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Text S1.

We estimated the contributions of ACI and cloud feedback to CRE trends through their
impacts on cloud fraction and albedo based on the sensitivities of cloud properties to Nd
and SST. The sensitivity of low-cloud properties to Nd was estimated using the deep
learning model combined with a parameter perturbation method, as derived from our
previous work (Cao et al., 2025, submitted). In contrast, the sensitivity of low-cloud
properties to SST was calculated using a linear regression approach (Figure S5). The
respective contributions of CF cloud albedo to CRE changes were then determined based

on their relative proportions of CF and cloud albedo susceptibility to Na/SST.
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Figure S1. CNNwetng Separates the impacts of ENSO-related changes and Ng variations on CF.
Panels (a) and (b) illustrate the contributions of meteorological factors and In(Ng) to CF,
respectively. Panel (c) shows the combined effect, representing the sum of panels (a) and (b). Panel
(d) depicts the observed difference in low-cloud CF between 2010 and 2009.
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Figure S2. CNNwmet.ng Separates the impacts of ENSO-related changes and Ngq variations on cloud
albedo. Panels (a) and (b) illustrate the contributions of meteorological factors and In(Ng) to cloud
albedo, respectively. Panel (c) shows the combined effect, representing the sum of panels (a) and
(b). Panel (d) depicts the observed difference in low-cloud cloud albedo between 2010 and 2009.
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ACF from cloud feedback
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Figure S3. Spatial distribution of the effects of cloud feedback and aerosol-cloud interactions (ACI,
through Ng) on CF trend changes from 2003 to 2022, as derived from the deep learning approach.
Panels (a) and (b) illustrate the contributions of cloud feedback and ACI to changes in low-cloud
CF. Panel (c) shows the combined effect, calculated as the sum of panels (a) and (b). Panel (d)
presents the observed trend in CF based on CERES data for 2003-2022.
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Figure S4. Spatial distribution of the effects of cloud feedback and ACI (through Ng) on cloud
albedo trend changes from 2003 to 2022, as derived from the deep learning approach. Panels (a)
and (b) illustrate the contributions of cloud feedback and ACI to changes in cloud albedo. Panel (c)
shows the combined effect, calculated as the sum of panels (a) and (b). Panel (d) presents the
observed trend in cloud albedo based on CERES data for 2003-2022.
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Figure S5. Spatial distribution of decomposed cloud susceptibility to SST. Panel (a) illustrates

cloud cover (CC) susceptibility to SST, denoted as aas%' Panel (b) presents the radiative
susceptibility of cloud cover to SST, expressed as (A — Acld)(ads%)ﬁ. Aclr is the clear-sky

albedo and F' is the incoming solar radiation. Panel (c) displays cloud albedo (Acld)

susceptibility to SST, indicated by %. Panel (d) shows the radiative susceptibility of cloud albedo

-~ (dA dA
to SST, represented as CC (—C’T _ %4cid
dSST  ASST
0CRE

denoted by 35T Finally, panel (f) illustrates the difference in CRE susceptibility to SST,

calculated as the sum of panels (b) and (d) minus panel (e). The scale factor for each grid is derived
by dividing Figures S6b and Séd by their sum.

)ﬁ. Panel (e) depicts the CRE susceptibility to SST,
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ACRE from CF by cloud feedback
(a) : - (b)
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ACRE (Wm~2, 2003 - 2022)

Figure S6. The spatial distribution of ACRE from 2003 to 2022 due to CF and cloud albedo (Acld)
influenced by cloud feedback and ACI. Panels a and b illustrate the ACRE driven by cloud
feedback, which affect both CF and Acld. In contrast, panels ¢ and d present the ACRE induced by
ACI, achieved by adjusting CF and Acld.
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109  Figure S7. Time series of annual mean properties of marine low clouds from observations and
110  predictions over the Northeastern Pacific (Figure S6). The left column represents cloud properties
111  from observations and predictions of the deep learning model. The right column represents cloud
112 changes induced by N4 and meteorology.
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114

115  Figure S8. Time series of observed and simulated cloud properties from CERES and CESM2 for
116  the period 2003-2020. An asterisk in the legend denotes results that meet the 95% significance
117  level. The correlation coefficient (R) quantifies the relationship between the red and blue lines.
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