

1 Supporting Information for

2 **Aerosol trends dominate over global warming-induced cloud feedback in**
3 **driving recent changes in marine low clouds**

4 **Yang Cao^{1,2,†}, Hao Wang^{1,2,†}, Yannian Zhu^{1,2,*}, Minghuai Wang^{1,2*}, Daniel**
5 **Rosenfeld^{1,3}, Chen Zhou^{1,2}, Zhonghua Zheng⁴, Hugh Coe⁴, David Topping⁴, Jihu**
6 **Liu^{1,2}, Kang-En Huang^{1,2}, Yuan Liang⁵, Haipeng Zhang^{6,7}, Heming Bai⁸, Man Yue⁹**

7 ¹School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China

8 ²Joint International Research Laboratory of Atmospheric and Earth System Sciences &
9 Institute for Climate and Global Change Research, Nanjing University, China

10 ³Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904,
11 Israel

12 ⁴Department of Earth and Environmental Sciences, The University of Manchester,
13 Manchester M13 9PL, UK

14 ⁵TianJi Weather Science and Technology Company, Beijing, China

15 ⁶Department of Atmospheric and Oceanic Science, University of Maryland, College
16 Park, MD, USA

17 ⁷Earth System Science Interdisciplinary Center, University of Maryland, College Park,
18 MD, USA

19 ⁸Research Center for Intelligent Information Technology, Nantong University, China

20 ⁹Zhejiang Institute of Meteorological Sciences, Hangzhou, China

21

22 Corresponding author: Yannian Zhu (yannian.zhu@nju.edu.cn) and Minghuai Wang (minghua.i.wang@nju.edu.cn). [†]These authors contributed equally to this work.

24

25

26 **Contents of this file**

27

28 Text S1.

29

Figures S1-S8.

30

31

32

33

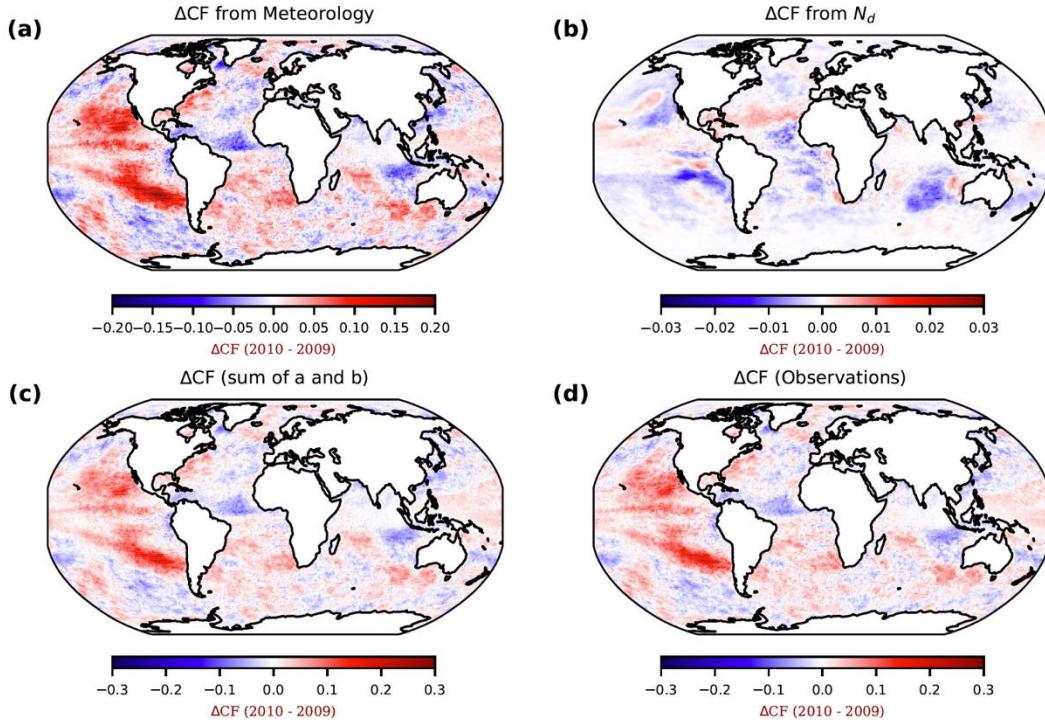
34 Text S1.

35 We estimated the contributions of ACI and cloud feedback to CRE trends through their
36 impacts on cloud fraction and albedo based on the sensitivities of cloud properties to N_d
37 and SST. The sensitivity of low-cloud properties to N_d was estimated using the deep
38 learning model combined with a parameter perturbation method, as derived from our
39 previous work (Cao et al., 2025, submitted). In contrast, the sensitivity of low-cloud
40 properties to SST was calculated using a linear regression approach (Figure S5). The
41 respective contributions of CF cloud albedo to CRE changes were then determined based
42 on their relative proportions of CF and cloud albedo susceptibility to N_d /SST.

43

44

45



46

47

48 **Figure S1.** $\text{CNN}_{\text{Met-Nd}}$ separates the impacts of ENSO-related changes and N_d variations on CF.
 49 Panels (a) and (b) illustrate the contributions of meteorological factors and $\ln(N_d)$ to CF,
 50 respectively. Panel (c) shows the combined effect, representing the sum of panels (a) and (b). Panel
 51 (d) depicts the observed difference in low-cloud CF between 2010 and 2009.

52

53

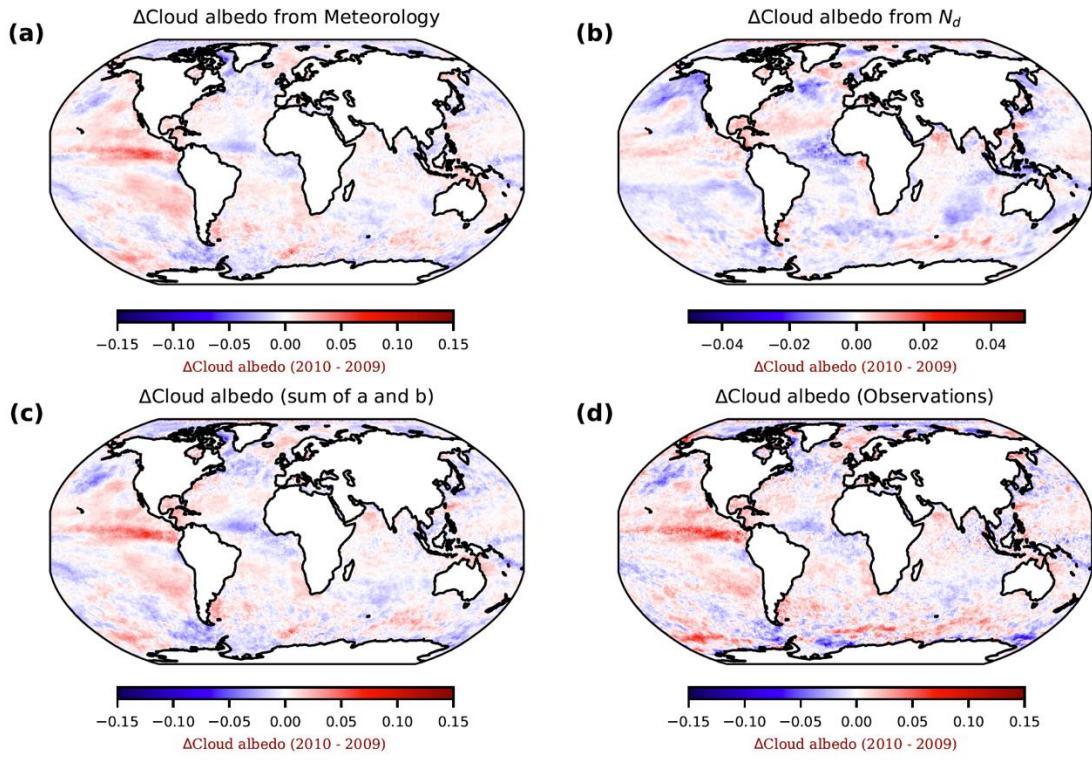
54

55

56

57

58

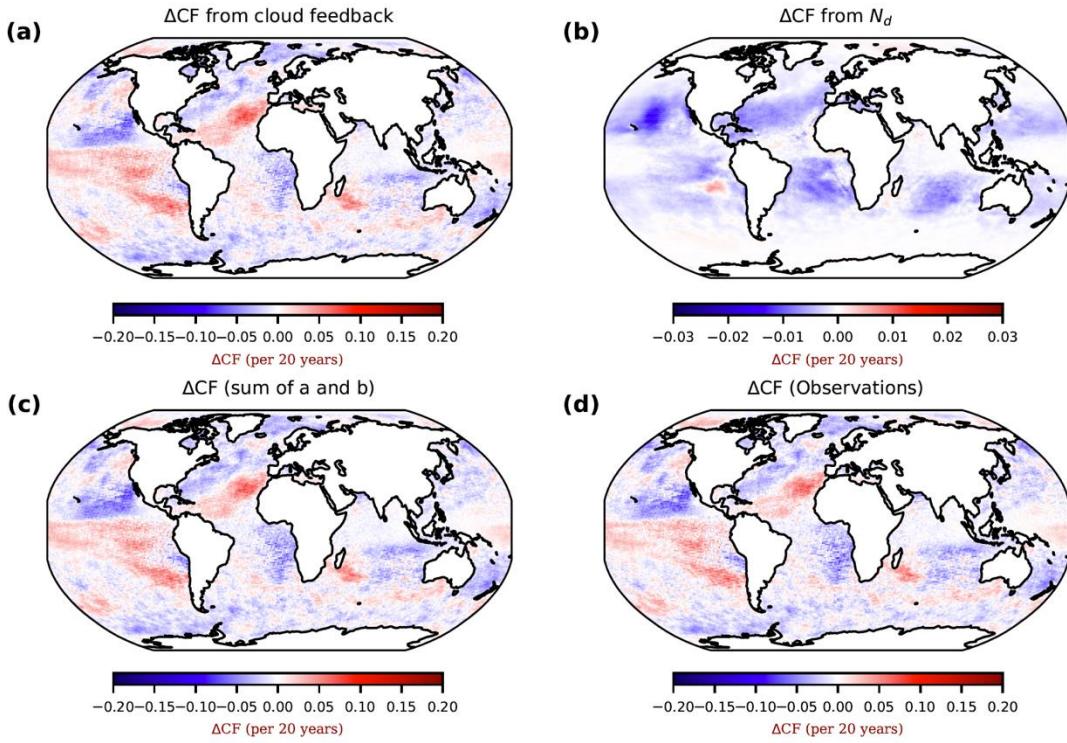


59

60 **Figure S2.** $\text{CNN}_{\text{Met-Nd}}$ separates the impacts of ENSO-related changes and N_d variations on cloud
 61 albedo. Panels (a) and (b) illustrate the contributions of meteorological factors and $\ln(N_d)$ to cloud
 62 albedo, respectively. Panel (c) shows the combined effect, representing the sum of panels (a) and
 63 (b). Panel (d) depicts the observed difference in low-cloud cloud albedo between 2010 and 2009.

64

65



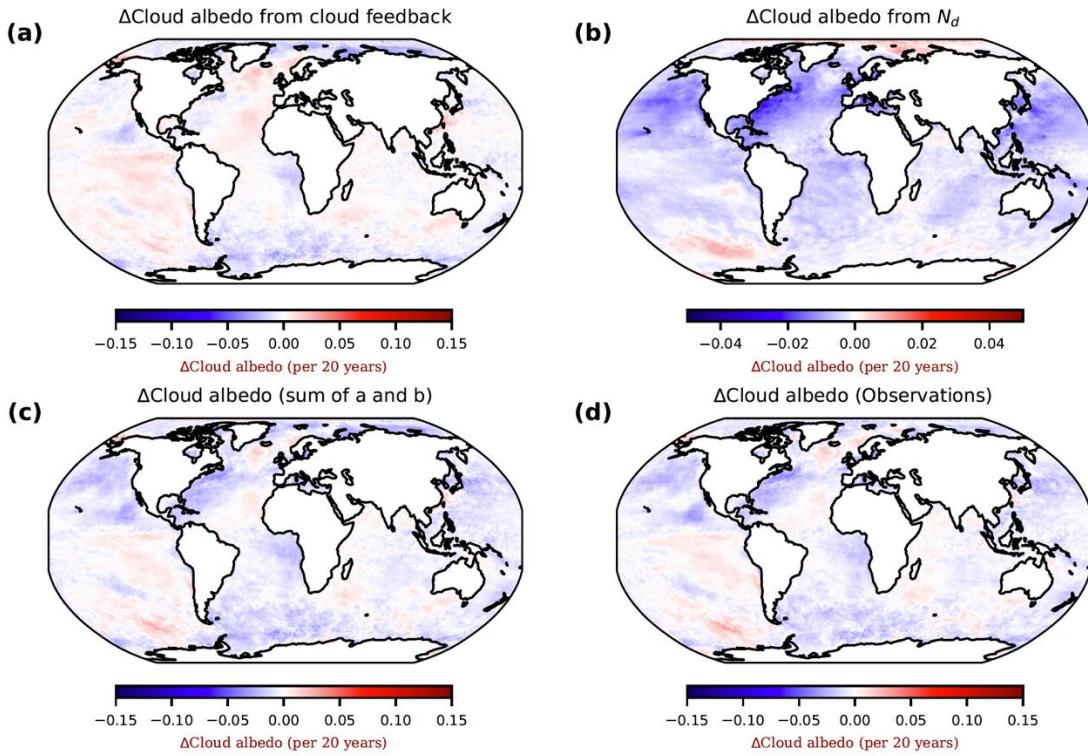
66

67

68 **Figure S3.** Spatial distribution of the effects of cloud feedback and aerosol-cloud interactions (ACI,
69 through N_d) on CF trend changes from 2003 to 2022, as derived from the deep learning approach.
70 Panels (a) and (b) illustrate the contributions of cloud feedback and ACI to changes in low-cloud
71 CF. Panel (c) shows the combined effect, calculated as the sum of panels (a) and (b). Panel (d)
72 presents the observed trend in CF based on CERES data for 2003–2022.

73

74



75

76 **Figure S4.** Spatial distribution of the effects of cloud feedback and ACI (through N_d) on cloud
77 albedo trend changes from 2003 to 2022, as derived from the deep learning approach. Panels (a)
78 and (b) illustrate the contributions of cloud feedback and ACI to changes in cloud albedo. Panel (c)
79 shows the combined effect, calculated as the sum of panels (a) and (b). Panel (d) presents the
80 observed trend in cloud albedo based on CERES data for 2003–2022.

81

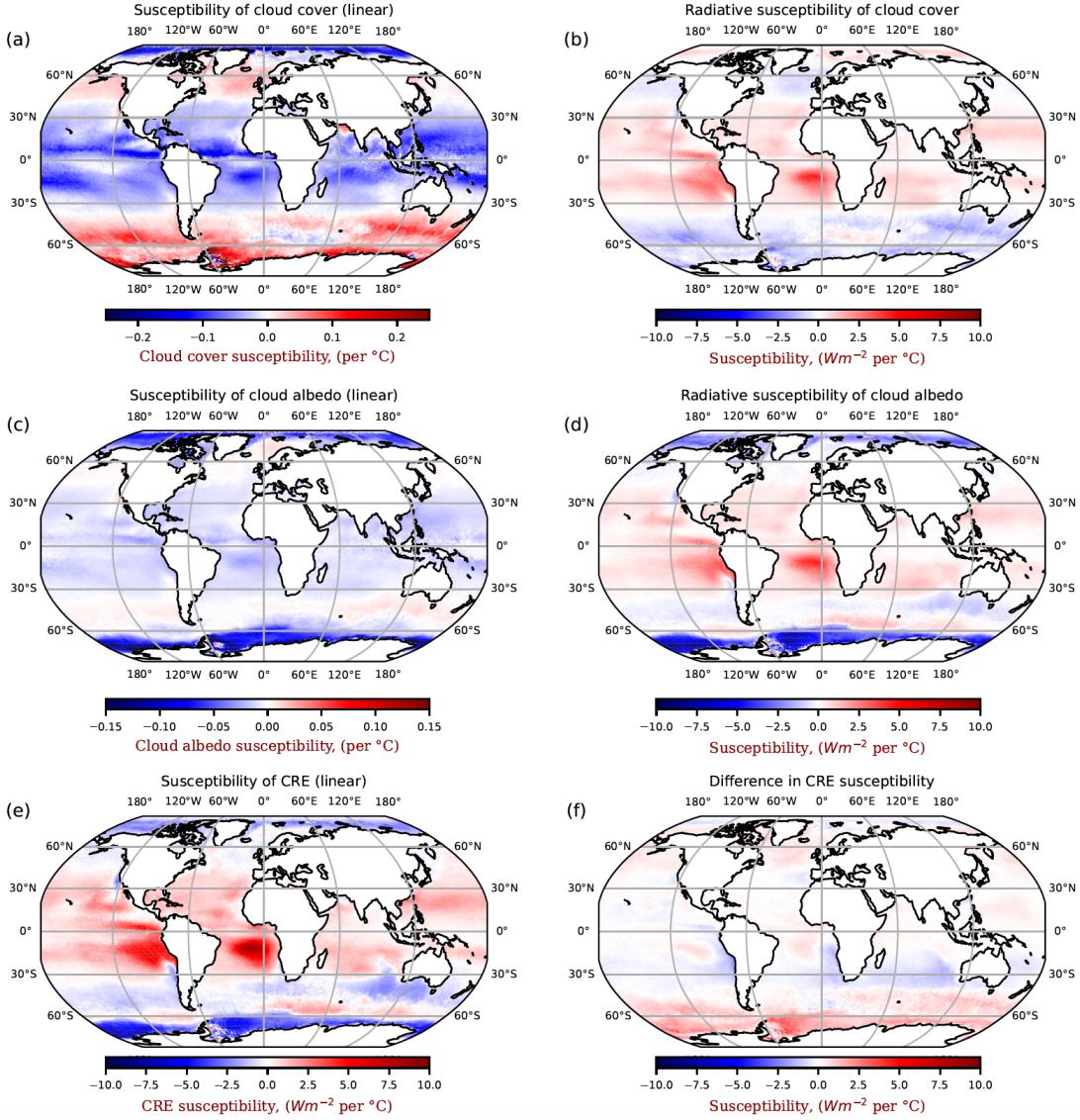
82

83

84

85

86



87

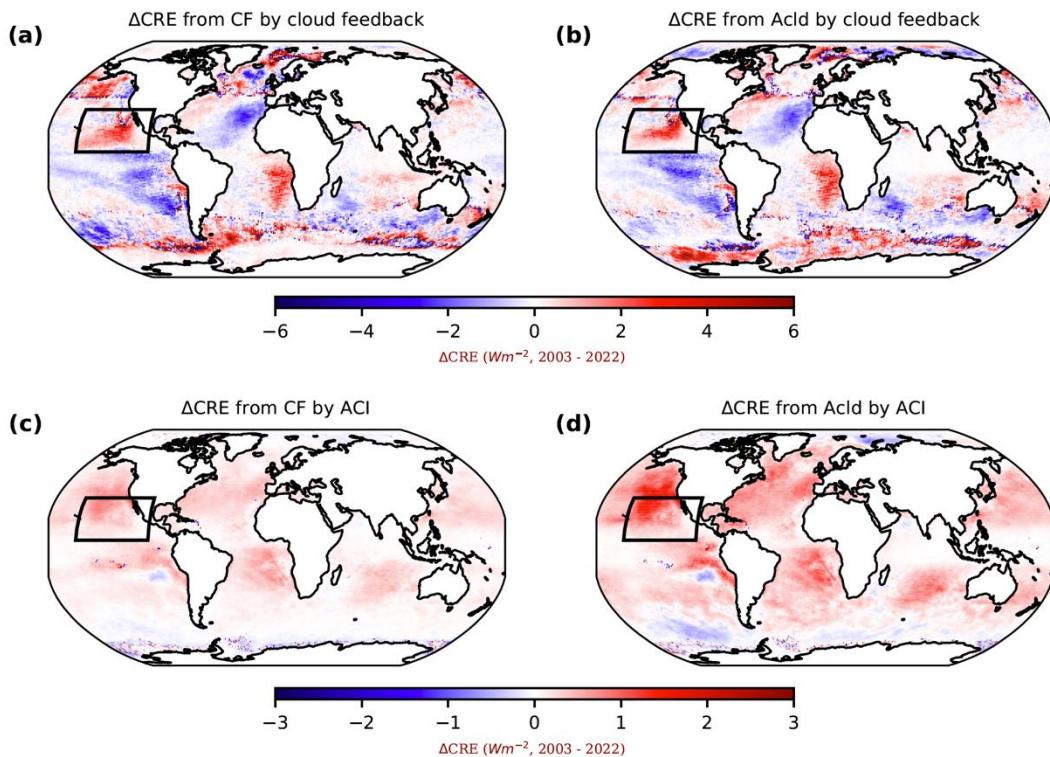
88 **Figure S5.** Spatial distribution of decomposed cloud susceptibility to SST. Panel (a) illustrates
 89 cloud cover (CC) susceptibility to SST, denoted as $\frac{\partial CC}{\partial SST}$. Panel (b) presents the radiative
 90 susceptibility of cloud cover to SST, expressed as $\overline{(A_{clr} - A_{clu})} \left(\frac{\partial CC}{\partial SST} \right) F^\downarrow$. A_{clr} is the clear-sky
 91 albedo and F^\downarrow is the incoming solar radiation. Panel (c) displays cloud albedo (A_{clu})
 92 susceptibility to SST, indicated by $\frac{\partial A_{clu}}{\partial SST}$. Panel (d) shows the radiative susceptibility of cloud albedo
 93 to SST, represented as $\overline{CC} \left(\frac{\partial A_{clr}}{\partial SST} - \frac{\partial A_{clu}}{\partial SST} \right) F^\downarrow$. Panel (e) depicts the CRE susceptibility to SST,
 94 denoted by $\frac{\partial CRE}{\partial SST}$. Finally, panel (f) illustrates the difference in CRE susceptibility to SST,
 95 calculated as the sum of panels (b) and (d) minus panel (e). The scale factor for each grid is derived
 96 by dividing Figures S6b and S6d by their sum.

97

98

99

100

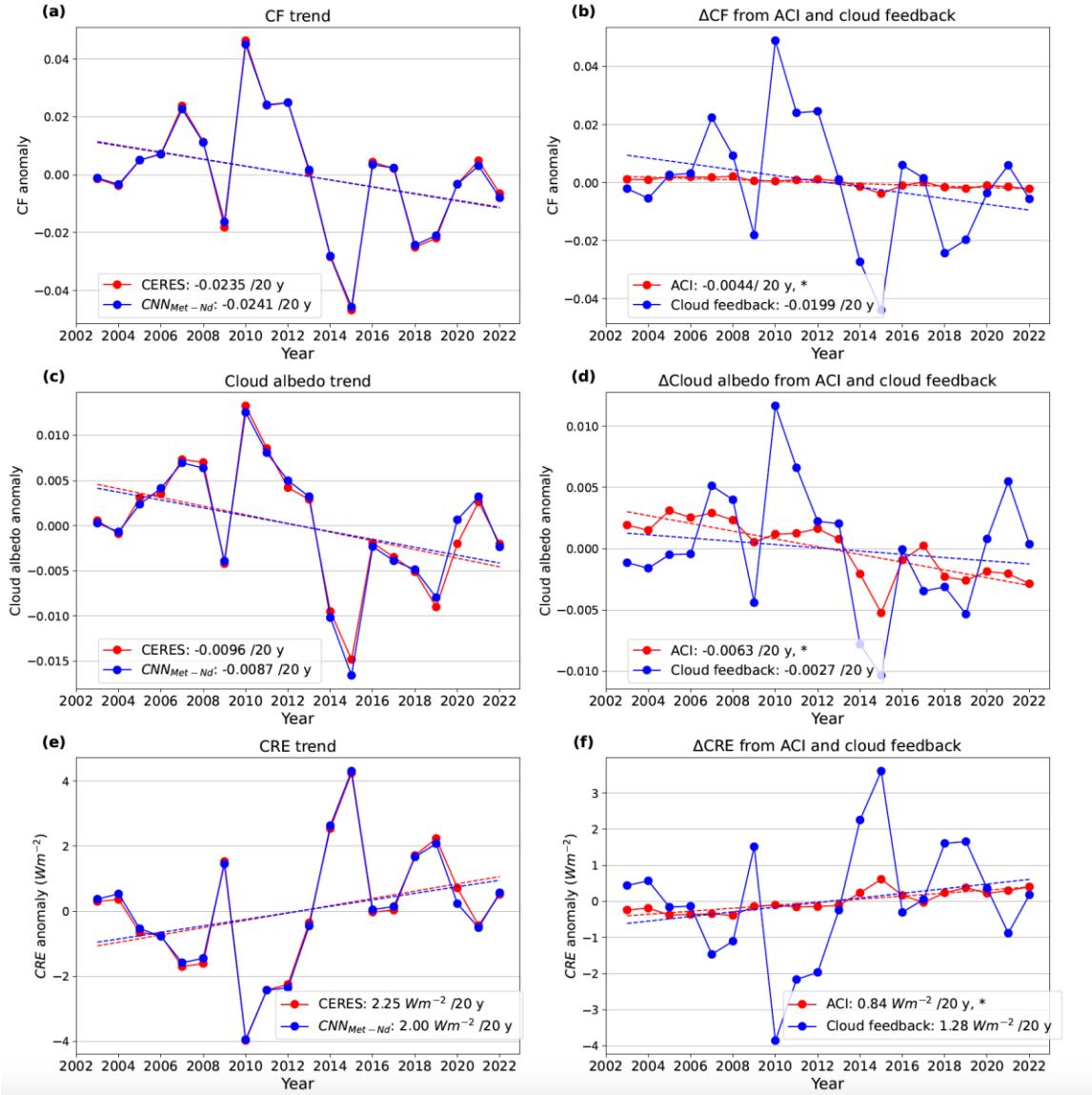


101

102 **Figure S6.** The spatial distribution of ΔCRE from 2003 to 2022 due to CF and cloud albedo (Acld)
 103 influenced by cloud feedback and ACI. Panels a and b illustrate the ΔCRE driven by cloud
 104 feedback, which affect both CF and Acld. In contrast, panels c and d present the ΔCRE induced by
 105 ACI, achieved by adjusting CF and Acld.

106

107



108

109

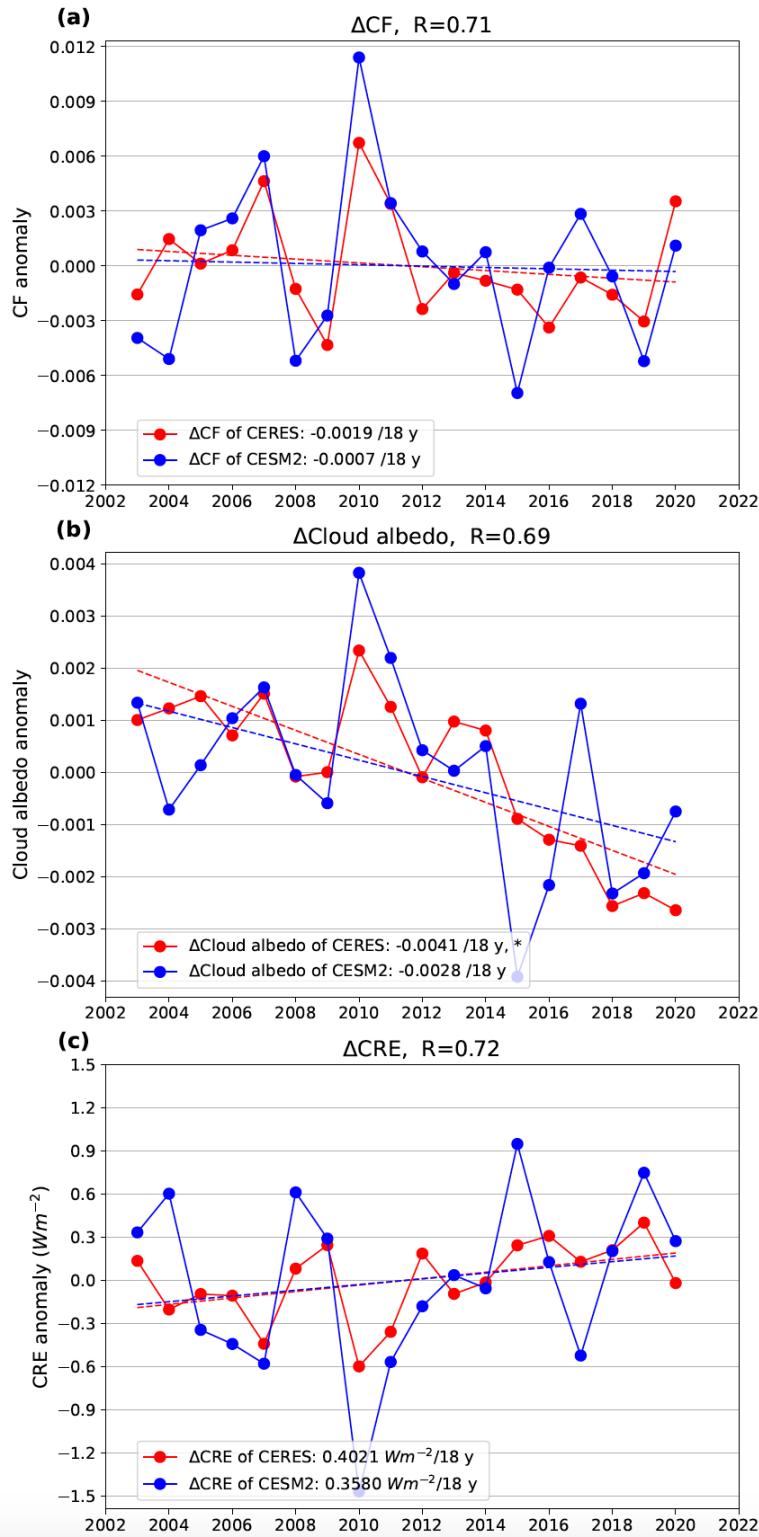
110

111

112

113

Figure S7. Time series of annual mean properties of marine low clouds from observations and predictions over the Northeastern Pacific (Figure S6). The left column represents cloud properties from observations and predictions of the deep learning model. The right column represents cloud changes induced by N_d and meteorology.



114

115 **Figure S8.** Time series of observed and simulated cloud properties from CERES and CESM2 for
 116 the period 2003–2020. An asterisk in the legend denotes results that meet the 95% significance
 117 level. The correlation coefficient (R) quantifies the relationship between the red and blue lines.

118

119 Reference

120 Cao et al., Quantifying Nonlinear Cloud Susceptibility and Radiative Forcing from Aerosol-Cloud
121 Interactions Using Deep Learning.
122