

Supplementary Information for

Strong four-phonon interactions in α -GeTe

3 Yongheng Li¹, Bin Wei^{1,8}, Xinyue Zhang³, Qi Ren¹, Chao Yang^{1,9}, Ziyan Gao¹, Xueyun
4 Wang¹, Feihao Pan^{4,5}, Jinchen Wang^{4,5}, Kazuya Kamazawa⁶, Mitsutaka Nakamura⁷,
5 Wei Luo^{10,11}, Yanzhong Pei^{3*}, Jiawang Hong^{1,2*}

6 Affiliations

7 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081,
8 China

9 2. Beijing Institute of Technology, Zhuhai Beijing Institute of Technology(BIT),
10 Zhuhai 519088, China

11 3. Interdisciplinary Materials Research Center, School of Materials Science and
12 Engineering, Tongji University, Shanghai, China

13 4. Beijing Key Laboratory of Optoelectronic Functional Materials and MicroNano
14 Devices, School of Physics, Renmin University of China, Beijing 100872, China

15 Key Laboratory of Quantum State Construction and Manipulation (Ministry of
16 Education), Renmin University of China, Beijing, 100872, China

17 6. Neutron Science and Technology Center, Comprehensive Research Organisation for
18 Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan

19 7. Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan

20 8. Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials
21 Science and Engineering, Henan Polytechnic University, Jiaozuo, China

22 9. College of physics and electronic information engineering, Guilin University of
23 Technology, Guilin, 541008, China

24 10. Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing
25 100049, China

26 11. Spallation Neutron Source Science Center, Dongguan 523803, China

*corresponding author(s): yanzhong@tongji.edu.cn; hongjw@bit.edu.cn

29 **Supplementary Note 1: Phonon self-energy and spectral function**

30 The line shape including the four-phonon interaction are based the low-order
 31 perturbations. The phonon shift and phonon linewidth in phonon self-energy [Eq. (2)]
 32 can be described as below:^{1,2}

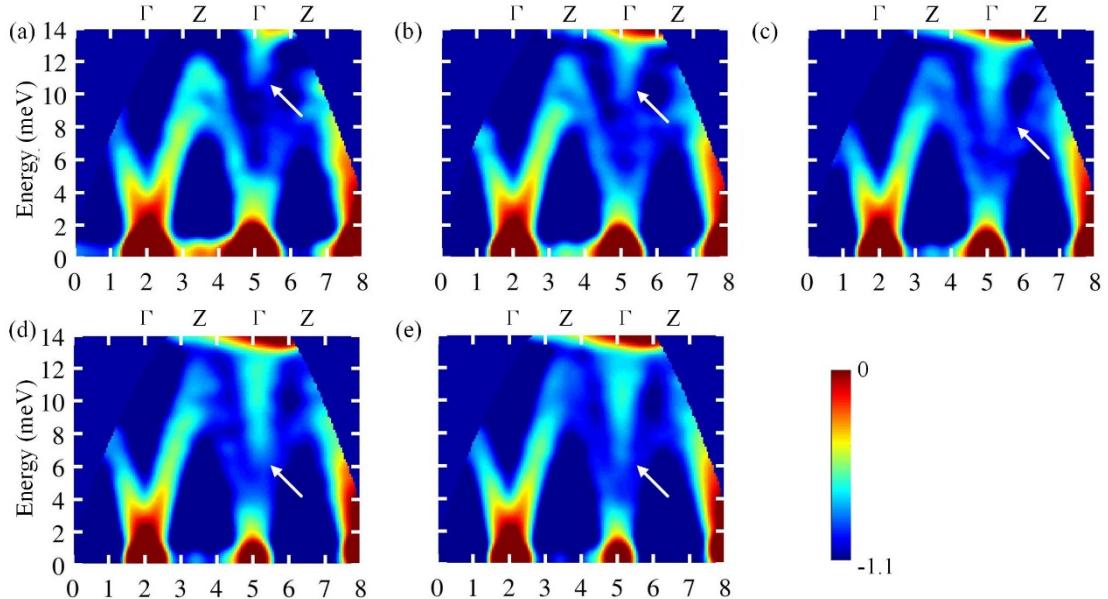
$$\Delta_{\vec{q},s}^{(1)}(\Omega) = \frac{24}{\hbar} \sum_{\vec{q}_1, s_1} V_4(\vec{q}, s; -\vec{q}, s; \vec{q}_1, s_1; -\vec{q}_1, s_1) \left(n_1 + \frac{1}{2} \right) \\ - \frac{18}{\hbar} \sum_{\vec{q}_1, s_1} \sum_{\vec{q}_2, s_2} \left| V_3(\vec{q}, s; \vec{q}_1, s_1; \vec{q}_2, s_2) \right|^2 \\ \times \mathcal{P} \left(\frac{n_1 + n_2 + 1}{\omega + \omega_1 + \omega_2} - \frac{n_1 + n_2 + 1}{\omega - \omega_1 - \omega_2} + \frac{n_1 - n_2}{\omega - \omega_1 + \omega_2} - \frac{n_1 - n_2}{\omega + \omega_1 + \omega_2} \right) \quad (S1)$$

$$\Gamma_{\vec{q},s}^{(1)}(\Omega) = \frac{18\pi}{\hbar^2} \sum_{\vec{q}_1, s_1} \sum_{\vec{q}_2, s_2} \left| V_3(\vec{q}, s; \vec{q}_1, s_1; \vec{q}_2, s_2) \right|^2 \\ \times \left\{ (n_1 + n_2 + 1) [\delta(\Omega - \omega_1 - \omega_2) - \delta(\Omega + \omega_1 + \omega_2)] \right. \\ \left. + (n_1 - n_2) [\delta(\Omega + \omega_1 - \omega_2) - \delta(\Omega - \omega_1 + \omega_2)] \right\} \\ + \Gamma_{\text{iso}}(\omega) \quad (S2)$$

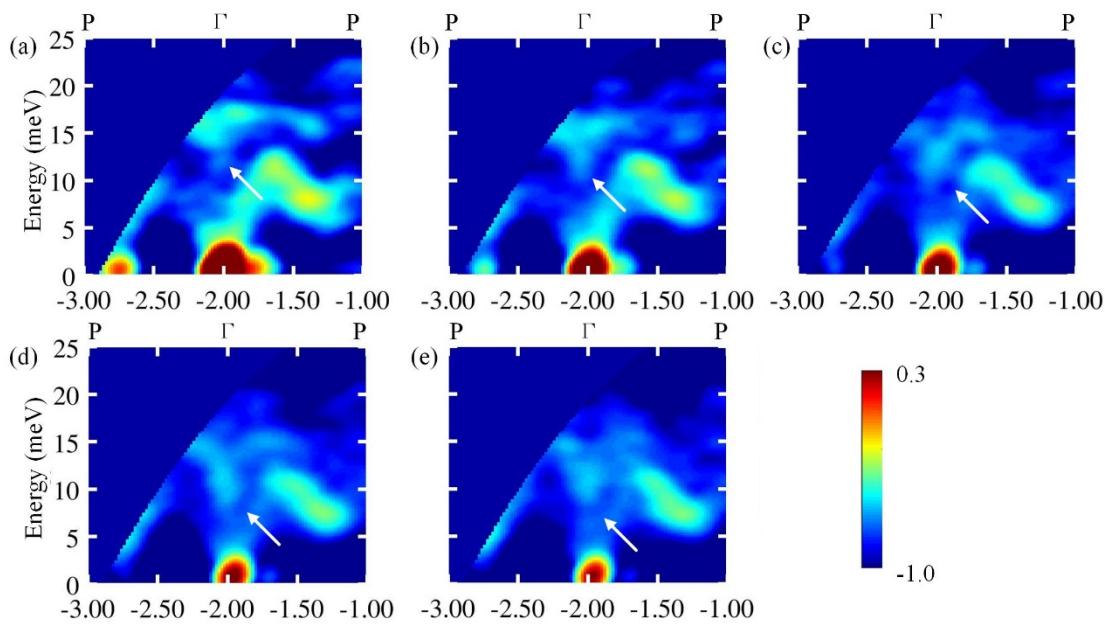
$$\Delta_{\vec{q},s}^{(2)}(\Omega) = -\frac{96}{\hbar^2} \sum_{\vec{q}_1, s_1} \sum_{\vec{q}_2, s_2} \sum_{\vec{q}_3, s_3} \left| V_4(\vec{q}, s; \vec{q}_1, s_1; \vec{q}_2, s_2; \vec{q}_3, s_3) \right|^2 \\ \times \mathcal{P} \left\{ \left[(n_1 + 1)(n_2 + 1)(n_3 + 1) - n_1 n_2 n_3 \right] \times \left(\frac{1}{\Omega + \omega_1 + \omega_2 + \omega_3} - \frac{1}{\Omega - \omega_1 - \omega_2 - \omega_3} \right) \right. \\ \left. + 3 \left[n_1 (n_2 + 1)(n_3 + 1) - (n_1 + 1)n_2 n_3 \right] \times \left(\frac{1}{\Omega - \omega_1 + \omega_2 + \omega_3} - \frac{1}{\Omega + \omega_1 - \omega_2 - \omega_3} \right) \right\} \quad (S3)$$

$$-\frac{576}{\hbar^2} \sum_{\vec{q}_1, s_1} \sum_{\vec{q}_2, s_2} \sum_{\vec{q}_3, s_3} V_4(\vec{q}, s; -\vec{q}, -s; -\vec{q}_1, s_1; \vec{q}_1, s_2) V_4(\vec{q}_1, s_1; -\vec{q}_1, s_2; \vec{q}_3, s_3; -\vec{q}_3, s_3) \\ \times \mathcal{P} \left(\frac{n_1 + n_2 + 1}{\omega_1 + \omega_2} - \frac{n_1 - n_2}{\omega_1 - \omega_2} \right) \left(n_3 + \frac{1}{2} \right) \\ \Gamma_{\vec{q},s}^{(2)}(\Omega) = \frac{96}{\hbar^2} \sum_{\vec{q}_1, s_1} \sum_{\vec{q}_2, s_2} \sum_{\vec{q}_3, s_3} \left| V_4(\vec{q}, s; \vec{q}_1, s_1; \vec{q}_2, s_2; \vec{q}_3, s_3) \right|^2 \\ \times \left\{ \left[(n_1 + 1)(n_2 + 1)(n_3 + 1) - n_1 n_2 n_3 \right] \times [\delta(\Omega - \omega_1 - \omega_2 - \omega_3) - \delta(\Omega + \omega_1 + \omega_2 + \omega_3)] \right\} \\ + 3 \left[n_1 (n_2 + 1)(n_3 + 1) - (n_1 + 1)n_2 n_3 \right] \times [\delta(\Omega + \omega_1 - \omega_2 - \omega_3) - \delta(\Omega - \omega_1 + \omega_2 + \omega_3)] \quad (S4)$$

38 where V_3 and V_4 indicate scattering matrix related to cubic and quartic force constant,
39 respectively.³ Isotope scattering are taken in consideration as Γ_{iso} . δ - and \mathcal{P} in Eq.
40 S1-S4 are Dirac δ -function and the principal value, respectively. In numeral
41 calculation, Gaussian function is applied to describe the Dirac δ -function and
42 Kramers-Kronig (Hilbert) transformation to acquire $\Delta_{\vec{q},s}(\Omega)$. The n_i in Eq. S1-S4 are
43 Bose distribution of the s th band at \vec{q} phonon.

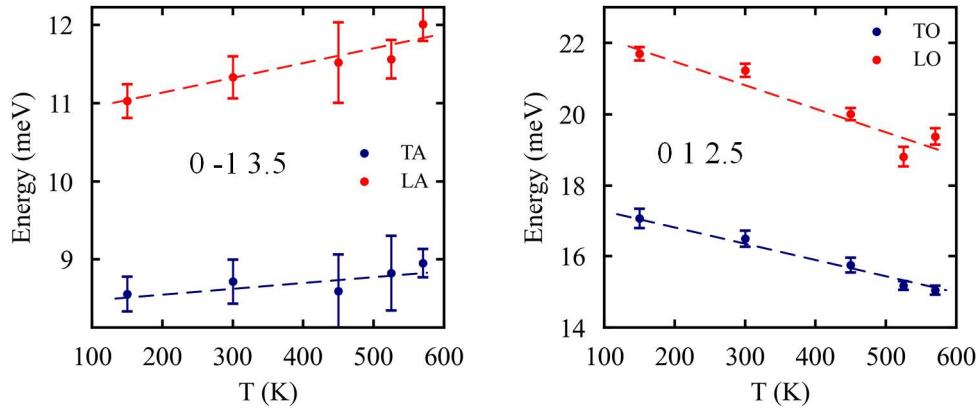

44 Considering the expensive computational resource required by four-phonon
45 interactions, the spectral function and self-energy were calculated with coarse
46 Monkhorst-Pack mesh-grid of $6 \times 6 \times 6$. The obvious difference of the calculated total
47 spectral function $S_{\vec{q},s}(\Omega)$ between considering $\Sigma_{\vec{q},s}^{(2)}(\Omega)$ and without considering
48 can be found in Fig. 1 and Fig. S4-S5. In addition, Fig. 1 and Fig. S4-S5 illustrate that
49 when considering $\Sigma_{\vec{q},s}^{(2)}(\Omega)$, which includes four-phonon scattering, the simulated
50 imaginary dynamical susceptibility χ'' intensity become more consistent with
51 experiment results. Figs. S6-S7 indicate the strong four-phonon interaction in boundary
52 TA and TO branches, where without considering $\Sigma_{\vec{q},s}^{(2)}(\Omega)$ cannot well describe the
53 temperature dependent linewidth extracted from INS experiment.

54


55 **Supplementary Note 2: Temperature dependent phonon dispersion from
56 inelastic neutron scattering experiment**

57 We extracted temperature dependent phonon dispersion of α -GeTe in different
58 Brillouin zones (BZs) as shown in Figs. S1-S2. In different BZs, the $\chi''(\mathbf{Q}, \Omega)$ intensity
59 of acoustic phonon bands will decrease obviously with increasing temperature. The
60 boundary acoustic phonons unexpected harden as shown in Fig. S3a. However, the
61 entire TO branch become obviously soft when temperature increase from 150K to 570K.
62 As shown in Fig. S3b, the extracted phonon shift of TO at $\mathbf{Q} = (0, 1, 2.5)$ also indicate
63 the boundary phonon soften about ~ 3 meV. Besides, TO at center of BZ dramatically
64 softening obviously in Figs. S1-S2, similar to water-fall phenomenon in PbTe. The tail

65 of TO, as pointed by rows, are also very arresting in different BZs, especially at high
 66 temperature. It may be related to strong phonon-phonon scattering as described in main
 67 text.

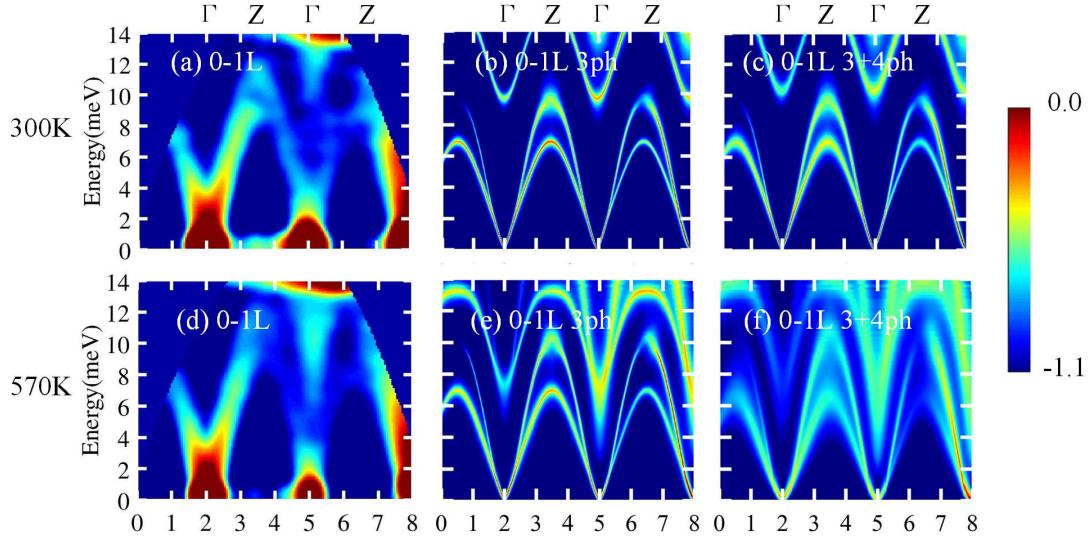


68
 69 **Figure S1** Temperature evolution of phonon dispersion $\chi''(\mathbf{Q}, \Omega)$ along [0-1L] direction
 70 on α -GeTe. Temperatures are 150K (a), 300K(b), 450K(c), 525K(d) and 570K(e).
 71 Intensities are integrated over ± 0.05 r.l.u. and plotted with \log_{10} scale.

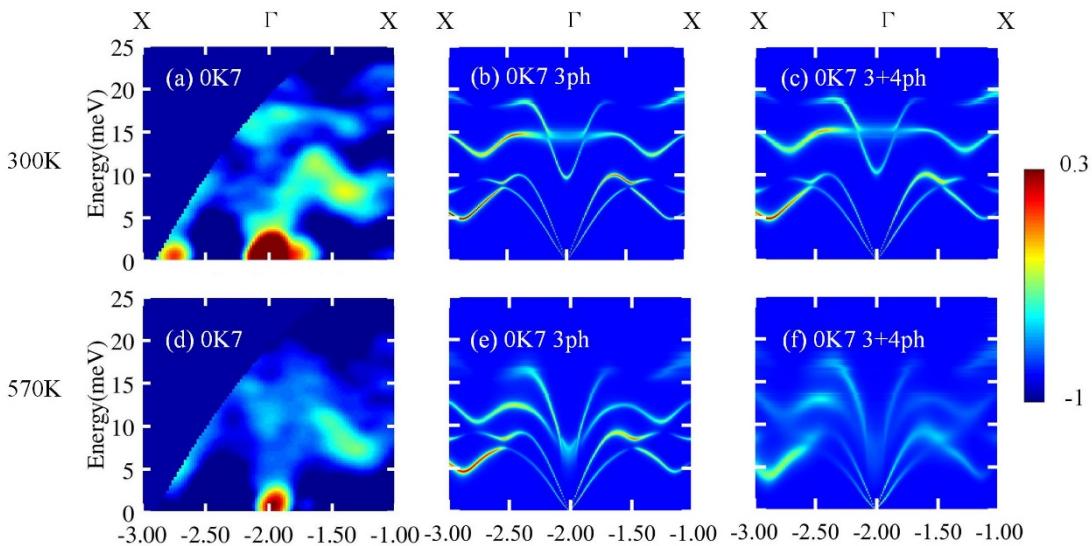
72

73 **Figure S2** Temperature evolution of phonon dispersion $\chi''(\mathbf{Q}, \Omega)$ along [0K7] direction
 74 on α -GeTe. Temperatures are 150K (a), 300K(b), 450K(c), 525K(d) and 570K(e).
 75 Intensities are integrated over ± 0.1 r.l.u. and plotted with \log_{10} scale.

76


77 **Figure S3** Temperature dependent boundary phonon shift at $\mathbf{Q} = (0, -1, 3.5)$ and $\mathbf{Q} = (0,$
 78 $1, 2.5)$

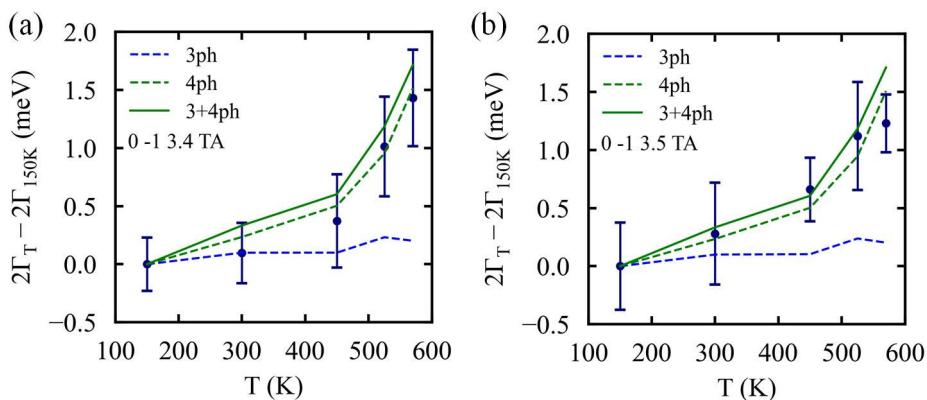
79


80 **Supplementary Note 3: Important four-phonon scattering role at high**
 81 **temperature in predicting $\chi_{\vec{q},j}^{''''}(\Omega)$**

82 As shown in Figs. S4-S5, the four-phonon scattering plays important role in predicting
 83 better $\chi_{\vec{q},j}^{''''}(\Omega)$, especially at high temperature. In different BZs, we can find four-
 84 phonon scattering can effectively decrease the intensity of $\chi_{\vec{q},j}^{''''}(\Omega)$, especially at high
 85 temperature. This is related to the much larger $\Gamma_{\vec{k},s}^{(2)}(\Omega)$ at high temperature, which is
 86 in the denominator and quadratic as equation (1) shows. This observation aligns with
 87 the intuitive expectation of broader linewidths upon considering four-phonon
 88 interaction. Moreover, the quantitative analysis presented in this study confirms a
 89 significant increase in phonon linewidths when four-phonon scattering is included,
 90 supporting this explanation. At high temperatures, the TO and boundary TA modes
 91 exhibit noticeably broader linewidths, while their phonon energy shifts remain

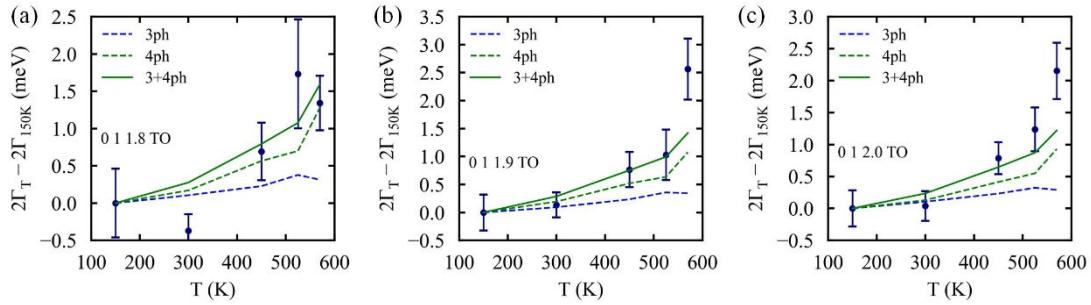
92 relatively unchanged, particularly for TA, when four-phonon scattering is accounted
 93 for in the calculation of $\chi''_{\vec{q},j}(\Omega)$.

94 **Figure S4** Phonon dispersions of α -GeTe at 150K (a-c) and 570K (d-f) along [0-1L]
 95 direction. The (a) and (d) are $\chi''(\mathbf{Q}, \Omega)$ measured with 4SEASONS using $E_i=18$ meV,
 96 which are integrated over ± 0.05 r.l.u. and plotted with \log_{10} scale. (b) and (e) are
 97 calculated $\chi''(\mathbf{Q}, \Omega)$ with only three-phonon interaction while (c) and (f) are that with
 98 both three-phonon interaction and four-phonon interaction along [0-1L] direction.
 99

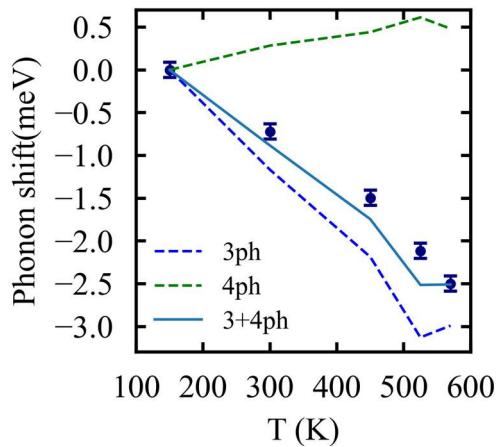

100 **Figure S5** Phonon dispersions of α -GeTe at 150K (a-c) and 570K (d-f) along [0K7]
 101 direction. The (a) and (d) are $\chi''(\mathbf{Q}, \Omega)$ measured with 4SEASONS using $E_i=30$ meV,
 102 which are integrated over ± 0.1 r.l.u. and plotted with \log_{10} scale. (b) and (e) are
 103

104 calculated $\chi''(\mathbf{Q}, \Omega)$ with only three-phonon interaction while (c) and (f) are that with
105 both three-phonon interaction and four-phonon interaction along [0K7] direction.

106


107 **Supplementary Note 4: Some typical extracted phonon shift and phonon
108 linewidth**

109 Figs. S6-S7 present the linewidths of TA and TO modes at high temperatures.
110 The three-phonon interaction alone fails to accurately describe the energy broadening
111 of boundary TA modes and several other TO modes beyond $\mathbf{Q} = (0, 1, 1.6)$. It indicates
112 that the four-phonon interaction plays a significant role in the linewidths of TO and
113 boundary TA modes. In contrast, for phonon shift, Fig. S8 shows that the four-phonon
114 interaction has a minimal effect on phonon shifts, contributing only about ~ 0.5 meV at
115 570 K.


116

117 **Figure S6** Energy broadenings of TA at $\mathbf{Q} = (0, -1, 3.4)$ and $\mathbf{Q} = (0, -1, 3.5)$ versus
118 temperature. The blue dashed lines indicate contribution of three-phonon to energy
119 broadenings while green dashed lines indicate contribution of four-phonon. The solid
120 lines indicate contribution of both three- and four-phonon interaction to energy
121 broadenings.

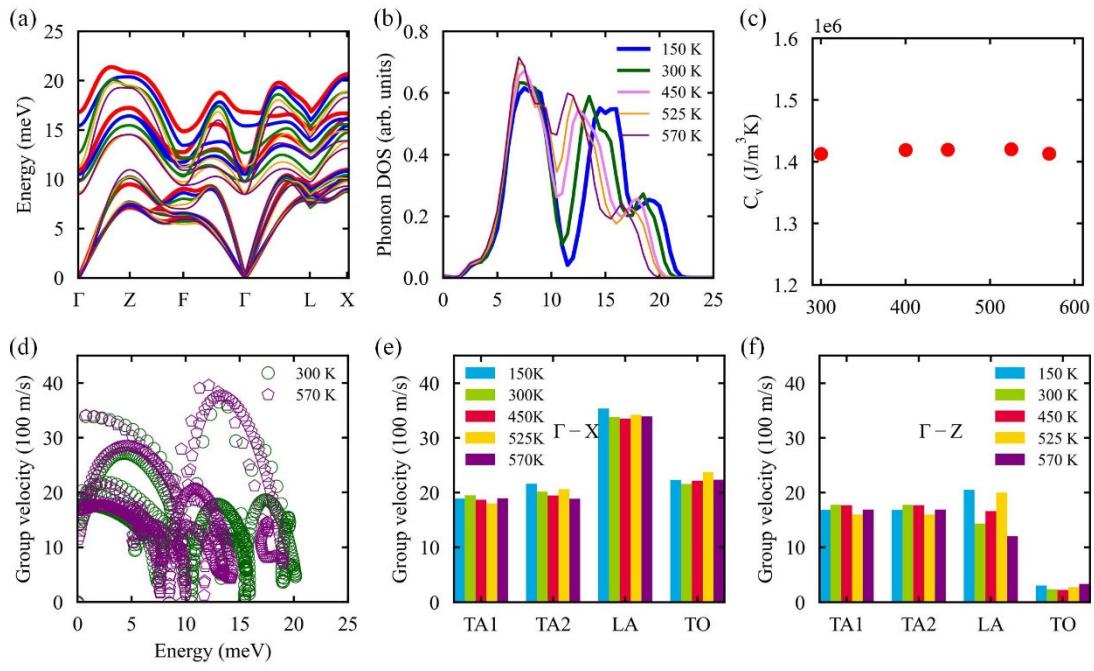
122

123 **Figure S7** Energy broadenings of TO at $Q = (0, 1, \xi)$ versus temperature, where
124 $\xi = 1.8, 1.9, 2.0$. The blue dashed lines indicate contribution of three-phonon interaction
125 to energy broadenings while green dashed lines indicate contribution of four-phonon
126 interaction. The solid lines indicate contribution of both three- and four-phonon
127 interaction to energy broadenings.

128

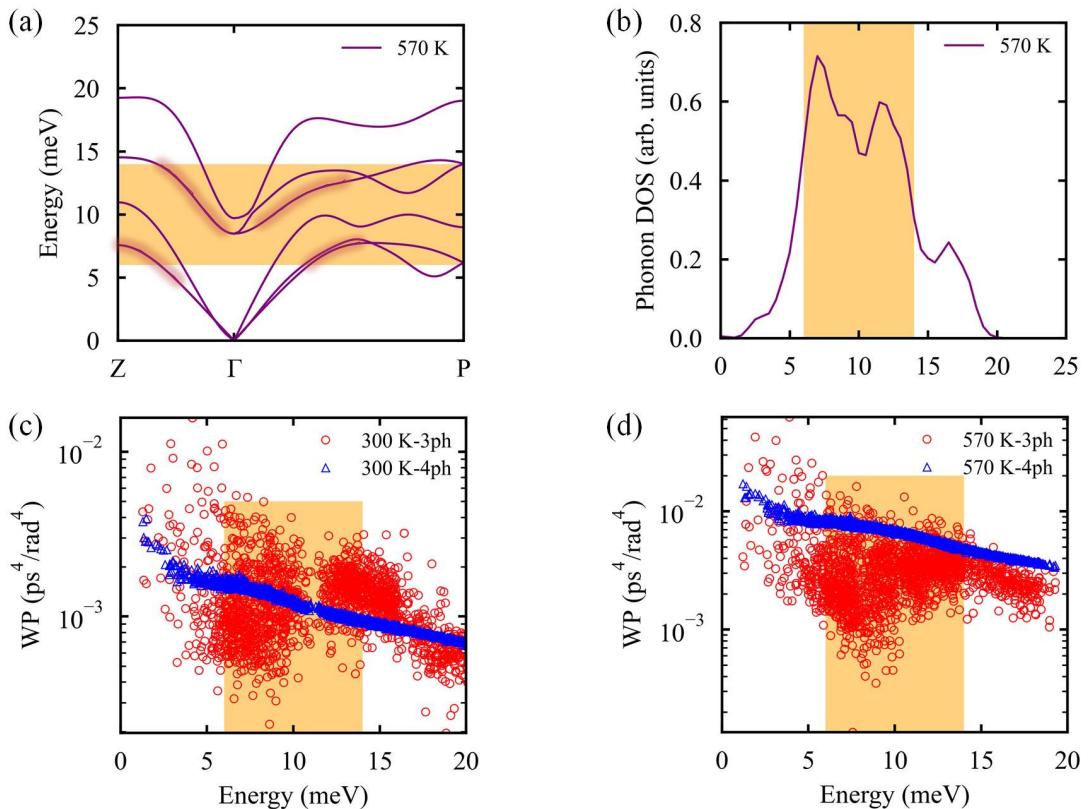
129 **Figure S8** The phonon shift of TO at $Q = (0, 1, 1.6)$ versus temperature. The blue
130 dashed lines indicate contribution of three-phonon to phonon shift while green dashed
131 lines indicate contribution of four-phonon. The solid lines indicate contribution of both
132 three- and four-phonon interaction to phonon shift.

133


134 **Supplementary Note 5: Temperature dependent calculation of lattice dynamic**

135 We calculated temperature-dependent phonon dispersion as shown in Fig. S9a.
136 The acoustic phonon modes at Z, especially LA mode, become harder when
137 temperature increase from 150K to 570K. The optical mode softened obviously,
138 especially for TO branch. Phonon density of state (Dos) in Fig. S9b is consistent to the
139 change of phonon dispersion. When temperature increases up to 570K, there will be a

140 clear shoulder at ~ 10 meV, which reflects the harder LA and softer TO. Besides, the
141 Dos peak around 15meV and 20meV at 150K will decrease to ~ 11 meV and ~ 16 meV
142 respectively when temperature increase to 570K. The softened optical phonon will
143 bring much more phonon-phonon interaction, including four-phonon scattering in α -
144 GeTe.


145 Fig. S9c shows that the heat capacity almost keeps unchanged. Thus, it indicates
146 the thermal conductivity is independent of changes in heat capacity. Fig. S9d indicates
147 that there is little change of group velocity when temperature increases from 300K to
148 570K. Fig. S9e-f further confirm that the change of group velocity is small to lead to
149 thermal conductivity of α -GeTe dramatically decrease at high temperature, even deviate
150 from $\kappa_L \sim T^1$ relation. So, scattering rate should be the main reason for the unusual
151 temperature dependent thermal conductivity of α -GeTe.

152 We extracted the phonon dispersion along Γ -P and Γ -Z, which directions are
153 closely related to κ_x and κ_z , and whole phonon Dos at 570 K, as shown in Fig. S10.
154 There is phonon nesting between the boundary TA and TO branches along the Γ -Z
155 direction, as indicated by the wide red lines in Fig. S10a. This phenomenon is associated
156 with the tail of the TO mode at the zone center and is related to the strong four-phonon
157 interaction described in the main text. As shown in Fig. S10c-d, when temperature
158 increase from 300K to 570K, the four-phonon interaction phase space is comparable
159 with three-phonon interaction phase space between ~ 6 meV and ~ 14 meV at 570K, as
160 orange region shows. The orange region in Fig. S10d is consistent to the Fig. S10a-b.
161 Thus, it confirms that phonon nesting is related to strong four-phonon interaction, as
162 well as temperature effect. The temperature effect highlights two key points: (1)
163 temperature-induced anharmonicity in α -GeTe and (2) a stronger temperature
164 dependence of the four-phonon interaction compared to the three-phonon interaction.

165

166 **Figure S9** Temperature dependent phonon dispersion of α -GeTe (a) and temperature
 167 dependent phonon density of state (b). The same color of lines in (a) and (b) indicates
 168 the same temperature. (c) Temperature-dependence heat capacity, which is calculated
 169 with temperature dependent force constant. (d) Energy dependent group velocity at
 170 300K and 570K. (e) and (f) are temperature dependent group velocity of TA₁, TA₂, LA
 171 and TO modes.

172

173 **Figure S10** Phonon dispersion(a) and phonon density of state (b) of α -GeTe at 570K.
 174 wide red lines in (a) indicate phonon nesting. Weighted phase space versus phonon
 175 energy at 300K(e) and 570K(f). The orange regions in (a)-(d) indicate where the four-
 176 phonon interaction exhibits comparable strength with three-phonon interaction.

177

178 1. Klemens, P. G. Anharmonic Decay of Optical Phonons. *Phys. Rev.* **148**, 845–848
 179 (1966).

180 2. Procacci, P., Cardini, G., Righini, R. & Califano, S. Anharmonic lattice dynamics
 181 and computer simulation for simple model systems. *Phys. Rev. B* **45**, 2113–2125
 182 (1992).

183 3. Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic effects in light scattering due
 184 to optical phonons in silicon. *Phys. Rev. B* **28**, 1928–1934 (1983).

185