

1 **SUPPLEMENTARY INFORMATION**

2 **NLRP3, conveyed via extracellular vesicles from metabolic syndrome patients,  
3 is involved in atherosclerosis development**

4 Xavier Vidal-Gómez<sup>1,2</sup>; Luisa Vergori<sup>2</sup>; Severine Dubois<sup>3</sup>; Frédéric Gagnadoux<sup>2,3</sup>;

5 Samir Henni<sup>3</sup>; Reuben Veerapen<sup>4</sup>; Olivier Meilhac<sup>5</sup>; Mercedes Muñoz-Picos<sup>2</sup>;

6 Concepción Peiró<sup>6</sup>; M Carmen Martinez<sup>1,2</sup>; Ramaroson Andriantsitohaina<sup>\*1,2</sup>; On

7 behalf of Metabol Study Group

8 **Contents:**

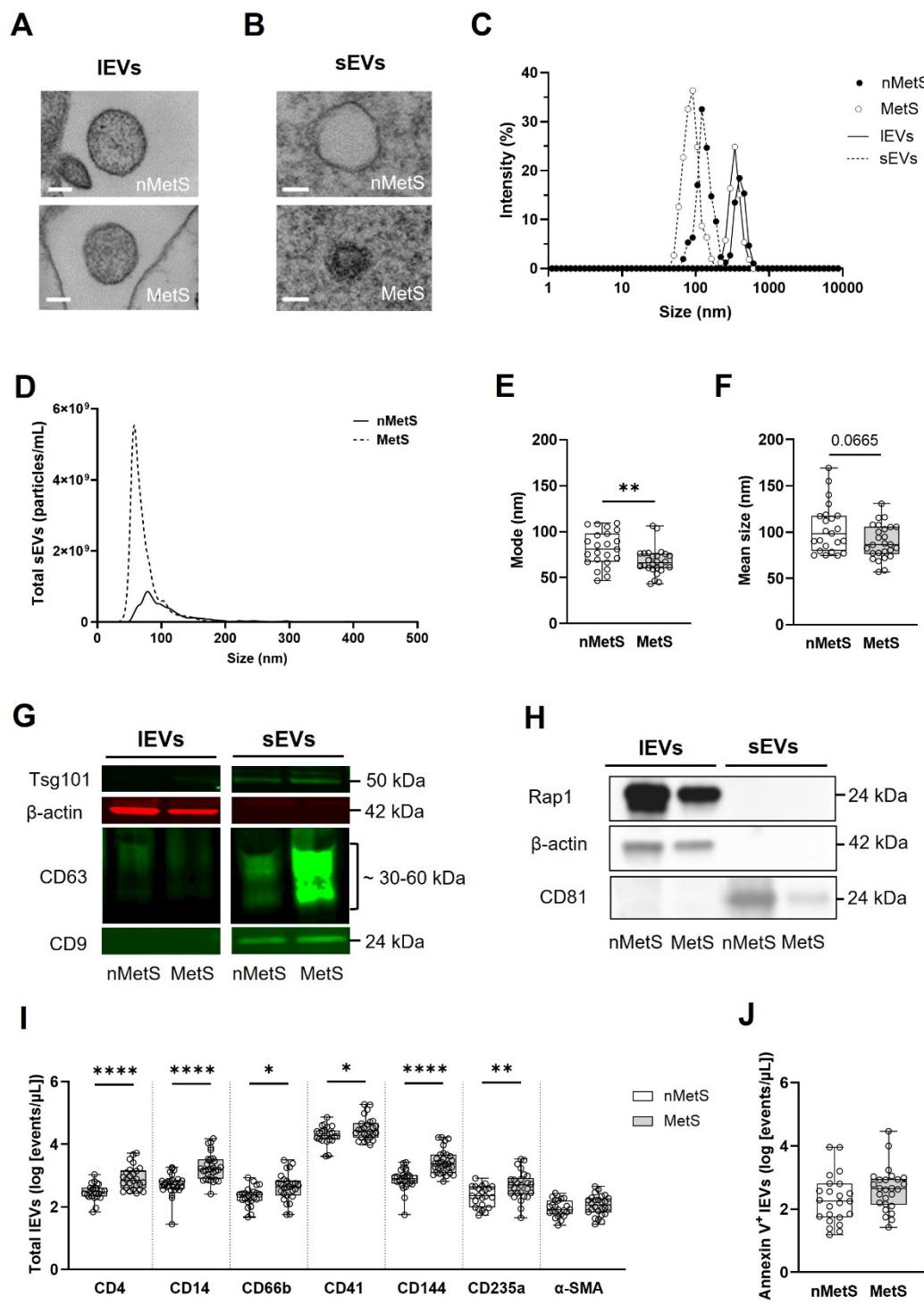
- 9 • Supplementary Tables 1-2
- 10 • Supplementary Figures 1-8
- 11 • Full unedited Gels (Independent related PDF file)

1 **Supplementary Table 1. Pearson correlation coefficients (r-value) for the relation**  
 2 **of plasma circulating IEVs (Total IEVs) and sEVs (Total sEVs) with the clinical**  
 3 **parameters of all the subjects used in the present study.** r-values and p-values in  
 4 bold are considered statistically significant (p-value  $\leq 0.05$ ). BMI = Body mass index,  
 5 HbA1c = glycated haemoglobin, CRP = C-reactive protein

6

|                                   | Total IEVs |               |               | Total sEVs |               |               |
|-----------------------------------|------------|---------------|---------------|------------|---------------|---------------|
|                                   | n          | r-value       | p-value       | n          | r-value       | p-value       |
| <b>Anthropomorphic parameters</b> |            |               |               |            |               |               |
| Age (years)                       | 49         | -0.1494       | 0.3056        | 44         | -0.2700       | 0.0746        |
| Body weight (kg)                  | 49         | 0.0933        | 0.5238        | 44         | 0.1000        | 0.5093        |
| Height (cm)                       | 49         | -0.0650       | 0.6571        | 44         | -0.1100       | 0.4685        |
| Waist circumference (cm)          | 49         | 0.0531        | 0.7169        | 44         | 0.1500        | 0.3421        |
| Hip circumference (cm)            | 49         | 0.1071        | 0.4640        | 44         | 0.1300        | 0.4147        |
| BMI (kg/m <sup>2</sup> )          | 49         | 0.1151        | 0.4312        | 44         | 0.1900        | 0.2145        |
| <b>Cardiovascular parameters</b>  |            |               |               |            |               |               |
| Systolic blood pressure (mmHg)    | 49         | 0.1874        | 0.1973        | 44         | 0.2300        | 0.1325        |
| Diastolic blood pressure (mmHg)   | 49         | <b>0.3369</b> | <b>0.0179</b> | 44         | 0.2300        | 0.1390        |
| Heart rate (bpm)                  | 47         | 0.0326        | 0.8276        | 42         | 0.1700        | 0.2756        |
| <b>Metabolic parameters</b>       |            |               |               |            |               |               |
| HbA1c (% of total Hb)             | 48         | -0.0801       | 0.5885        | 43         | 0.0200        | 0.8891        |
| Glycemia (g/L)                    | 49         | 0.2102        | 0.1471        | 44         | <b>0.3300</b> | <b>0.0292</b> |
| Insulinemia (mU/L)                | 11         | <b>0.8793</b> | <b>0.0004</b> | 11         | 0.3800        | 0.2541        |
| HOMA index                        | 11         | <b>0.8700</b> | <b>0.0005</b> | 11         | 0.3800        | 0.2471        |
| CRP (mg/L)                        | 8          | -0.1407       | 0.7397        | 8          | 0.1100        | 0.8005        |
| <b>Lipid profile</b>              |            |               |               |            |               |               |
| Total cholesterol (g/L)           | 49         | 0.0262        | 0.8583        | 44         | 0.0410        | 0.7937        |
| HDL-cholesterol (g/L)             | 49         | -0.1317       | 0.3669        | 44         | -0.2400       | 0.1159        |
| LDL-cholesterol (g/dL)            | 49         | -0.0976       | 0.5048        | 44         | 0.0480        | 0.7554        |
| Triglycerides (g/dL)              | 49         | <b>0.3212</b> | <b>0.0244</b> | 44         | 0.1800        | 0.2490        |
| <b>Cardiovascular risk</b>        |            |               |               |            |               |               |
| Triglyceride/Glucose ratio        | 49         | 0.1502        | 0.3030        | 44         | 0.1900        | 0.2074        |
| Triglyceride/HDL-c ratio          | 49         | 0.2773        | 0.0538        | 44         | 0.2000        | 0.2011        |

1 **Supplementary Table 2. Non-significant Pearson correlation coefficients (r-**  
 2 **value) for the relation of plasma circulating NLRP3<sup>+</sup> IEVs with clinical parameters**  
 3 **of all the subjects used in the present study.** No correlations of circulating NLRP3<sup>+</sup>  
 4 sEVs were evaluated. r-values and p-values in bold are considered statistically  
 5 significant (p-value  $\leq 0.05$ ).


|                                   | NLRP3 <sup>+</sup> IEVs |         |         |
|-----------------------------------|-------------------------|---------|---------|
|                                   | n                       | r-value | p-value |
| <b>Anthropomorphic parameters</b> |                         |         |         |
| Age (years)                       | 49                      | -0.1685 | 0.2471  |
| Height (cm)                       | 49                      | -0.0912 | 0.5339  |
| <b>Cardiovascular parameters</b>  |                         |         |         |
| Systolic blood pressure (mmHg)    | 49                      | 0.1514  | 0.2991  |
| Heart rate (bpm)                  | 47                      | 0.1479  | 0.3213  |
| <b>Lipid profile</b>              |                         |         |         |
| Total cholesterol (g/L)           | 49                      | -0.0918 | 0.5306  |
| LDL-cholesterol (g/dL)            | 49                      | -0.1678 | 0.2491  |

6

7

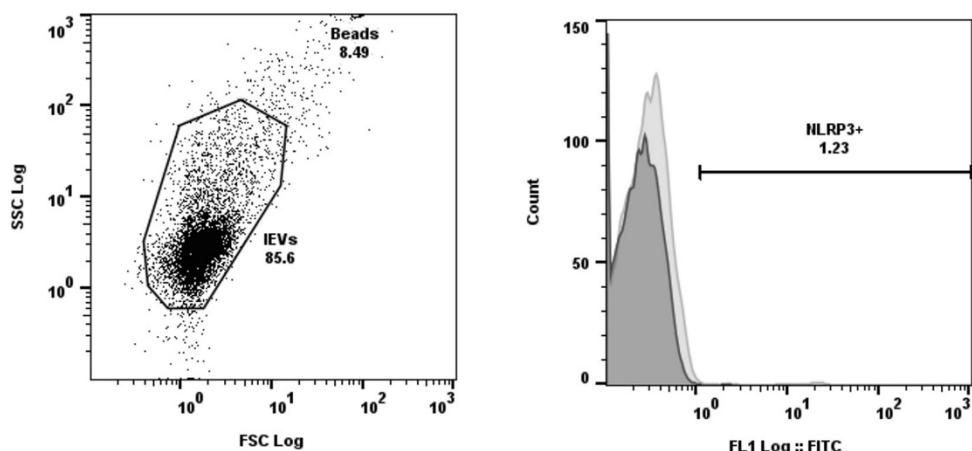
## Supplemental Figure 1

(Vidal-Gomez et al.)



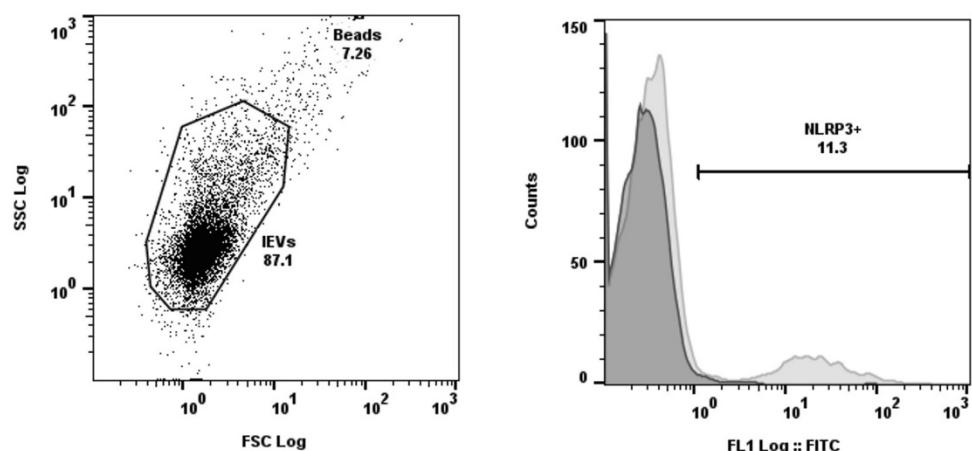
1 **Supplementary Figure 1. Characterization of IEVs and sEVs from non-metabolic**  
 2 **syndrome (nMetS) subjects and metabolic syndrome (MetS) patients. A-B,**  
 3 **Representative transmission electron microscopy images of IEVs (A) and sEVs (B).**

1 Scale-bar size: 200 and 50 nm, respectively. C, Representation of the mean size  
2 distribution of IEVs and sEVs from nMetS subjects (n=3) and MetS (n=3) patients  
3 analyzed by Zeta-sizer Nano. D, Graphical representation of the mean size distribution  
4 profile obtained by nanotracking analysis (NTA) of purified sEVs from a nMetS subject  
5 (0 criterion) and a MetS patient (5 criteria). E and F, NTA resulting values of mode (E)  
6 and mean (F) size of circulating sEVs from nMetS (n=23) and MetS (n=26) patients. G  
7 and H, Representative blot images of differential expression of specific EV markers on  
8 nMetS and MetS samples. I and J, Cellular origins (I) and annexin V<sup>+</sup> (pro-coagulant  
9 EVs, J) of IEVs from nMetS (n=23) and MetS (n=26) patients. Data are shown as  
10 medians and interquartiles of the log of [IEVs/µL]. Mann-Whitney U test for E and F,  
11 and unpaired Student's t-test for I to J. \* $p<0.05$ , \*\* $p<0.01$ , and \*\*\*\* $p<0.0001$ .


12

## Supplemental Figure 2

(Vidal-Gomez et al.)


**A**

Non-permeabilized



**B**

After saponin-permeabilisation



1

2 **Supplementary Figure 2. Flow cytometry gating strategy for NLRP3<sup>+</sup>-large EVs**

3 **(IEVs) numeration and specific markers expression.** Non-permeabilized (A) or

4 permeabilized plasmatic IEVs after treatment with saponin (B) and counting beads

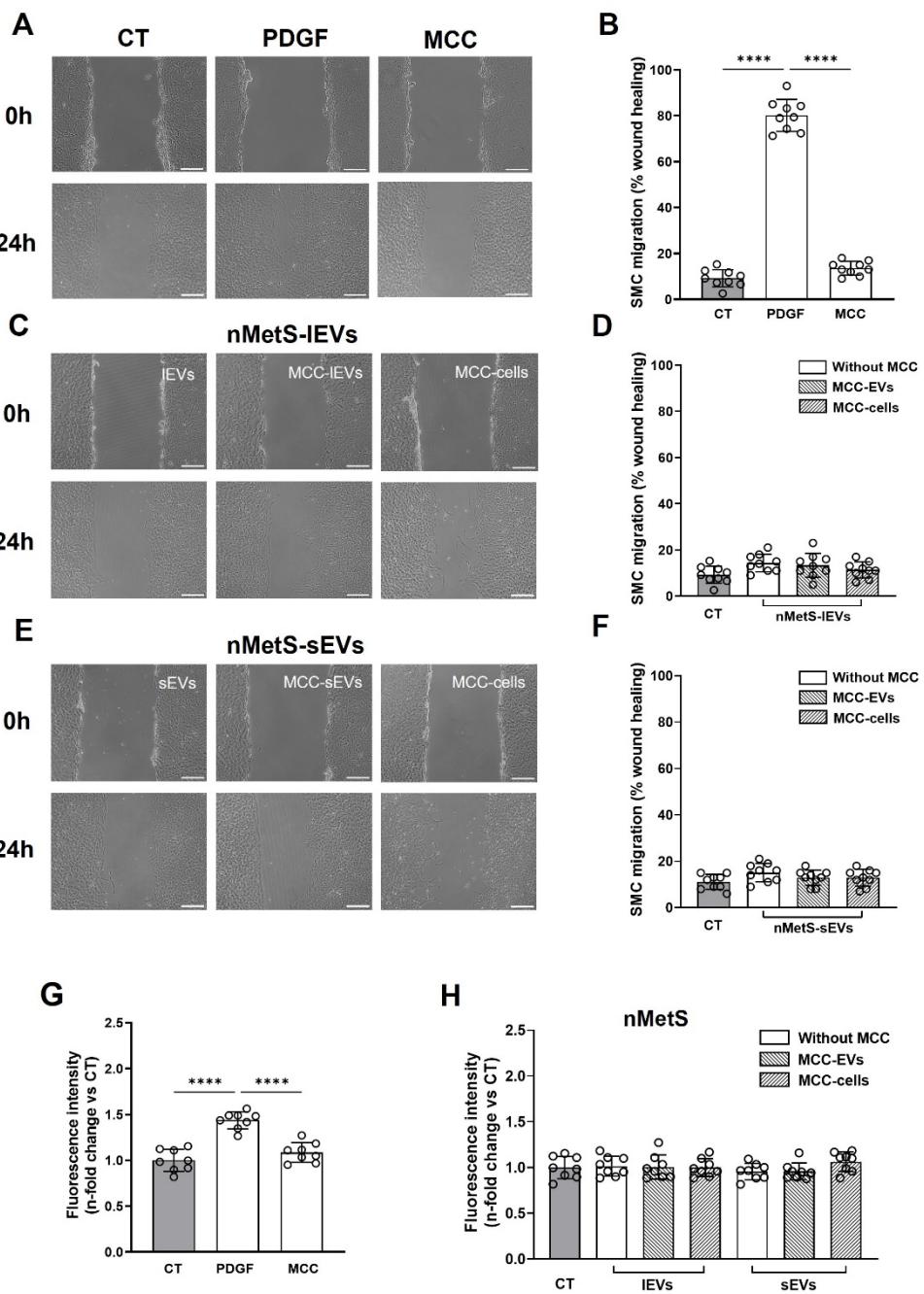
5 (beads, 10  $\mu$ m diameter) are visualized in a side scatter/forward scatter logarithmic

6 representation (SSC Log vs. FSC Log) and the resulting NLRP3-labelling analysis.

7 IEVs are defined as events with size 0.1 to 1 mm gated in the "IEVs" window. The

8 percentages show the number of positive events for staining of plasma IEVs visualized

- 1 by plotting NLRP3 marker (light gray) (x-axis) versus total events (y-axis) and gated
- 2 based on isotype control (dark gray).

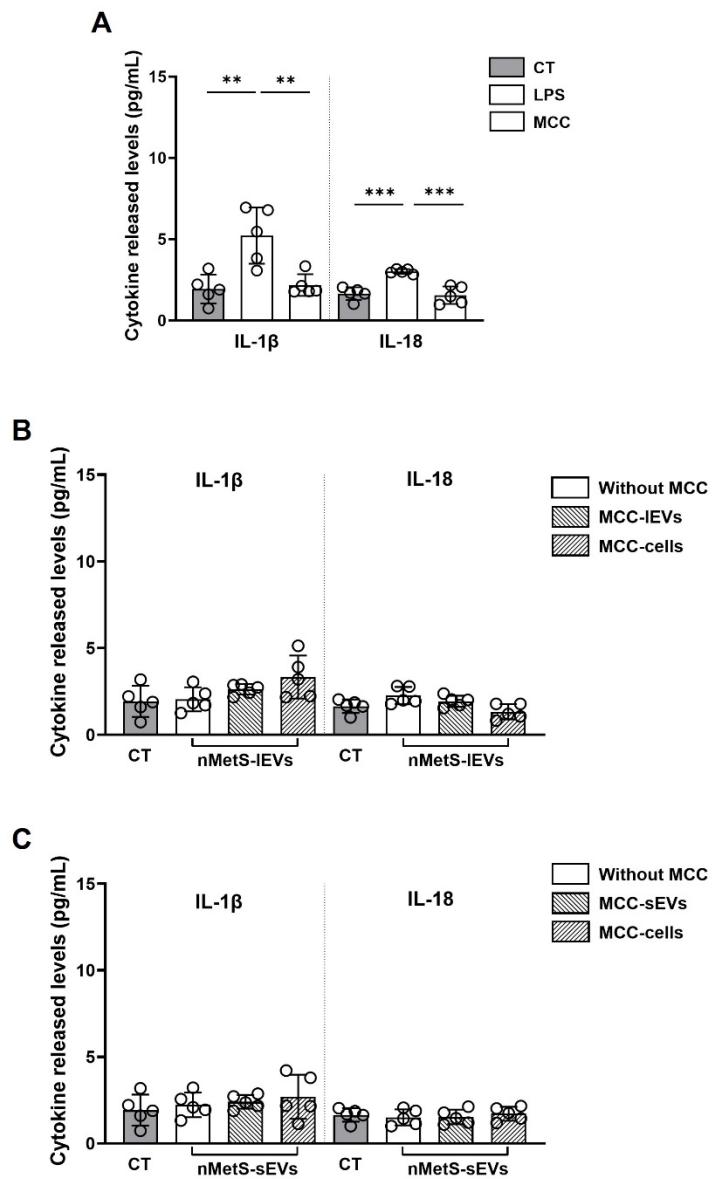

### Supplemental Figure 3

(Vidal-Gomez et al.)



## Supplemental Figure 4

(Vidal-Gomez et al.)




1

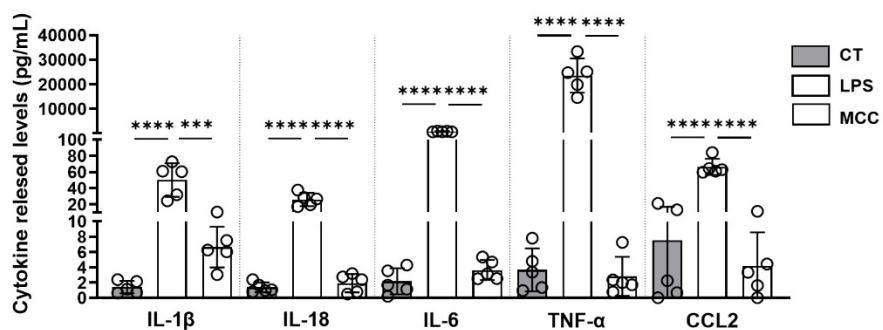
2 **Supplementary Figure 4. Effects of PDGF, MCC950 and non-metabolic syndrome**  
3 **(nMetS)-extracellular vesicles (EVs) on smooth muscle cell (SMC) migration and**  
4 **proliferation.** A-F, Representative microscopic images and quantification of SMC  
5 migration in response to (A-B) PDGF (25  $\mu$ g/mL) or MCC950 (MCC, 1  $\mu$ g/mL), (C-D)  
6 large EVs (IEVs) or (E-F) small EVs (sEVs) from nMetS subjects. EVs (MCC-EVs) or

1 cells (MCC-cells) were pre-incubated with MCC (1  $\mu$ g/mL) (n=9, scale-bar size: 200  
2  $\mu$ m). G and H, Effects of PDGF (G), MCC, (H) IEVs or sEVs from nMetS subjects on  
3 the number of SMC measured by CyQuant Kit. EVs (MCC-EVs) or cells (MCC-cells)  
4 were pre-incubated with MCC (1  $\mu$ g/mL). Histograms show the fold-change to the  
5 control (CT) on fluorescence intensity representing the changes in cell number (n=8).  
6 Data are expressed as mean  $\pm$  SD. Statistical significance was tested with 1-way  
7 ANOVA and Tukey post hoc test between all conditions for each panel. \*\*\*\*p<0.0001.  
8

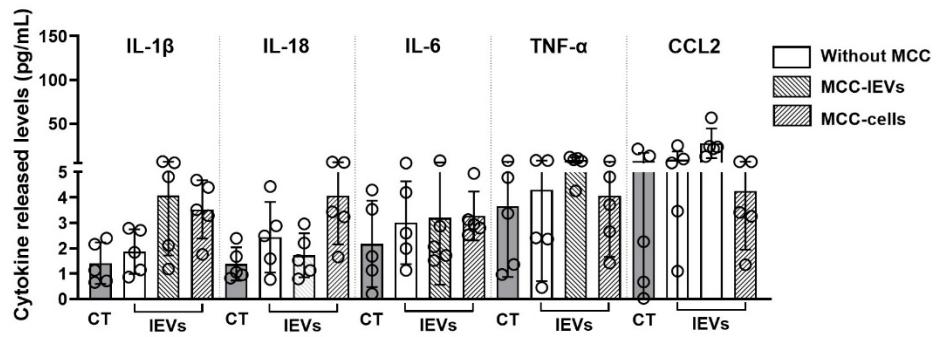
**Supplemental Figure 5**  
(Vidal-Gomez et al.)



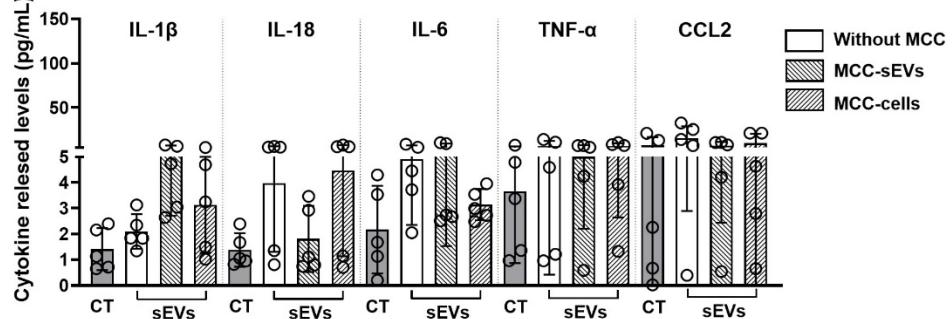
1


2 **Supplementary Figure 5. Effects of lipopolysaccharide (LPS), MCC950 and non-**  
 3 **metabolic syndrome (nMetS)-extracellular vesicles (EVs) on smooth muscle cell**  
 4 **(SMC) secretion of interleukin (IL)-1 $\beta$  and IL-18.** Secretion of IL-1 $\beta$  and IL-18 by  
 5 SMC in response to (A) LPS (5 $\mu$ g/mL) and (MCC, 1  $\mu$ g/mL), (B) large EVs (IEVs) or  
 6 (C) small EVs (sEVs) from nMetS subjects in the absence or after MCC preincubation  
 7 of EVs (MCC-EVs) or previous MCC treatment of cells (MCC-cells). Histograms show  
 8 the normalized fold-change to the control (CT) on cytokine release representing the

1 changes in IL-1 $\beta$  and IL-18 levels (n=5). Data are presented as mean  $\pm$  SD. Statistical  
2 significance was tested with 1-way ANOVA and Tukey post hoc test between all  
3 conditions for each panel. \*\* $p$ <0.01 and \*\*\* $p$ <0.001.


## Supplemental Figure 6

(Vidal-Gomez et al.)


**A**



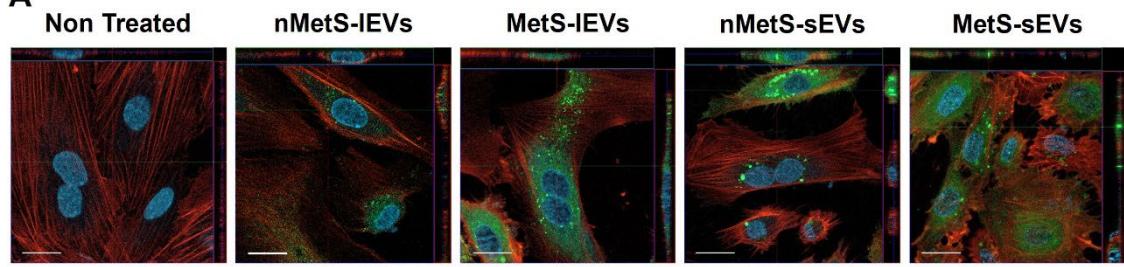
**B**



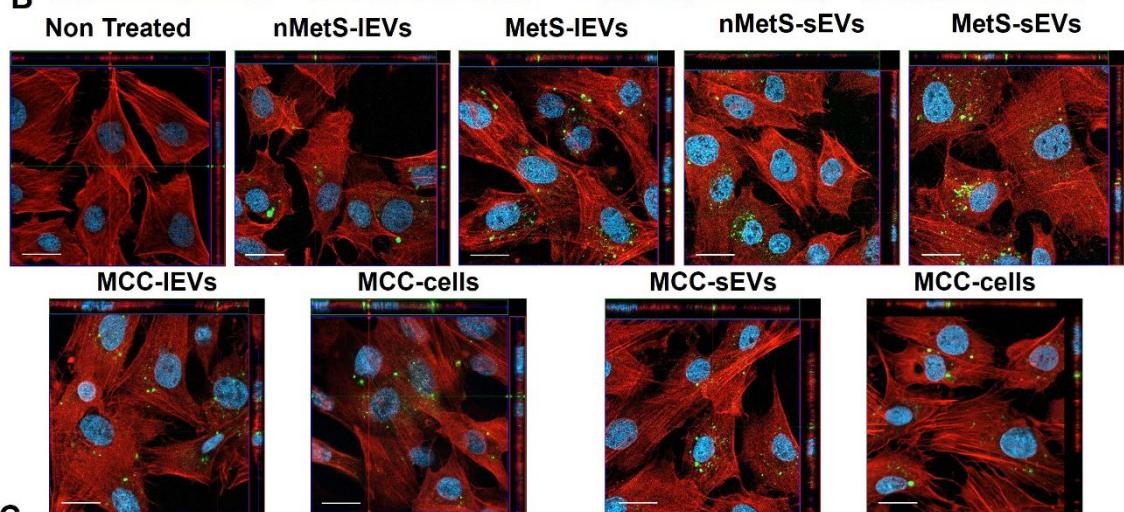
**C**



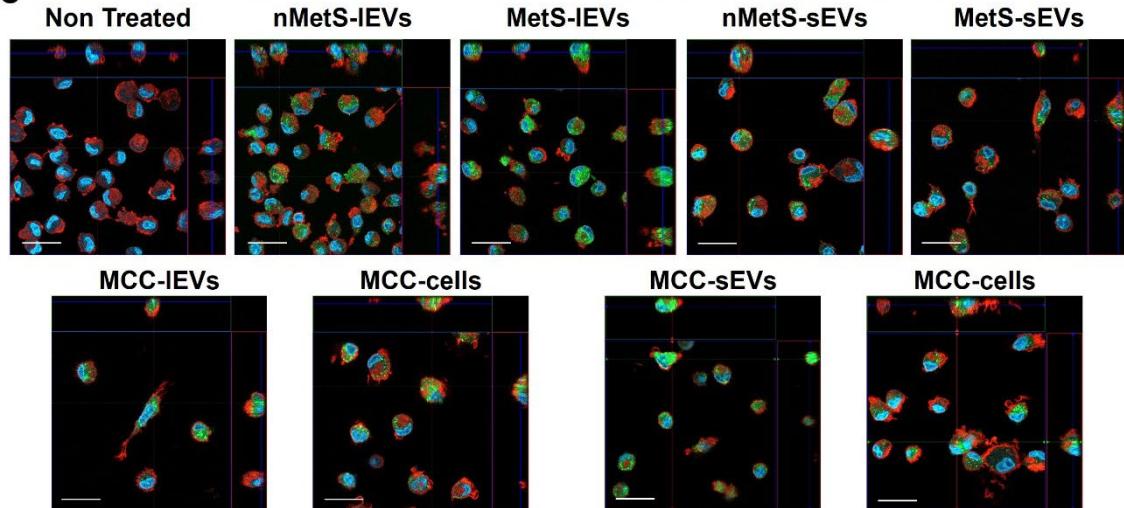
1


2 **Supplementary Figure 6. Effect of lipopolysaccharide (LPS), MCC950 and non-**  
 3 **metabolic syndrome (nMetS)-extracellular vesicles (EVs) on macrophage**  
 4 **proinflammatory cytokine secretion.** Cytokine secretion by human monocyte-  
 5 derived macrophages in response to (A) LPS (1  $\mu$ g/mL) and MCC950 (MCC, 1  $\mu$ g/mL),  
 6 (B) large EVs (IEVs) or (C) small EVs (sEVs) from nMetS subjects in the absence or  
 7 after MCC preincubation of EVs (MCC-EVs) or previous MCC treatment of cells (MCC-  
 8 cells). Histograms show the fold-change to the control (CT) of cytokine release

1 representing the changes in interleukin (IL)-1 $\beta$ , IL-18, IL-6, tumor necrosis factor  
2 (TNF)- $\alpha$ , and chemokine (C-C motif) ligand 2 (CCL2) levels (n=5). Data are expressed  
3 as mean  $\pm$  SD. Statistical significance was tested with 1-way ANOVA and Tukey post  
4 hoc test between all conditions for each panel. \*\*\*\*p<0.001.


## Supplemental Figure 7

(Vidal-Gomez et al.)


A

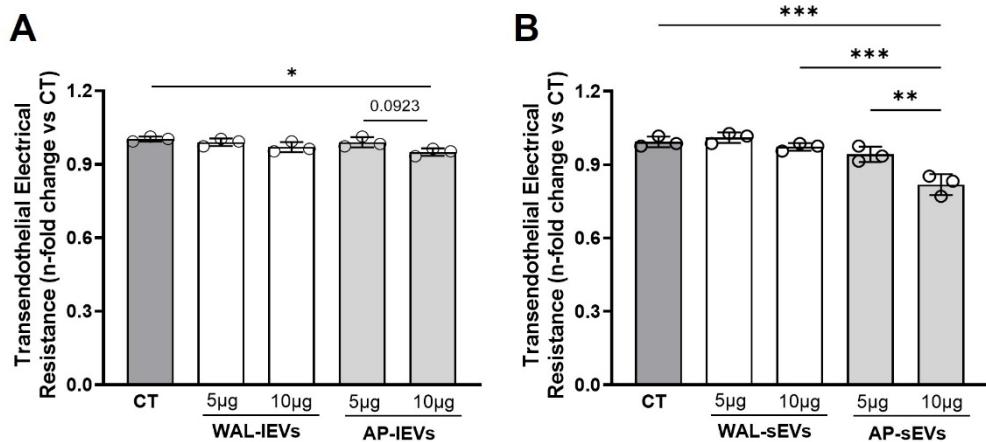


B



C




1

2 **Supplementary Figure 7. Internalization of large (IEVs) or small extracellular**  
3 **vesicles (sEVs) from non-metabolic syndrome (nMetS) and metabolic syndrome**

1 **(MetS) patients by cells.** Representative confocal images of PKH67-labeled EVs from  
2 nMetS and MetS (in green) internalized into human aortic endothelial cells (A), human  
3 aortic smooth muscle cells (B) and human monocyte-derived macrophages (C), in the  
4 absence of the NLRP3 inhibitor MCC950 (MCC, 1  $\mu$ mol/L) or after the pre-incubation  
5 of EVs (MCC-IEV and MCC-sEVs) or cells (MCC-cells). Cells were labelled with  
6 Phalloidin-A568 (in red), nucleus of cells with Dapi (in blue) (n=3). Horizontal scale bar  
7 =20  $\mu$ m.

## Supplemental Figure 8

(Vidal-Gomez et al.)



1

2 **Supplementary Figure 8. Effects of extracellular vesicles (EVs) from human**

3 **atherosclerotic plaque (AP) on endothelial permeability.** Changes on endothelial

4 permeability measured by transendothelial electrical resistance induced by IEVs (A)

5 and sEVs (B) from wall adjacent to the lesion (WAL) and AP (5 and 10 µg/mL) (n=3).

6 Statistical significance was tested with 1-way ANOVA and Tukey post hoc test between

7 all conditions for each panel. \*p<0.05, \*\*p<0.01 and \*\*\*p<0.001.