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Supplementary Note I: Detailing EM Simulations 

In this note, we provided detailed information about our EM simulations and power calculations. 

We used the EM simulator Altair FEKO to simulate near-field beams at the sub-THz frequencies. 

We create an array of ideal dipole sources tuned to specific amplitude and phase values for the 

desired electric field distribution,	𝐸!(𝑥, 𝑦), across the array. This allows us to simulate the 

radiation behavior of any beam type, 𝐸(𝑥, 𝑦, 𝑧|𝐸!), without having to account for any non-

idealities from each radiating element (as opposed to a physical element) that would distort its 

performance. Moreover, within the simulation, we can arrange the diploes in any arbitrary 

geometry pattern and adjust its element spacing as needed, as shown in Figure S1. Figure S2 

illustrates the resulting E-field pattern of several near-field beamtypes and far-field Gaussian 

beams simulated in Altair FEKO. 

 

Figure S1 - Calculations of Numerical Results using FEKO Electromagnetic Simulation: An example 

configuration of an ideal phase array configured as a (a) uniform circular array and (b) a uniform 

rectangular array. The arrays are constructed using ideal electric dipole sources that can be set to any 

desired phase and amplitude value. Additionally, the arrays can be constructed using any desired element 
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After simulation of the electric field profile across space, we calculate the power that transverses 

over the entire receiver area, 𝐴"#: 

𝑃$% =-|𝐸(𝑥&, 𝑦&, 𝑧&|𝐸!)|'	𝑑𝐴$% 	(𝑆1) 

This represents the maximum obtainable power at the RX, i.e., when a received matched filter is 

adopted. This form of power calculation allows us to compare different beamtypes in a fair 

manner and independent of the receiver beamforming.  

Figure. S2. Beamtype Simulations Generated in FEKO Altair. (a) Simulated Far-Field 

Gaussian Beam (b) Simulated Focused Beam (c) Simulated Bessel Beam (d) Simulated Airy 

Beam. 
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Supplementary Note II: Experimental Setup 

Experimental setup. As briefly discussed in the Methods section of the supplemental, we conduct 

over-the-air experiments in the D-band (110 GHz-170 GHz).  We performed these experiments 

using two separate setups – one used for small-scale and precise measurements and a second for 

larger-scale experimentation. For our small-scale experiment, we use the Keysight 306 PSG 

Analog Signal Generator (E8257D) as the local oscillator (LO) for up-conversion and down-

conversion.  An Agilent N5182A signal generator supplies the intermediate frequency (IF) 

signals. On the transmit side, the LO is fed into a 4× up-convertor from VDI (WR6.5CCU-M4) 

rated for the D-band.  The transmitter is then placed near the metasurface for illumination.  After 

up-conversion, the signal is transmitted through a horn antenna and a broadband amplifier (VDI 

WR6.5 AMP). To account for the transmitter emitting spherical wavefronts, where planar 

wavefronts are ideal, phase correction is applied to the phase distribution design of the 

metasurfaces.  On the receiver side, we use the corresponding down-converter (WR6.6CCD-

M4). Our receiver is placed on a motorized 3D translation stage for high-precision alignment and 

movement. The received signal is then fed into a Keysight Real-Time Oscilloscope (UXR0254B) 

for digitalization and further processing.  For heatmap measurements, we measured the radiation 

Figure S3 – Our scale model sub-THz setup for ENFR measurements  
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pattern by measuring the received power at each spatial location.  An illustration of this setup is 

shown in Fig. S3. 

For long-range verification of the ENFR we used custom-made, broadband D-band up-

converters from Virginia Diodes (VDI). In this case, the local oscillator (LO) and IF signals are 

supplied to the VDI up-converter by two Keysight Performance Signal Generators (PSG E8257).  

For the transmitting antenna, we use Anteral LHA-HG-WR06, which contains a horn antenna 

and collimating lens in a compact structure. Thus, in the case of these experiments, the 

metasurface is placed directly in front of the lens and held in place by a 3D-printed cap. For the 

data transmission, the same configuration is used on the transmitter side, except that the LO 

signals are supplied by Berkeley Nucleonics Microwave Signal Generator 855B RF, and the IF 

signals are designed digitally in MATLAB, before being converted to analog and passed to the 

VDI up-converters using a Keysight Arbitrary Waveform Generator (AWG M8196A). At the 

receiver side, a VDI down-converter is used with a pyramidal horn antenna (Eravant SAR-1532-

06-S2). The LO for down-conversion is supplied by a Keysight PSG, and the IF received signal 

is digitized and saved by a Keysight Digital Storage Oscilloscope (DSOZ632A). The digitized 

signal is then loaded into MATLAB for demodulation, equalization, and detection. An 

illustration of this setup can be found in the main manuscript in Figure 2 and Figure 6 of the 

main text. 

Meatasurface Fabrication. To imitate the phased arrays that would be used in future sub-THz 

networks, we used passive metasurfaces in our over-the-air experiments where each unit cell is 

comprised of a C-shaped split-ring resonator. By changing the geometry of such resonators 

specifically, the radius, opening angle, and ring width, the phase of the cross-polarized 

transmission signal can be fine-tuned across a wide frequency range1. Thus, by creating an array 

of their resonators with each geometry corresponding to a cross-polarized phase shift, we create 

any desired beamtype pattern. We conduct a parameter sweep on resonator geometries in CST 

Studio Suite to generate a look-up table for phase modulation. The optimal metasurface array 

geometries can be quickly mapped from desired phase profiles. Our parameters were swept 

across a range such that their geometries never exceeded a (
!

)
1(
'
	x (
'
3 unit cell square area. Hence 

three different look-up tables were generated to create (
'
 unit cell resonators at 125 GHz, 145 

GHz, and 165 GHz. We report an average phase error of 0.56∘ and an amplitude variance of 
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2.5517% across the full 360∘ phase modulation range. Once the metasurface geometry is 

determined, it is fabricated on US-letter-sized paper with the hot stamping technique2. First, a 

laser printer is used to print out the designed C-shaped resonator patterns. Then, we run the 

printed pattern together with aluminum foil through a standard office laminator. Under high 

temperatures, the aluminum powder on the foil adheres to the printed toner pattern to generate 

resonating metasurfaces.  
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Supplementary Note III: Far-Field Link Budget 

Calculations 

Typically, link budget calculations are performed in the far-field, that is when electromagnetic 

propagation has reached a distance farther than the Fraunhofer distance. At this distance, the 

radiation pattern can be accurately modeled with several simplifications and assumptions. One of 

these simplifications is that we can perform link budget calculations using the Friss transmission 

equation.  

If we assume that an array is given an initial power of 𝑃+(𝑊) with a known Directivity gain of 

𝐺+, then the power density can be modeled as the total power over the surface area of a sphere 

with radius d: 

𝑝 = 	
𝑃+

4𝜋𝑑' 𝐺+	(𝑆2) 

Given the known transmitted power density, the received power can be written as the transmitted 

power density integrated over the area that the receiver can capture the radiation: 

𝑃$ =	-𝑝	𝑑𝐴"#	(𝑆3) 

Given that (1) the power density function at a fixed distance is a constant and (2) we can 

represent the area of the receiver’s reception as its effective aperture area, Aperture area, 𝐴,--,  

𝑃$ 	simplifies to: 

𝑃$ = 	𝑝 ∙ 𝐴,-- =
𝑃+

4𝜋𝑑' 𝐺+ 	 ∙ 𝐴,--	(𝑆4)	 

Further, in most scenarios, the effective aperture of an antenna can be directly mapped to its 

directivity,  

𝐴,-- =	
𝜆'

4𝜋 𝐺$ 	(𝑆5) 

Thus, the equation can be rewritten as: 



 8 

𝑃$ = 𝑃+ A
𝜆
4𝜋𝑑B

'

𝐺+𝐺$ 	(𝑆6) 

Finally, in wireless channels that include other effects, such as obstruction or multi-path, we 

modified the equation to account for this by adding an α factor: 

𝑃$ = α ∙ 𝑃+ 1
(

)./
3
'
𝐺+𝐺$ (𝑆7) 

While this equation can accurately model the received power for link-budget calculations, it fails 

to capture the distance and location-dependent radiation pattern in the near-field regime. Thus, 

accurate calculations require careful consideration of the transmitter and receiver’s antenna 

properties, its location in space, and most importantly, its beamtype. Such calculations become 

even more complex in the presence of environmental factors (such as blockage) that alter the 

natural radiating behavior of the electromagnetic signal.  
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Supplementary Note IV:  Near Field Power Measurement 

and Electric Field Model Derivation 

Recall that the E-field profile from an aperture at any distance z can be modeled based on Eq.1 

of the main text: 

𝐸(𝑥, 𝑦, 𝑧) = 𝐹012F𝐸!G𝑘% , 𝑘3I𝐻G𝑘% , 𝑘3 , 𝑧IK	(1) 

Such modeling is based on the Fourier optics concept of “angular spectrum of plane waves” 

where the resulting wavefront can be represented by a superposition of plane waves that 

propagate in different directions represented by wave-vector components 𝑘%	𝑎𝑛𝑑	𝑘3. Here, we 

only consider forward propagation (z>0) and that array is placed along the x-y plane. Thus, 𝑘% 

and 𝑘3 can be written as 𝑘% =	N
2
𝝀
N sin 𝜃,5 cos 𝜃67	 and 𝑘3 =	N

2
𝝀
N sin 𝜃,5 sin 𝜃67 .	 𝑘%	𝑎𝑛𝑑	𝑘3 are 

refer to as the spatial frequencies as they represent the repeated pattern within the spatial domain. 

This is analogous to the time-based Fourier transformation where a time-domain signal is 

composed of a superposition of sinusoids of different frequencies. 𝐻G𝑘% , 𝑘3 , 𝑧I represents the 

spatial transfer function of the propagation medium. If we assume a linear, isotropic, 

homogenous, and non-dispersive medium 𝐻G𝑘% , 𝑘3 , 𝑧I becomes Weyl’s, identity, written as 

𝑒
8'.79 "

#!
10$!10%! 		. In our formulation, we assume the medium is free-space air (corresponding to a 

n=1).  If each sub-array is considered to be a portion of a larger virtual array, 𝐸!(𝑥, 𝑦) can be 

written as: 

𝐸!(𝑥, 𝑦) = V𝛼;(𝑥, 𝑦) exp 𝑗𝜙;(𝑥, 𝑦)
<

;=2

	(𝑆8) 

where 𝑎;(𝑥, 𝑦) is the area where the transmitter(s) is active and ∅;(𝑥, 𝑦) is the phase distribution 

for the desired beamtype of each transmitter. Thus, by applying the Fourier convolution property 

and the spatial shifting property, the spatial representation of Eq. S8 becomes: 

𝐸!(𝑘% , 𝑘3) = ∑ 𝑒80$%&𝑒80%3&Α+%.;G𝑘% , 𝑘3I ∗ Φ+%,;G𝑘% , 𝑘3I<
;=2 (𝑆9) 
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where Α+%.;G𝑘% , 𝑘3I ∗ Φ+%,;G𝑘% , 𝑘3I is the convolution product of the input field's spatial 

coverage in the frequency domain (or in other words, the input field’s amplitude Fourier 

transformation) and the input field's phase Fourier transformation. From this, we can represent 

the radiation of apertures as a spatial Fourier convolution. This holds for any arbitrary wavefront 

or the number of arrays. 

Please Note that a single array is considered, Eq. S9 simplifies to  

𝐸!(𝑘% , 𝑘3) = 𝑒80$%'𝑒80%3'Α+%G𝑘% , 𝑘3I ∗ Φ+%G𝑘% , 𝑘3I	(𝑆10) 

Therefore, when measuring the received power, we insert Eq.S10 into Eq.3 to arrive at Eq.4 of 

the main text 

𝑃$% = ∬d𝐹012 e1𝑒80$%'𝑒80%3'𝐴+%G𝑘% , 𝑘3I ∗ Φ+%G𝑘% , 𝑘3I3 𝑒
8'.79 "

#!
10$!10%! 		fd

'

𝑑𝐴$% (𝑆11) 
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Supplementary Note V: Simplification of Near Field 

Received Power Calculation 

As mentioned in the main text, Eq. S10 has no closed-form equation for all geometries. To 

illustrate this, we will for example sake that each of the arrays holds a rectangular geometry. 

Thus, 𝑎;(𝑥, 𝑦) becomes 

𝑎;(𝑥&,𝑦&) = ∏( %
@&,$

+ 𝑥;, 3
@&,%

+ 𝑦;) (S12) 

Where its spatial representation equates to  

𝐴;,0(𝑘% , 𝑘3) = 	𝐿;,% 𝐿;,3	𝑒80$%&𝑒80%3&𝑠𝑖𝑛𝑐(
0$@&,$
'
) 𝑠𝑖𝑛𝑐(0%@&,%

'
) (S13) 

If we assume a square array, 𝐿;,%= 𝐿;,% = L 

𝐴;,0(𝑘% , 𝑘3) = 𝐿'𝑒80$%&𝑒80%3&𝑠𝑖𝑛𝑐(0$@
'
) 𝑠𝑖𝑛𝑐(0%@

'
) (S14) 

We can represent all propagating signals from square apertures regardless of their configuration 

as 

𝐸(𝑥, 𝑦, 𝑧) =

	𝐹012 e1∑ = 𝐿'𝑒80$%'𝑒80%3'𝑒80%3'𝑠𝑖𝑛𝑐(0$@
'
) 𝑠𝑖𝑛𝑐(0%@

'
) *∅;,0(𝑘% , 𝑘3)<

;=2 3 𝑒
8'.79 "

#!
10$!10%!f (S15) 

Additionally, we can then calculate the maximum receiver power using Eq.3 in the main text: 

𝑃$%

= mn𝐹012 opV𝐿'𝑒80$%&𝑒80%3&𝑠𝑖𝑛𝑐(
𝑘%𝐿
2 ) 𝑠𝑖𝑛𝑐(

𝑘3𝐿
2 ) *∅;,0(𝑘% , 𝑘3)

<

;=2

q𝑒
8079210$!10%!rn

'

𝑑𝐴$%	(S16) 

This formulation has no closed-form equation but can be calculated via the FFT algorithm. 

Simplification of Eq. S10 can only be achieved if: (1) the transmitter is infinitely large (a non-

physical result) or (2) the resulting convolution in Eq. (S9) has an analytical solution. First, we 

will consider scenario (1).  
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We will assume a single aperture (N=1) centered at the origin (〈𝑥2, 𝑦2〉 = 	 〈0,0〉) for 

simplification.  

If the transmitting aperture is infinitely large, then 𝑎2(𝑥, 𝑦) = 1. The Electric field profile at the 

transmitter can be written as  

𝐸!(𝑥, 𝑦) = exp 𝑗𝜙;(𝑥, 𝑦)	(𝑆16) 

In such a scenario, the Fourier representation of the array, 𝐴2,0(𝑘% , 𝑘3), becomes a delta function: 

𝐴2,0(𝑘% , 𝑘3) = δ(𝑘% , 𝑘3) = v1								𝑖𝑓	𝑘% = 𝑘3 = 	0
0																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (𝑆17) 

Thus Eq. 1 in the main text becomes 

𝐸(𝑥, 𝑦, 𝑧) = 	𝐹012 e1δ(𝑘% , 𝑘3) ∗ Φ+%G𝑘% , 𝑘3I3 𝑒
8'.79 2

(!10$
!10%! 		f	(𝑆18) 

Next, we can use the delta-function convolution property where δ(𝑥) ∗ 𝑓(𝑥) = 	𝑓(𝑥) to further 

simplify Eq.S18 to  

𝐸(𝑥, 𝑦, 𝑧) = 	𝐹012 eΦ+%G𝑘% , 𝑘3I𝑒
8'.79 "

#!
10$!10%! 		f (𝑆19) 

Therefore, in the case of an infinite-sized aperture, the electric field profile can be modeled based 

on the product of the phase profile spatial representation and the transfer function of the 

corresponding medium. Finally, relating this to Eq. 3 in the main text: 

𝑃$% =-|𝐸(𝑥&, 𝑦&, 𝑧&|𝐸!)|'	𝑑𝐴$% 

= md𝐹012 eΦ+%G𝑘% , 𝑘3I𝑒
8'.79 2

(!10$
!10%! 		fd

'

𝑑𝐴$%	(𝑆20) 

 

Next, we rederive Eq. S10 based on scenario (2). Once again, we assume a single aperture 

centered at the origin. Here, we assume 𝑎2(𝑥, 𝑦) has a geometry follows the equation: 

𝑎2(𝑥, 𝑦) = 𝑠𝑖𝑛𝑐( %
@$
)𝑠𝑖𝑛𝑐( 3

@%
) (𝑆21) 
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Where 𝐿% and 𝐿3 are constants. Accordingly, 𝐴2,0(𝑘% , 𝑘3) can be written as: 

𝐴2,0(𝑘% , 𝑘3) = 
𝐿%
2𝜋}

(𝐿%𝑘%)
𝐿3
2𝜋}G𝐿3𝑘3I	(𝑆22) 

Therefore, Eq. 1 in the main text is rewritten as 

𝐸(𝑥, 𝑦, 𝑧) = 	𝐹012 op
𝐿%
2𝜋}

(𝐿%𝑘%)
𝐿3
2𝜋}G𝐿3𝑘3I ∗ Φ+%G𝑘% , 𝑘3Iq 𝑒

8'.79 2
(!10$

!10%! 		r	(𝑆23) 

We then use the convolution theorem ∏(𝑥) ∗ 𝑓(𝑥) = 	∫ 𝑓(𝑢)𝑑𝑢
%A"!
%1"!

 To rewrite Eq. S23 as 

𝐸(𝑥, 𝑦, 𝑧) = 	𝐹012 ��
1
4𝜋'm m Φ+%G𝑘% , 𝑘3I𝑑𝑘%)𝑑𝑘3)

0$A
2
'

0$1
2
'

0%A
2
'

0%1
2
'

�𝑒8'.7
9 2
(!10$

!10%! 		�	(𝑆24)	 

In this configuration, the electric field profile can be described as the integrated results of the 

spatial phase profile multiple by the transfer function.  

 

Please note that Φ+%G𝑘% , 𝑘3I	also does not necessarily have an analytical expression for all 

possible phase profiles. We discuss this in Supplementary Note VI. Thus, even if the exact array 

geometry is analytically defined, it does not guarantee a closed expression. Further, in both 

derivations, we assume a single array with no spatial shift to reduce the equation’s complexity. 

Thus, in general, Eq.4 of the main text cannot be solved without numerical methods.  
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Supplementary Note VI: Example Spatial Representation 

of Beamtype Phase Profiles 

From Eq.4 of the main text, exp 𝑗𝜙;(𝑥, 𝑦) represents the chosen phase distribution of the array. 

Specifically, in this section, we consider a focused beam and far-field Gaussian (beamforming) 

as example beamtypes. Their corresponding phase distribution at the transmit array is: 

exp 𝑗𝜙;(𝑥, 𝑦) = �
𝑒180B%) CDEFG*+,&H∗EJKFG,-,&HA3) EJKFG*+,&HL	, 	𝑖𝑓	𝑏𝑒𝑎𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔

𝑒180M(%)	1	%.)!A(3)	1	3.)!A7.!	, 𝑖𝑓	𝑓𝑜𝑐𝑢𝑠𝑒𝑑	𝑏𝑒𝑎𝑚
(𝑆25)	 

In the case of beamforming, its spatial domain representation has a closed-form expression: 

∅;,((𝑥&,𝑦&) = 	2𝜋𝛿G𝑘%	 − 𝑘 cosF𝜃,5,;K sinF𝜃67,;KI𝛿G𝑘3	 − ksinF𝜃,5,;KI	𝑖𝑓	𝑏𝑒𝑎𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔	(𝑆27)	 

A focused beam, however, does not, limiting accurate calculations to only numerical results. 

However, it can be closely approximated via Taylor expansion.  

For example, sake, 𝑥$ = 𝑦$ = 0 and 𝑥&	= x, 𝑦& = 𝑦	 

𝑒180M(%)	1	%.)!A(3)	1	3.)!A7.!	= 𝑒180M%!A3!A7.!	(𝑆28)	 

We can rewrite the exponent terms 

�𝑥' + 𝑦' + 𝑧$'=		𝑧$�1 +
%!A3!

7.!
(𝑆29)	 

We can then approximate Eq. S25 in the form of Taylor Series of the first two terms 

		𝑧$�1 +
𝑥' + 𝑦'

𝑧$'
	 ≈ 𝑧$ + 	

𝑥' + 𝑦'

2𝑧$
= 𝑓 + 	

𝑥' + 𝑦'

2𝑓 (𝑆30)	 

where f represents the focal distance. The first term can be omitted because it represents a 

constant phase shift across the aperture and does not affect the radiation behavior. Thus, the 

focused beam spatial Fourier representation can be approximated as: 



 15 

𝐹0 �𝑒180M%
!A3!A7.!	�	~	𝐹0 �𝑒

180$
!/%!

!0 � = 2

911
!

0!

𝑒

1$
!/1%

!

!231
!
0! = −𝑖𝛽𝑒

345(1$
!/1%

!)
!  (𝑆31)	 

Where 𝛽 = 2

91
!

0!

= 	�-!

0!
= �((-)!

).!
 . We emphasize that the focused beam phase distribution in the 

spatial Fourier domain can be approximated in 3D space following Taylor expansions, where 

𝑥$ ≠ 𝑦$ ≠ 0: 

𝑒180M(%1	%.)!A(3	1	3.)!A7.!~	�𝑥$' + 𝑦$' + 	𝑧$' − 	
3.3

M%.!A3.!A	7.!
+ 3!B%.!A	7.!L

'(%.!A3.!A	7.!)
8
!
−

%.%
M%.!A3.!A	7.!

	 − %.3.%3

(%.!A3.!A	7.!)
8
!
 + %.B%.!1'3.!A	7.!L%3!

'(%.!A3.!A	7.!)
9
!

+ B3.!A	7.!L%!

'(%.!A3.!A	7.!)
8
!
 + 

3.B1'%.!A3.!A	7.!L3%!

'(%.!A3.!A	7.!)
9
!

+ B'%.:A3.:A3.!7.!	17.:A%.!(1223!A7!)L%!3!

)(%.!A3.!A	7.!)
;
!

	(𝑆32)	 

Nonetheless, a closed form expression would require emission for several of the higher-order 

terms, meaning that such derivation would be only accurate for specific user locations.  

We emphasize that an analytical expression for all phase distributions cannot be derived, as seen 

in the case of a focused beam, reaffirming that Eq. 4 of the main text requires numerical analysis.  
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Supplementary Note VII: Phase Profiles for Focused Beam 

and Far-field Gaussian Beam for Single and Distributed 

Array 

A focused beam is the near-field equivalent of beamforming which focuses power on a specific 

point in space (as opposed to focusing on a specific direction). The phase distribution to generate 

this wavefront on a transmitting array needs to be configured such that the optical distance across 

all points of the array at the designated focal point is identical: 

∅(𝑥, 𝑦) 	= 	−𝑘�(𝑥	 −	𝑥$)' 	+ 	 (𝑦	 −	𝑦$)' 	+ 	𝑧$'	(𝑆33) 

Where k is the free space wave number, and 〈𝑥$ , 𝑦$ , 𝑧$〉 is the focal point, the location of power 

concentration. Please note as the focal distance approaches infinity, Eq. S33 becomes 

indistinguishable from traditional beamforming (Far-Field Gaussian). Its phase profile replicates 

the phase distribution of a homogeneous optical lens. An example of its phase distribution is 

shown in Figure S4. 

When the beamtype is configured instead for far-field Gaussian, the only parameter that can be 

tuned is the steering angle. From this, the phase distribution is configured to a linear ramp 

following the equation. 

∅(𝑥, 𝑦) = 𝑘(𝑥 cos[𝜃,5] ∗ sin[𝜃67] + 𝑦 sin[𝜃,5])	(𝑆34) 

Where 𝜃,5 and 𝜃67 is the designated elevation and azimuth steering angle respectively. Its phase 

distribution is shown in Figure S5. 

 

Please note that Eq.S33 and Eq.S34 apply for a single array. When distributed arrays are 

implemented a binary area coverage function is introduced.  It represents that represents the 

placement of the array as a binary function 𝛼(𝑥, 𝑦)	 where 𝛼(𝑥, 𝑦) = 0 at locations where the 

arrays are not active. If we divide  𝛼(𝑥, 𝑦) into subarrays, 𝑎;(𝑥, 𝑦), the phase distribution now 

becomes 
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∅(𝑥, 𝑦) = ∑𝑎;(𝑥, 𝑦)∅;(𝑥, 𝑦) (𝑆35) 

Because a focused beam’s phase distribution is calculated based on the optimal optical distance 

at each location, Eq. S33 can be used for all arrays. However, for beamforming, the phase 

distribution needs to be calculated independently with the steering angles configured to steer at 

the receiver’s location.   

 

 

 

 

Figure S4 – Phase profile of a focused beam – a. Two-dimensional Phase Profile b. One-

dimensional phase unwrapped profile. 

 

Figure S5 – Phase profile of a Steering Far-Field Gaussian Beam – a. Two-

dimensional Phase Profile b. One-dimensional phase unwrapped profile. 
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Supplementary Note VIII. ENFR for Bessel Beams and Airy 

Beams 

ENRF For Bessel Beam. In the main manuscript, we focused on developing a criteria of the 

ENFR for the focused beam beamtype. In the case of a focused beam, which as the name implies 

focuses power on a specific point in space, the ENFR should be characterized by how well 

power is consolidated at a certain location. However, if the same metric is applied for other 

wavefronts, such as a Bessel beam or any airy beam, then these beams would be unfairly deemed 

‘impractical’. However, we emphasize that the definition of ENFR is dependent on the beamtype 

given their very diverse characteristics. 

 

First, we define the ENFR of Bessel beams. Bessel beams are designed to have non-diffraction 

radiation; that is, their intensity is independent of distance and does not cause any spreading 

losses. Due to this, instead of concentrating power in a specific location, Bessel beams focus 

along a specific line, which allows for relaxed localization information requirements. This makes 

Bessel beams better suited for mobile users or users with location uncertainty3. Additionally, due 

to their non-diffracting characteristics, Bessel beams are resilient to blockage; even if a portion 

of the wavefront is blocked, the remaining portion will be reconstructed after the obstruction 

(this property is often referred to as self-healing)4. Their wavefront can be described as having a 

set of plane waves traveling in an inward direction. The phase distribution on the transmit array 

required to generate this beam resembles an axicon where it has a radially symmetric phase 

gradient set by parameter α5: 

∅(𝑥, 𝑦) 	= 	−𝑘�	𝑥' +	𝑦'𝑠𝑖𝑛𝛼	(𝑆36) 

An example phase distribution is provided in Figure S6. An ideal Bessel Beam is non-diffraction 

for all distances, but this requires an infinite size aperture. Since both conditions are infeasible in 

practice, the non-diffraction region is limited to the transmitter’s dimension. The region of non-

diffraction can be written as 

 

(b) 
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𝑍P6%   =  
𝐷

2𝑡𝑎𝑛𝛼 (𝑆37)	

where D is the diagonal length of the array and 𝑍P6% is the maximum distance where the beam 

can be considered non-diffraction.  In the case of Bessel beams, it is desired that their power gain 

(compared for far-field Gaussian Beam) across a set region is non-negligible.  At first glance 

Eq.S37 implies that as long as 0! < 𝛼 < 90!, it is possible to set a 𝑍P6% for any distance. While 

in principle true, in reality, the practical limit where noticeable gain is achieved (compared to far-

field Gaussian beams) is much shorter. Thus, the ENFR for Bessel beams should be defined as 

the maximum distance from the power gain across 𝒁𝒎𝒂𝒙 is greater than a 3dB threshold. 

We present the heatmap of Bessel beams and their corresponding average power gain within the 

non-diffraction region in Figure S7 and Figure S8 respectively. In these simulations, we consider 

a 3.5cm x3.5xcm array (corresponding to D = 5cm) at a center frequency of 125 GHz. Once the 

Bessel beam is configured to a  𝑍P6% of 61cm (corresponding to 𝛼 = 	2.3!) the average gain 

now reduces to below 3dB. Such distance is still lower than the desired Fraunhofer distance 

(1.0215m). 

 

Figure S6 – Phase profile of a Bessel Beam – a. Two-dimensional Phase Profile b. One-

dimensional phase unwrapped profile. 
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Figure S8 – Average power gain of Bessel over Gaussian as a function of Zmax 

ENRF For Airy Beam. Next, we will focus on another type of particular non-spherical wave, the 

Airy beam, as it provides the most intriguing possibility for blockage avoidance. In the near field 

region, the Airy wavefront is both self-accelerating (its main lobe follows a curved trajectory in 

free space) and non-diffracting. Its 1D electric field profile can be modeled as: 

𝐸(𝑥, 𝑧) = 𝐴𝑖 1 %
%'
− 7!

)0!%':
+ 𝑖 T7

0%'!
3 𝑒8

-
!1$'!

	U $$'
	1	 -!

<1!$':
	A	T!V𝑒

=
$'
U%1 -!

!1!$'8
V   (S38) 

Figure S7 – Effective Near Field Range Simulation of Bessel Beam a. The simulated radiation 

behavior of a 3.5cm x3.5cm array configured to generate Bessel beams across different 𝑍P6% 

distances. 𝑍P6% is represented by the dash vertical lines b. The normalized intensity across the 

arrays’ geometric center. As the desired 𝑍P6%  increases, it is evident that the resulting intensity 

decays accordingly. 
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where  𝐴𝑖(⋅) is the Airy function. The truncation parameter 𝛼 represents the physical realization 

of Airy beams with finite aperture size (and therefore energy), 𝑥! is a transverse scale parameter 

that determines the curvature beam. To generate this wavefront, the array must exhibit amplitude 

control (as opposed to phase for most other beamtypes). Therefore, the electric field at the 

transmitter must resemble the electric field distribution 𝐸(𝑥, 0) = 𝐴𝑖 1 %
%'
3,	as shown in Figure 

S9. Under ideal infinite-power and infinite sized apertures, where 𝛼 = 0, the Airy Beam follows 

a propagating trajectory of 𝑥(𝑧) = 7!

)0!%'8
 . The parabolic trajectory can be tuned by varying 

parameter 𝑥!. An example radiation pattern of an Airy Beam is shown in Figure S10. 

Nonetheless, Eq. S38 assumes that minimal diffraction occurs and that the aperture is orders of 

magnitude larger than the wavelength. While true in optics, it is not necessarily valid in the sub-

THz regime. Additionally, self-acceleration and curving start at the transmit array, limiting the 

effectiveness of the curvature. Due to this, there is practical consideration in which where at a 

certain distance, the curvature enacted with the Airy Beam has a minimal effect. To illustrate we 

plot the curving trajectory of the Airy beams with various 𝑥!confiugrations in Figure S11. These 

Airy beams were generated at a center frequency of 125GHz and the array size fixed to 10cm. As 

observed, as one wants to generate a curved path originating at a farther distance, the resulting 

curvature is reduced. This implies a finite range in which any meaningful curvature can be 

obtained for object avoidance. With consideration of Airy beams, the ENFR should be defined as 

the maximum distance in which a desired curvature profile can be generated. 

 
Figure S9 – Amplitude profile of an Airy Beam – a. Two-dimensional Amplitude Profile b. 

One-dimensional amplitude profile 
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Figure S10 – Radiation Pattern of an Airy Beam, 𝒙𝒐= 4mm 

 

 

Figure S11 – ENFR Simulation of Airy Beam. Curving Trajectory Modeling of Air Beams 

with Finite Aperture Size 
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Supplementary Note IX. Distributed Wavefront Shaping 

Beyond Two Apertures 

Although we focused on two arrays for distributed wavefront shaping in the main text, we note 

that such calculations hold for any arbitrary set of arrays. Particularly, Eq.6 makes no assumption 

on the number of arrays and the ENFR can be calculated accordingly. To illustrate this, we 

present simulation results considering 3 arrays working together to create a focused beam. A 

depiction of their placement is illustrated in Figure S12.  Each array is 3.5cm x3.5cm with a 

separation of 4cm from each other. First, we plot its focusing gain at 125GHz across its radial 

map, as it was done in Figure 3 of the main text and is shown in Figure S13. Similar to the 

observations from two arrays, fluctuations from the focusing gain occur from the inconsistent 

superposition of the beamforming arrays. These fluctuations result in a more significant drop in 

beamforming power (increasing focusing gain) however from the higher coordination 

requirements. Nevertheless, we compare the	𝐸𝑁𝐹𝑅/X+ (from Eq.7 of the main text) of the single 

array and its 2-array counterparts in Fig.S14. As observed, as the number of transmitting arrays 

increase, so can 	𝐸𝑁𝐹𝑅/X+ .We note however this is dependent on the array separation and 

location and is not a strictly true. Based on the configuration of 3-distributed array, the 	𝐸𝑁𝐹𝑅/X+ 

now extends to 99.45cm, which is 282% higher than the 2 arrays and 448% higher than a the 

single array. More importantly, the 	𝐸𝑁𝐹𝑅/X+  is now on a comparable distance as the Fraunhofer 

distance (1.0215m). Such results imply that increasing the number of distributed arrays can 

provide significant improvement to the 	𝐸𝑁𝐹𝑅/X+.  

Figure S12 – Example Configuration of Distributed Wavefront Shaping with 3 arrays. 

Each arrays are placed equidistant with a separation of 4cm 
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Figure S13 – Radial Map of the Focusing Gain for Distributed arrays. Similar to the 

two-array scenario, the focusing gain is not only a function of distance but also steering 

angle.  

 

Figure S14 – Comparison of 𝑬𝑵𝑭𝑹𝒅𝒔𝒕 from different array configurations. As the 

number of apertures increases, the  𝐸𝑁𝐹𝑅/X+ also increases accordingly. Such an increase is 

not linear and depends on several factors. The errorbar represents the maximum reported 

ENFR at a particular angle. 
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Supplementary Note X. Impact of Array Separation 

 

 

In the main text, we focused our analysis on a fixed separation of 8cm (measured from center to 

center). However, we emphasize that the separation of the arrays impacts the ENFR. To illustrate 

this, we plot the focusing gain of two different distributed array configurations; both utilize two 

3.5cm x 3.5cm arrays at 125GHz but each setup has a separation of 8cm and 16cm respectively. 

A side-by-side comparison in Figure S15 reveals that increasing the separation increases the 

overall fluctuations over the radial maps. This mainly results from the fact that as the arrays 

becomes less co-located, their transmission ranges correlate less, and the constructive/destructive 

interference varies more. Nevertheless, these fluctuations result in focusing gains that are lower 

in magnitude. Thus, results imply that careful calibration between the arrays is even more crucial 

when a receiver is placed off-boresight. However, when a receiver is placed in the geometric 

center of two arrays (broadsight) where perfectly constructive interference is ensured for 

distributed beamforming, we see a clearer trend of the ENFR. In Figure S16, we plot the ENFR 

at broadside at different separations. We report the separation as a percentage of its subarray 

dimensions (3.5cm). Here, we see the ENFR degrading to half of its maximum range after a 

separation of 600% (21 cm).  These results thus imply that as the separation between the arrays 

increases, its ENFR decreases. 

Figure S15 – Radial Map of Focusing Gain of 
Two Distributed Apertures – a. Array 
Separation:8cm b. Array Separation:16cm 

Figure S16 – ENFR Measurement 
of Distributed Arrays at Broadside 
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