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Supplementary Note I: Detailing EM Simulations

In this note, we provided detailed information about our EM simulations and power calculations.
We used the EM simulator Altair FEKO to simulate near-field beams at the sub-THz frequencies.
We create an array of ideal dipole sources tuned to specific amplitude and phase values for the
desired electric field distribution, E, (x, y), across the array. This allows us to simulate the
radiation behavior of any beam type, E (x, y, z|E,), without having to account for any non-
idealities from each radiating element (as opposed to a physical element) that would distort its
performance. Moreover, within the simulation, we can arrange the diploes in any arbitrary
geometry pattern and adjust its element spacing as needed, as shown in Figure S1. Figure S2
illustrates the resulting E-field pattern of several near-field beamtypes and far-field Gaussian

beams simulated in Altair FEKO.

(a) (b)

Figure S1 - Calculations of Numerical Results using FEKO Electromagnetic Simulation: An example
configuration of an ideal phase array configured as a (a) uniform circular array and (b) a uniform
rectangular array. The arrays are constructed using ideal electric dipole sources that can be set to any

desired phase and amplitude value. Additionally, the arrays can be constructed using any desired element
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Figure. S2. Beamtype Simulations Generated in FEKO Altair. (a) Simulated Far-Field
Gaussian Beam (b) Simulated Focused Beam (c¢) Simulated Bessel Beam (d) Simulated Airy

Beam.

After simulation of the electric field profile across space, we calculate the power that transverses

over the entire receiver area, Agy:
P = [[ 1By 211 dne (51

This represents the maximum obtainable power at the RX, i.e., when a received matched filter is
adopted. This form of power calculation allows us to compare different beamtypes in a fair

manner and independent of the receiver beamforming.



Supplementary Note Il: Experimental Setup

Experimental setup. As briefly discussed in the Methods section of the supplemental, we conduct
over-the-air experiments in the D-band (110 GHz-170 GHz). We performed these experiments
using two separate setups — one used for small-scale and precise measurements and a second for
larger-scale experimentation. For our small-scale experiment, we use the Keysight 306 PSG
Analog Signal Generator (E8257D) as the local oscillator (LO) for up-conversion and down-
conversion. An Agilent N5182A signal generator supplies the intermediate frequency (IF)
signals. On the transmit side, the LO is fed into a 4x up-convertor from VDI (WR6.5CCU-M4)
rated for the D-band. The transmitter is then placed near the metasurface for illumination. After
up-conversion, the signal is transmitted through a horn antenna and a broadband amplifier (VDI
WR6.5 AMP). To account for the transmitter emitting spherical wavefronts, where planar
wavefronts are ideal, phase correction is applied to the phase distribution design of the
metasurfaces. On the receiver side, we use the corresponding down-converter (WR6.6CCD-
M4). Our receiver is placed on a motorized 3D translation stage for high-precision alignment and
movement. The received signal is then fed into a Keysight Real-Time Oscilloscope (UXR0254B)

for digitalization and further processing. For heatmap measurements, we measured the radiation

Figure S3 — Our scale model sub-THz setup for ENFR measurements



pattern by measuring the received power at each spatial location. An illustration of this setup is

shown in Fig. S3.

For long-range verification of the ENFR we used custom-made, broadband D-band up-
converters from Virginia Diodes (VDI). In this case, the local oscillator (LO) and IF signals are
supplied to the VDI up-converter by two Keysight Performance Signal Generators (PSG E8257).
For the transmitting antenna, we use Anteral LHA-HG-WRO06, which contains a horn antenna
and collimating lens in a compact structure. Thus, in the case of these experiments, the
metasurface is placed directly in front of the lens and held in place by a 3D-printed cap. For the
data transmission, the same configuration is used on the transmitter side, except that the LO
signals are supplied by Berkeley Nucleonics Microwave Signal Generator 855B RF, and the IF
signals are designed digitally in MATLAB, before being converted to analog and passed to the
VDI up-converters using a Keysight Arbitrary Waveform Generator (AWG M8196A). At the
receiver side, a VDI down-converter is used with a pyramidal horn antenna (Eravant SAR-1532-
06-S2). The LO for down-conversion is supplied by a Keysight PSG, and the IF received signal
is digitized and saved by a Keysight Digital Storage Oscilloscope (DSOZ632A). The digitized
signal is then loaded into MATLAB for demodulation, equalization, and detection. An
illustration of this setup can be found in the main manuscript in Figure 2 and Figure 6 of the

main text.

Meatasurface Fabrication. To imitate the phased arrays that would be used in future sub-THz
networks, we used passive metasurfaces in our over-the-air experiments where each unit cell is
comprised of a C-shaped split-ring resonator. By changing the geometry of such resonators
specifically, the radius, opening angle, and ring width, the phase of the cross-polarized
transmission signal can be fine-tuned across a wide frequency range!. Thus, by creating an array
of their resonators with each geometry corresponding to a cross-polarized phase shift, we create
any desired beamtype pattern. We conduct a parameter sweep on resonator geometries in CST
Studio Suite to generate a look-up table for phase modulation. The optimal metasurface array

geometries can be quickly mapped from desired phase profiles. Our parameters were swept

. : 2200 A\ .
across a range such that their geometries never exceeded a " (5 X E) unit cell square area. Hence

three different look-up tables were generated to create % unit cell resonators at 125 GHz, 145

GHz, and 165 GHz. We report an average phase error of 0.56° and an amplitude variance of



2.5517% across the full 360° phase modulation range. Once the metasurface geometry is
determined, it is fabricated on US-letter-sized paper with the hot stamping technique?. First, a
laser printer is used to print out the designed C-shaped resonator patterns. Then, we run the
printed pattern together with aluminum foil through a standard office laminator. Under high
temperatures, the aluminum powder on the foil adheres to the printed toner pattern to generate

resonating metasurfaces.



Supplementary Note lll: Far-Field Link Budget

Calculations

Typically, link budget calculations are performed in the far-field, that is when electromagnetic
propagation has reached a distance farther than the Fraunhofer distance. At this distance, the
radiation pattern can be accurately modeled with several simplifications and assumptions. One of
these simplifications is that we can perform link budget calculations using the Friss transmission

equation.

If we assume that an array is given an initial power of P,(W) with a known Directivity gain of
G, then the power density can be modeled as the total power over the surface area of a sphere
with radius d:

P

p= WGL“ ($2)

Given the known transmitted power density, the received power can be written as the transmitted

power density integrated over the area that the receiver can capture the radiation:

P [[pdas 53

Given that (1) the power density function at a fixed distance is a constant and (2) we can

represent the area of the receiver’s reception as its effective aperture area, Aperture area, A5,

P, simplifies to:

P-r = Gt * Aeff (54)

A ik
P Berr = yra2
Further, in most scenarios, the effective aperture of an antenna can be directly mapped to its
directivity,
2

A

Thus, the equation can be rewritten as:



2

A ) G,G, (S6)

b=r <471'd

Finally, in wireless channels that include other effects, such as obstruction or multi-path, we

modified the equation to account for this by adding an a factor:
A 2
P=a-P, (m) G,G, (S7)

While this equation can accurately model the received power for link-budget calculations, it fails
to capture the distance and location-dependent radiation pattern in the near-field regime. Thus,
accurate calculations require careful consideration of the transmitter and receiver’s antenna
properties, its location in space, and most importantly, its beamtype. Such calculations become
even more complex in the presence of environmental factors (such as blockage) that alter the

natural radiating behavior of the electromagnetic signal.



Supplementary Note IV: Near Field Power Measurement

and Electric Field Model Derivation

Recall that the E-field profile from an aperture at any distance z can be modeled based on Eq.1

of the main text;

E(x,y,2) = F{Y[Eo(ky, ky )H (ky, ky, 2)] (1)

Such modeling is based on the Fourier optics concept of “angular spectrum of plane waves”
where the resulting wavefront can be represented by a superposition of plane waves that
propagate in different directions represented by wave-vector components k, and k,,. Here, we
only consider forward propagation (z>0) and that array is placed along the x-y plane. Thus, k,
and k,, can be written as k, = ”%” sin 6, cos 8,, and k,, = ”%” sin @, sin6,,. k, and k, are
refer to as the spatial frequencies as they represent the repeated pattern within the spatial domain.
This is analogous to the time-based Fourier transformation where a time-domain signal is
composed of a superposition of sinusoids of different frequencies. H (kx, ky, z) represents the
spatial transfer function of the propagation medium. If we assume a linear, isotropic,

homogenous, and non-dispersive medium H (kx, ky, Z) becomes Weyl’s, identity, written as

i2nz | ——kZ-k2 . . . . .
e N2 7Y In our formulation, we assume the medium is free-space air (corresponding to a
n=1). If each sub-array is considered to be a portion of a larger virtual array, E,(x,y) can be

written as:

N

Folx,9) = ) an(x,) expjn(x,¥) (58)

n=1

where a,,(x, y) is the area where the transmitter(s) is active and @,,(x, y) is the phase distribution
for the desired beamtype of each transmitter. Thus, by applying the Fourier convolution property

and the spatial shifting property, the spatial representation of Eq. S8 becomes:

Eo(ky, ky) = =1 eikxx"eikyynAtx-n(kx' ky) * cbtx.n(kx' ky) (59)



where Asy (kx, ky) * Dy n (kx, ky) is the convolution product of the input field's spatial
coverage in the frequency domain (or in other words, the input field’s amplitude Fourier
transformation) and the input field's phase Fourier transformation. From this, we can represent
the radiation of apertures as a spatial Fourier convolution. This holds for any arbitrary wavefront

or the number of arrays.
Please Note that a single array is considered, Eq. S9 simplifies to
(ke ky) = 58090, (I, k) + Do ) (S10)

Therefore, when measuring the received power, we insert Eq.S10 into Eq.3 to arrive at Eq.4 of

the main text

2
dA,, (S11)

. 1
=l HF ¢ [(e”‘"""e""WOAtx(kx, 1) + 0l ) l

10



Supplementary Note V: Simplification of Near Field

Received Power Calculation

As mentioned in the main text, Eq. S10 has no closed-form equation for all geometries. To
illustrate this, we will for example sake that each of the arrays holds a rectangular geometry.

Thus, a, (x,y) becomes
an(@'y) =TI~ + X o+ ) (S12)
Where its spatial representation equates to

Anjell, ky) = Loy Ly eomet®onsing (2282 sine(2222) (513)

If we assume a square array, L, ,= L, , =L
— 12 ikyXp ik o ckxly o Kyl
Api(ky, ky) = Lee ¥ neyYnsine( ) ) sinc( > ) (S14)

We can represent all propagating signals from square apertures regardless of their configuration

as
E(x,y,z) =

. . . j /i—k,%—kz
Ft [( n=1= Lze”‘x"Oe”‘yYOe”‘yyosinC(%) SinC(%) *On (k) ky)) e yl (S15)

Additionally, we can then calculate the maximum receiver power using Eq.3 in the main text:

PT.X'

|

This formulation has no closed-form equation but can be calculated via the FFT algorithm.

2

dA,, (S16)

N
. . k,L k,L ez [1—k2—12
Fk—l (z LzelkxXnelkyYnSinC(%) SlnC(%) *Qn,k(kx, ky)>elk2 1-kx ky

n=1

Simplification of Eq. S10 can only be achieved if: (1) the transmitter is infinitely large (a non-
physical result) or (2) the resulting convolution in Eq. (S9) has an analytical solution. First, we

will consider scenario (1).

11



We will assume a single aperture (N=1) centered at the origin ((x;,y;) = (0,0)) for

simplification.

If the transmitting aperture is infinitely large, then a; (x, y) = 1. The Electric field profile at the

transmitter can be written as

E,(x,y) = exp jdn(x,y) (516)

In such a scenario, the Fourier representation of the array, A, x(ky, k), becomes a delta function:

1 ifk,=k,=0
Ak, k) =0k, k ={ * y S17
1l ey) = Oz Ky ) 0 otherwise( )

Thus Eq. 1 in the main text becomes
. 1 2 .2
E(x,y,z) = Fi* l(S(kx, ky) * @y (ky, ky))elz’”dzz o "Yl (518)

Next, we can use the delta-function convolution property where 6(x) * f(x) = f(x) to further

simplify Eq.S18 to
; ’i_ 2_4,2
E(x,y,2z) = Fk_1 lq)tx(ka ky)eﬂ"Z R l (519)

Therefore, in the case of an infinite-sized aperture, the electric field profile can be modeled based
on the product of the phase profile spatial representation and the transfer function of the

corresponding medium. Finally, relating this to Eq. 3 in the main text:

P = f EG,y, 7' |E)[2 dAyy

Fk_1 lq)tx(kx' ky)eiznzw%z_k%_ka/ l

2
dA,, (520)

|

Next, we rederive Eq. S10 based on scenario (2). Once again, we assume a single aperture

centered at the origin. Here, we assume a, (x, y) has a geometry follows the equation:

a,(x,y) = sinc(Li)sinc(Ll) (521)

12



Where L, and L,, are constants. Accordingly, Ay x(ky, k,) can be written as:

L, L
Auelienky) = 22| [k 22| [(1yky) (5229

Therefore, Eq. 1 in the main text is rewritten as

L L i2mz L k2-
(ﬁ H(ka")ﬁl_[@yky) * (Dtx(kx) ky)>€ ’ m] (523)

E(x,y,z) = F;!

1
We then use the convolution theorem [[(x) * f(x) = [ 2

x 1
2

f (w)du To rewrite Eq. S23 as

1 1
1 ky+§ kx+§ . i_ 2.2
ECy.2) = Fit|| 7 f ) f Ok ey )k dky e PN | (524
vz Tkxm3

In this configuration, the electric field profile can be described as the integrated results of the

spatial phase profile multiple by the transfer function.

Please note that @, (kx, ky) also does not necessarily have an analytical expression for all

possible phase profiles. We discuss this in Supplementary Note VI. Thus, even if the exact array

geometry is analytically defined, it does not guarantee a closed expression. Further, in both
derivations, we assume a single array with no spatial shift to reduce the equation’s complexity.

Thus, in general, Eq.4 of the main text cannot be solved without numerical methods.

13



Supplementary Note VI: Example Spatial Representation

of Beamtype Phase Profiles

From Eq.4 of the main text, exp j¢,, (x, y) represents the chosen phase distribution of the array.

Specifically, in this section, we consider a focused beam and far-field Gaussian (beamforming)

as example beamtypes. Their corresponding phase distribution at the transmit array is:

e—ik(x’ cos[Bein]*sin[8azn]+y’ sin[Bern]) , if beamsteering

S25
e~k = 22+ — yr)2 42,2 ,if focused beam (525)

exp jon(x,y) = {

In the case of beamforming, its spatial domain representation has a closed-form expression:

Pnax'y'") = 2n6(kx —k cos[@el,n] sin[HaZ’n])c?(ky — ksin[@el‘n]) if beamsteering (527)

A focused beam, however, does not, limiting accurate calculations to only numerical results.

However, it can be closely approximated via Taylor expansion.

For example, sake, x, =y, =0andx'=x,y' =y

eIV =22 O = vz - =ik X+ e (§28)

We can rewrite the exponent terms

SV 2,2= 7, |14+ 22 (529)

We can then approximate Eq. S25 in the form of Taylor Series of the first two terms

x2+y2 +x2+y2_ x2+y2

z, |1+ ~ [+ 2F

(530)

z2 7 2z,
where f represents the focal distance. The first term can be omitted because it represents a
constant phase shift across the aperture and does not affect the radiation behavior. Thus, the

focused beam spatial Fourier representation can be approximated as:

14



kxZ+ky”

 x2+y? 2 /_E iRk +ky?)
i —ik 1 2 vy X TRY
F, {e ik x2+3’2+zr2} ~ F, {e k=7 } — e ) - —ife 2 (531)

K2
2

472

2 2
Where f§ = % = \/% = |27 we emphasize that the focused beam phase distribution in the
2

spatial Fourier domain can be approximated in 3D space following Taylor expansions, where

xXr =y #0:
; 2 21,2 Vry v2(xy2+ z,2)
e Ge—x)? 4 -y ot L [Ty 2 2 r rret)
[y 2 2 2 2
XrtHyrtt Zr 202+ Y2+ z,2)2
XrX _ XrYrXy + xr (%% =2yr2+ 2, xy? + (yr?+ z?)x? +
[ 24v 2+ 7 2 3 5 3
Xrotyrtt zr Cor?+yr%+ 2p%)2 2002 +yr2+ zp2)2 2002 +yr%+ 2p%)2

Yr(_zxrz +yr 2+ Zrz)syxz + (Zxr4+37T4+3’r22r2 —zy ¥ 4o, (_711y2+22))x2y2 (532)

202+ Y2+ 2,2)2 4(xp2+yr2+ 2,2)2

Nonetheless, a closed form expression would require emission for several of the higher-order

terms, meaning that such derivation would be only accurate for specific user locations.

We emphasize that an analytical expression for all phase distributions cannot be derived, as seen

in the case of a focused beam, reaffirming that Eq. 4 of the main text requires numerical analysis.

15



Supplementary Note VII: Phase Profiles for Focused Beam
and Far-field Gaussian Beam for Single and Distributed

Array

A focused beam is the near-field equivalent of beamforming which focuses power on a specific
point in space (as opposed to focusing on a specific direction). The phase distribution to generate
this wavefront on a transmitting array needs to be configured such that the optical distance across

all points of the array at the designated focal point is identical:

(Z)(X,y) = _k\/(x - xr)z + (y - yr)z + Zrz (533)

Where £k is the free space wave number, and (x,., ¥, z,-) is the focal point, the location of power
concentration. Please note as the focal distance approaches infinity, Eq. S33 becomes
indistinguishable from traditional beamforming (Far-Field Gaussian). Its phase profile replicates
the phase distribution of a homogeneous optical lens. An example of its phase distribution is

shown in Figure S4.

When the beamtype is configured instead for far-field Gaussian, the only parameter that can be
tuned is the steering angle. From this, the phase distribution is configured to a linear ramp

following the equation.
O(x,y) = k(x cos[0,,] * sin[0,,] + y sin[6,]) (S34)

Where 6, and 8, is the designated elevation and azimuth steering angle respectively. Its phase

distribution is shown in Figure S5.

Please note that Eq.S33 and Eq.S34 apply for a single array. When distributed arrays are
implemented a binary area coverage function is introduced. It represents that represents the
placement of the array as a binary function a(x,y) where a(x,y) = 0 at locations where the
arrays are not active. If we divide a(x,y) into subarrays, a, (x,y), the phase distribution now

becomes

16



D(x,y) = X an(x,¥)0,(x,y) (§35)

Because a focused beam’s phase distribution is calculated based on the optimal optical distance
at each location, Eq. S33 can be used for all arrays. However, for beamforming, the phase
distribution needs to be calculated independently with the steering angles configured to steer at

the receiver’s location.
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Figure S4 — Phase profile of a focused beam — a. Two-dimensional Phase Profile b. One-
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Supplementary Note VIII. ENFR for Bessel Beams and Airy

Beams

ENRF For Bessel Beam. In the main manuscript, we focused on developing a criteria of the

ENFR for the focused beam beamtype. In the case of a focused beam, which as the name implies
focuses power on a specific point in space, the ENFR should be characterized by how well
power is consolidated at a certain location. However, if the same metric is applied for other
wavefronts, such as a Bessel beam or any airy beam, then these beams would be unfairly deemed
‘impractical’. However, we emphasize that the definition of ENFR is dependent on the beamtype

given their very diverse characteristics.

First, we define the ENFR of Bessel beams. Bessel beams are designed to have non-diffraction
radiation; that is, their intensity is independent of distance and does not cause any spreading
losses. Due to this, instead of concentrating power in a specific location, Bessel beams focus
along a specific line, which allows for relaxed localization information requirements. This makes
Bessel beams better suited for mobile users or users with location uncertainty?. Additionally, due
to their non-diffracting characteristics, Bessel beams are resilient to blockage; even if a portion
of the wavefront is blocked, the remaining portion will be reconstructed after the obstruction
(this property is often referred to as self-healing)*. Their wavefront can be described as having a
set of plane waves traveling in an inward direction. The phase distribution on the transmit array
required to generate this beam resembles an axicon where it has a radially symmetric phase

gradient set by parameter o
O(x,y) = —ky x%2 + y?sina (536)

An example phase distribution is provided in Figure S6. An ideal Bessel Beam is non-diffraction
for all distances, but this requires an infinite size aperture. Since both conditions are infeasible in
practice, the non-diffraction region is limited to the transmitter’s dimension. The region of non-

diffraction can be written as

18



Zmax =

(S37)

where D is the diagonal length of the array and Z,,,, is the maximum distance where the beam

2tana

can be considered non-diffraction. In the case of Bessel beams, it is desired that their power gain
(compared for far-field Gaussian Beam) across a set region is non-negligible. At first glance
Eq.S37 implies that as long as 0° < a < 909, it is possible to set a Z,,,4, for any distance. While
in principle true, in reality, the practical limit where noticeable gain is achieved (compared to far-
field Gaussian beams) is much shorter. Thus, the ENFR for Bessel beams should be defined as
the maximum distance from the power gain across Z,,,, is greater than a 3dB threshold.
We present the heatmap of Bessel beams and their corresponding average power gain within the
non-diffraction region in Figure S7 and Figure S8 respectively. In these simulations, we consider
a 3.5cm x3.5xcm array (corresponding to D = S5cm) at a center frequency of 125 GHz. Once the
Bessel beam is configured to a Z,,,, of 61cm (corresponding to &« = 2.3°) the average gain
now reduces to below 3dB. Such distance is still lower than the desired Fraunhofer distance

(1.0215m).

Phase (deg”)
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o IS © ~ - o & ~ & 1N &

5 0 5
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(a) (b)
Figure S6 — Phase profile of a Bessel Beam — a. Two-dimensional Phase Profile b. One-

dimensional phase unwrapped profile.
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Figure S7 — Effective Near Field Range Simulation of Bessel Beam a. The simulated radiation

behavior of a 3.5cm x3.5cm array configured to generate Bessel beams across different Z,,,,,
distances. Z,, 4, 1s represented by the dash vertical lines b. The normalized intensity across the
arrays’ geometric center. As the desired Z,,,,, increases, it is evident that the resulting intensity

decays accordingly.
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Figure S8 — Average power gain of Bessel over Gaussian as a function of Zpax

ENRF For Airy Beam. Next, we will focus on another type of particular non-spherical wave, the
Airy beam, as it provides the most intriguing possibility for blockage avoidance. In the near field
region, the Airy wavefront is both self-accelerating (its main lobe follows a curved trajectory in

free space) and non-diffracting. Its 1D electric field profile can be modeled as:

. x z? . az i—2 z(i— ;2 4+a2) i(x—%)
E(x,2) = Ai (= = 2 + i) e'oke® o "okt T %) g\ kg (S38)
Xo

4k2%x,% kxo?
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where Ai(-) is the Airy function. The truncation parameter « represents the physical realization
of Airy beams with finite aperture size (and therefore energy), x,, is a transverse scale parameter
that determines the curvature beam. To generate this wavefront, the array must exhibit amplitude

control (as opposed to phase for most other beamtypes). Therefore, the electric field at the

transmitter must resemble the electric field distribution E(x, 0) = Ai (xi), as shown in Figure

S9. Under ideal infinite-power and infinite sized apertures, where a = 0, the Airy Beam follows
2

a propagating trajectory of x(z) = 4};7 . The parabolic trajectory can be tuned by varying

parameter x,. An example radiation pattern of an Airy Beam is shown in Figure S10.
Nonetheless, Eq. S38 assumes that minimal diffraction occurs and that the aperture is orders of
magnitude larger than the wavelength. While true in optics, it is not necessarily valid in the sub-
THz regime. Additionally, self-acceleration and curving start at the transmit array, limiting the
effectiveness of the curvature. Due to this, there is practical consideration in which where at a
certain distance, the curvature enacted with the Airy Beam has a minimal effect. To illustrate we
plot the curving trajectory of the Airy beams with various x,confiugrations in Figure S11. These
Airy beams were generated at a center frequency of 125GHz and the array size fixed to 10cm. As
observed, as one wants to generate a curved path originating at a farther distance, the resulting
curvature is reduced. This implies a finite range in which any meaningful curvature can be
obtained for object avoidance. With consideration of Airy beams, the ENFR should be defined as

the maximum distance in which a desired curvature profile can be generated.
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Figure S9 — Amplitude profile of an Airy Beam — a. Two-dimensional Amplitude Profile b.

One-dimensional amplitude profile
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Supplementary Note IX. Distributed Wavefront Shaping

Beyond Two Apertures

Although we focused on two arrays for distributed wavefront shaping in the main text, we note
that such calculations hold for any arbitrary set of arrays. Particularly, Eq.6 makes no assumption
on the number of arrays and the ENFR can be calculated accordingly. To illustrate this, we
present simulation results considering 3 arrays working together to create a focused beam. A
depiction of their placement is illustrated in Figure S12. Each array is 3.5cm x3.5cm with a
separation of 4cm from each other. First, we plot its focusing gain at 125GHz across its radial
map, as it was done in Figure 3 of the main text and is shown in Figure S13. Similar to the
observations from two arrays, fluctuations from the focusing gain occur from the inconsistent
superposition of the beamforming arrays. These fluctuations result in a more significant drop in
beamforming power (increasing focusing gain) however from the higher coordination
requirements. Nevertheless, we compare the ENFR ;4 (from Eq.7 of the main text) of the single
array and its 2-array counterparts in Fig.S14. As observed, as the number of transmitting arrays
increase, so can ENFR . .We note however this is dependent on the array separation and
location and is not a strictly true. Based on the configuration of 3-distributed array, the ENFR ;4;
now extends to 99.45cm, which is 282% higher than the 2 arrays and 448% higher than a the
single array. More importantly, the ENFR ¢ is now on a comparable distance as the Fraunhofer
distance (1.0215m). Such results imply that increasing the number of distributed arrays can

provide significant improvement to the ENFR ;.

I 4cm } 40N m—]

Figure S12 — Example Configuration of Distributed Wavefront Shaping with 3 arrays.

Each arrays are placed equidistant with a separation of 4cm
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Figure S13 — Radial Map of the Focusing Gain for Distributed arrays. Similar to the

two-array scenario, the focusing gain is not only a function of distance but also steering

angle.
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Figure S14 — Comparison of ENFR;,; from different array configurations. As the
number of apertures increases, the ENFR ;4 also increases accordingly. Such an increase is

not linear and depends on several factors. The errorbar represents the maximum reported

ENFR at a particular angle.
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Supplementary Note X. Impact of Array Separation
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Figure S15 — Radial Map of Focusing Gain of Figure S16 — ENFR Measurement
Two Distributed Apertures — a. Array of Distributed Arrays at Broadside

Separation:8cm b. Array Separation:16cm

In the main text, we focused our analysis on a fixed separation of 8cm (measured from center to
center). However, we emphasize that the separation of the arrays impacts the ENFR. To illustrate
this, we plot the focusing gain of two different distributed array configurations; both utilize two
3.5cm x 3.5cm arrays at 125GHz but each setup has a separation of 8cm and 16cm respectively.
A side-by-side comparison in Figure S15 reveals that increasing the separation increases the
overall fluctuations over the radial maps. This mainly results from the fact that as the arrays
becomes less co-located, their transmission ranges correlate less, and the constructive/destructive
interference varies more. Nevertheless, these fluctuations result in focusing gains that are lower
in magnitude. Thus, results imply that careful calibration between the arrays is even more crucial
when a receiver is placed off-boresight. However, when a receiver is placed in the geometric
center of two arrays (broadsight) where perfectly constructive interference is ensured for
distributed beamforming, we see a clearer trend of the ENFR. In Figure S16, we plot the ENFR
at broadside at different separations. We report the separation as a percentage of its subarray
dimensions (3.5cm). Here, we see the ENFR degrading to half of its maximum range after a
separation of 600% (21 cm). These results thus imply that as the separation between the arrays

increases, its ENFR decreases.
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