
	0
	1

	Duration (minutes)
	76453
	88.47
	70
	67.92
	2
	1020

	Discretionary trip (0/1)
	93777
	0.810
	1
	0.390
	0
	1

	Commuting trip (0/1)
	93777
	0.430
	0
	0.500
	0
	1

	High-exposure trip (0/1)
	76453
	0.570
	1
	0.490
	0
	1

	Incomea
	93777
	2.150
	2
	1.130
	1
	8

	Male (0/1)
	93777
	0.480
	0
	0.500
	0
	1

	Work_School (0/1)
	93777
	0.560
	1
	0.500
	0
	1

	Age
	93777
	46.95
	48
	18.06
	6
	121b


[bookmark: _GoBack]a Income is categorised into eight levels: [0,50), [50,100), [100, 150), [150, 200), [200, 250), [250, 300), [300, 500), [500, ∞) (in thousand yuan). 
b Individuals aged ≥ 100 years accounts for 0.016% of our sample. According to the 2020 Population Census of the People’s Republic of China, individuals aged ≥ 100 years account for 0.01% of the total population in China. The similarity between these two proportions alleviates concerns regarding outliers.





[bookmark: _Toc1251026785][bookmark: _Toc274694290][bookmark: _Toc1318824420][bookmark: _Toc725104827]C.2 Sample distribution characteristics
The subsample sizes for each survey day are shown in Fig. C1. Moreover, the AQI data near the cutoffs of 200 and 300 are relatively sparse, which may compromise the reliability of the RD analysis. Consequently, our analysis focuses on cutoffs at AQI levels of 50, 100, and 150.
[image: ]
Fig. C1: Sample distribution histogram based on survey date.




[bookmark: _Toc1303306253][bookmark: _Toc2014614311][bookmark: _Toc1844574627][bookmark: _Toc2142271365]D. Robustness tests
We conduct a series of robustness tests to address potential concerns regarding the baseline regression results using the RD method. RD design validity relies on the assumption that individuals whose running variable values are in the left bin of the cutoff and those whose running variable values are in the right bin are comparable. This assumption cannot be tested directly. However, if this assumption holds, we would expect the pre-determined covariates of the two groups to have no difference, and the distribution of observations would be smooth across the cutoff. Therefore, we first validate the RD design by examining the characteristics of the covariates. Second, we examine the distribution of the AQI to ensure a lack of manipulation above or below the cutoff value. Finally, as the running variable is discrete, we use a local randomization approach to verify the robustness of the baseline regression results.

[bookmark: _Toc248062728][bookmark: _Toc444005953][bookmark: _Toc691827897][bookmark: _Toc334994771]D.1 Covariate balance test
For the balance test, we compare the covariates of observations just below and above the cutoff. We replace the dependent variable in the baseline regression with the covariates indicating gender (Male), age (Age), and whether the respondent is working or attending school (Work_School) and re-estimated Eq. (1) - (3) in the Main Text. As shown in Table D1, the results reveal no significant changes in the cutoffs and the estimates are small in magnitude. This suggests that travel avoidance behaviours are not driven by other factors.


Table D1 Covariate characteristics at cutoffs
	Regression
	(1)
	(2)
	(3)

	Variables
	Male
	Age
	Work_School

	
	
	
	

	Cutoff = 50
	0.0214
	2.116
	-0.194

	
	(0.0802)
	(2.988)
	(0.120)

	Cutoff = 100
	-0.0223
	-2.025
	-0.0606

	
	(0.0602)
	(3.016)
	(0.0681)

	Cutoff = 150
	-0.00294
	-1.431
	0.0200

	
	(0.0276)
	(1.030)
	(0.0279)

	COV
	No
	No
	No

	Observations
	
	
	

	Cutoff = 50
	11577
	11577
	10940

	Cutoff = 100
	19000
	5609
	15101

	Cutoff = 150
	20222
	16323
	16323

	Bandwidth
	
	
	

	Cutoff = 50
	7.76
	7.37
	5.84

	Cutoff = 100
	12.03
	7.33
	9.51

	Cutoff = 150
	39.31
	35.56
	37.88


* p < 0.1; ** p < 0.05; *** p < 0.01.
The results are obtained using a regression-discontinuity design with multiple cutoffs proposed by Cattaneo et al.23. Coefficients are estimated at three cutoffs. COV indicates whether covariates (Male, Age, and Work_School) are included; observations represent the sample size for the local regression analysis around each cutoff; and bandwidth denotes the window size on the left and right sides of the cutoff, determined using the optimal mean squared error method, with equal bandwidths selected for both sides. 



As shown in Figure D1, no significant changes are observed in the covariates when the cutoffs are crossed.
A[image: ]B[image: ]C[image: ]
Fig. D1: Covariates distribution: A Male, B Age, C Work_School. We plot the distributions and fitted lines of the covariates corresponding to the driving variable. Specifically, we retain samples with AQI < 200 and assign each of them to the closest cutoff . Subsequently, we calculate the standardised driving variable (AQI-) and use it as the horizontal axis. Circles represent the mean values of the covariates within each bin of the standardised driving variables. Lines represent fourth-order polynomial fits. 

[bookmark: _Toc924510669][bookmark: _Toc1075000021][bookmark: _Toc1702477410][bookmark: _Toc2049862393]D.2 Manipulation test
Manipulation test reveals whether individuals can manipulate their running variables to control their treatment status. If they can, the treatment status cannot be considered to be as good as random, and the RD results cannot be considered valid. In our sample, individuals can not perform this manipulation because they can not decide on which day they are interviewed in the Beijing Urban Transportation Comprehensive Survey. 
To provide empirical evidence, we conduct a manipulation test for the AQI on the survey days. As shown in Figure D2, no discontinuity is observed in the distribution of the AQI around the cutoff value.

[image: ][image: ][image: ]
Fig. D2: Manipulation test: standardised driving variable distribution. We treat each survey day as an observation. We retain samples with AQI < 200 and assign them to the closest cutoff . Subsequently, we calculate the standardised driving variable  and use it as the horizontal axis. Finally, we plot the density estimates and their confidence intervals around the cutoff using local polynomial density estimators.

[bookmark: _Toc465717242][bookmark: _Toc1206627838][bookmark: _Toc745430736][bookmark: _Toc2104573977]D.3 Local randomization approach to RD analysis
As individuals in the sample are interviewed over 47 survey days in the same city, our sample has 47 AQI values, resulting in “mass points”22. When the distribution of the running variable is discrete with few mass points, a continuity-based RD design may introduce a bias because the conventional continuity-based approach approximates the regression function at the cutoff by using observations near it. However, this method introduces an extrapolation error that diminishes only if the sample size is sufficiently large. Therefore, this method might be inadequate when the sample size is small.
To address this concern, we follow Cattaneo et al.22 and use a local randomization approach as an alternative. Instead of assuming that the unknown regression functions are continuous at the cutoff, the local randomization approach assumes the existence of a small window around the cutoff; for all units whose scores fall in that window, placement above or below the cutoff is assigned randomly. This approach offers an advantage by minimising extrapolation and avoiding the use of smoothing methods. Local randomization is often an effective alternative when running variable is discrete. Moreover, this approach generally does not require window selection, as the smallest window is well defined and typically has sufficient observations. Therefore, we select the nearest AQI values on each side of the cutoff as the endpoints of the window for the local randomization estimation.
The results are shown in Table D2, Column 1 presents the effect of air quality information on travel probability, and Column 2 presents the effect on travel duration. When air pollution levels shift from good to lightly polluted, probability of choosing to travel decreases by 12.1% (p < 5%). When air pollution levels shift from lightly polluted to moderately polluted, the probability of choosing to travel decreases by 6.4% (p < 1%). These results are statistically and economically similar to the baseline results. However, travel duration is not influenced by air quality information under the local randomization framework. Therefore, interpreting the impact on travel duration requires additional caution.



Table D2 Local randomization analysis with discrete scores
	Regression
	(1)
	(2)

	Variables
	Travel dummy
	Duration

	Diff. in means
	
	

	Cutoff = 50
	0.005
	 -6.594

	Cutoff = 100
	 -0.121
	-8.060

	Cutoff = 150
	-0.064
	-4.134

	P (Finite sample)
	
	

	Cutoff = 50
	1.000
	0.403

	Cutoff = 100
	0.018
	0.397

	Cutoff = 150
	0.000
	0.215

	P (Large sample)
	
	

	Cutoff = 50
	0.912
	0.420

	Cutoff = 100
	0.034
	0.391

	Cutoff = 150
	0.000
	0.219

	Kernel
	uniform
	uniform

	Eff. Observations
	
	

	Cutoff = 50
	10779
	8850

	Cutoff = 100
	400
	342

	Cutoff = 150
	2330
	1902

	Window
	
	

	Cutoff = 50
	[-2,1]
	[-2,1]

	Cutoff = 100
	[-2,2]
	[-2,2]

	Cutoff = 150
	[-9,5]
	[-9,5]


The results are obtained using the local randomization approach proposed by Cattaneo et al.22. Diff. in means presents the estimated coefficients. P indicates the estimated p-value. We select the nearest AQI values on each side of the cutoff as the endpoints of the window for local randomization estimation. 



[bookmark: _Toc1105994645][bookmark: _Toc34783354][bookmark: _Toc1879276626][bookmark: _Toc371681702]E. Regression results
Table E1 Heterogeneous effects of air quality information on travel behaviours  by income group
	Regression
	(1)
	(2)
	(3)
	(4)

	Variables
	Travel dummy
	Duration

	
	Low Income
	High Income
	Low Income
	High Income

	Cutoff = 50
	0.137
	0.0614
	2.787
	-25.94

	
	(0.0929)
	(0.120)
	(14.65)
	(30.69)

	Cutoff = 100
	0.0725
	-0.179***
	-18.07
	-24.86**

	
	(0.0509)
	(0.0669)
	(18.39)
	(12.47)

	Cutoff = 150
	-0.0605**
	-0.0958***
	2.725
	-2.484

	
	(0.0252)
	(0.0349)
	(4.037)
	(7.383)

	COV
	Yes
	Yes
	Yes
	Yes

	Observations
	
	
	
	

	Cutoff = 50
	8555
	3021
	6925
	2547

	Cutoff = 100
	4082
	1527
	3326
	3985

	Cutoff = 150
	11904
	4419
	20788
	3678

	[lh, rh]
	
	
	
	

	Cutoff = 50
	6.28
	6.46
	7.74
	6.33

	Cutoff = 100
	6.40
	6.71
	6.15
	13.20

	Cutoff = 150
	32.44
	32.93
	53.61
	37.87


* p < 0.1; ** p < 0.05; *** p < 0.01.
The results are obtained using a regression-discontinuity design with multiple cutoffs proposed by Cattaneo et al.23. Coefficients are estimated at three cutoffs. COV indicates whether covariates (Male, Age, and Work_School) are included; observations represent the sample size for the local regression analysis around each cutoff; and bandwidth denotes the window size on the left and right sides of the cutoff, determined using the optimal mean squared error method, with equal bandwidths selected for both sides. Columns (1) and (2) present the effect of air quality information on travel probability for the low- and high-income groups, and Columns (3) and (4) present the effect of air quality information on travel duration for the low- and high-income groups. The results indicate that the high-income group exhibites stronger reductions in both travel probability and duration than the low-income group under poor air quality information.



Table E2 Differences in avoidance awareness by income group
	Regression
	(1)
	(2)

	Variables
	Discretionary trip

	
	Low Income
	High Income

	Cutoff = 50
	0.149
	0.0744

	
	(0.0928)
	(0.120)

	Cutoff = 100
	0.0791
	-0.188***

	
	(0.0497)
	(0.0674)

	Cutoff = 150
	-0.0676***
	-0.0974***

	
	(0.0258)
	(0.0356)

	COV
	Yes
	Yes

	Observations
	
	

	Cutoff = 50
	8555
	3021

	Cutoff = 100
	4082
	1527

	Cutoff = 150
	11904
	4419

	Bandwidth
	
	

	Cutoff = 50
	6.22
	6.44

	Cutoff = 100
	6.41
	6.51

	Cutoff = 150
	31.23
	32.23


* p < 0.1; ** p < 0.05; *** p < 0.01.
The results are obtained using a regression-discontinuity design with multiple cutoffs proposed by Cattaneo et al.23. Coefficients are estimated at three cutoffs. COV indicates whether covariates (Male, Age, and Work_School) are included; observations represent the sample size for the local regression analysis around each cutoff; and bandwidth denotes the window size on the left and right sides of the cutoff, determined using the optimal mean squared error method, with equal bandwidths selected for both sides. Columns (1) and (2) present the effect of air quality information on discretionary trips among the low- and high-income groups, respectively. The results indicate that poor air quality information reduces discretionary trips among both high- and low-income groups, with a greater effect in the high-income group.



Table E3 Differences in avoidance capability by income group
	Regression
	(3)
	(4)
	(1)
	(2)

	Variables
	Commuting trip
	High-exposure trip

	
	Low Income
	High Income
	Low Income
	High Income

	Cutoff = 50
	0.0202
	-0.278**
	-0.0154
	0.312

	
	(0.0493)
	(0.122)
	(0.108)
	(0.203)

	Cutoff = 100
	0.0847
	-0.155***
	-0.615***
	0.154

	
	(0.124)
	(0.0561)
	(0.191)
	(0.101)

	Cutoff = 150
	-0.0117
	-0.0111
	-0.724***
	-0.0716

	
	(0.0234)
	(0.0351)
	(0.131)
	(0.0516)

	COV
	Yes
	Yes
	Yes
	Yes

	Observations
	
	
	
	

	Cutoff = 50
	8647
	3021
	6943
	2345

	Cutoff = 100
	4082
	5729
	2639
	3126

	Cutoff = 150
	11904
	5437
	5531
	3678

	Bandwidth
	
	
	
	

	Cutoff = 50
	9.58
	6.78
	8.14
	5.35

	Cutoff = 100
	6.45
	17.66
	4.51
	10.87

	Cutoff = 150
	37.66
	40.10
	22.04
	38.17


* p < 0.1; ** p < 0.05; *** p < 0.01.
The results are obtained using a regression-discontinuity design with multiple cutoffs proposed by Cattaneo et al.23. Coefficients are estimated at three cutoffs. COV indicates whether covariates (Male, Age, and Work_School) are included; observations represent the sample size for the local regression analysis around each cutoff; and bandwidth denotes the window size on the left and right sides of the cutoff, determined using the optimal mean squared error method, with equal bandwidths selected for both sides. Columns (1) and (2) present the effect of air quality information on commuting trips for the low- and high-income groups, and Columns (3) and (4) present the effect of air quality information on high-exposure trips for the low- and high-income groups. The results indicate that poor air quality information reduces commuting trips in the high-income group but has no significant effect on the low-income group. Moreover, poor air quality information reduces high-exposure trips in the low-income group but has no significant effect on the high-income group.


[bookmark: _Toc1960256753][bookmark: _Toc1981033730][bookmark: _Toc1971920038][bookmark: _Toc488278694]F. Source of Data on Dissemination of Air Quality Information to the Public
https://www.gov.cn/gzdt/2013-01/26/content_2320174.htm
[image: ]
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