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Supplementary Information: Regression methods

In the general case, we denote Y € R" the predictand, which corresponds to the AMV index,
and x € R™P, which corresponds to the matrix of observations from p proxy records
associated to the observations of Y. We then denote x' € R™*?, other observations for
which we search to reconstruct Y. Each regression method needs to optimise one or more
statistical parameters. For example, for PCR, the reconstruction is highly sensitive to the
number of Principal Components used for regressing the climate index. Hence, each of these
statistical parameters are optimized using K-Fold cross validation metric (KFCF, with K=10 in
this study) (cf. Methods, section “K-Fold cross-validation (KFCV)”)*"%8,

- Principal Components Regression (PCR):

The PCR* consists in finding the best linear combination to regress Y using the principal
components of x. We denote § = xTx € RP*P, the variance-covariance matrix of x, where
xT is the transposed vector of x. The eigenvectors of S, or Empirical Orthogonal Functions
(EOFs), denoted V = (vj)lsjsp, are obtained by diagonalising S, which is equivalent to
calculate the EOFs such that the variance of the projection of x on themselves is maximized.
The Principal Components (PCs), denoted U = (uj)lstpf are calculated by projecting x on
V:U = xV. Using KFCV (cf. Methods, section “K-Fold cross-validation (KFCV)”), we determine
q < p PCs kept for the regression. The PCR model is constructed by estimating the best linear
regression between (Ul,..., U?) and Y. The linear regression model is:

Y =By + B UM... +B,U? + €, where ¢ is a gaussian white noise.

B = (Bx)o<k<qis estimated by B = (.ék)osksq: defined as the Ordinary Least Squares
estimator. The extended AMV index is obtained by applying the estimated regression
coefficients to the projected new observations on the EOFs:

Y, = Bo + BLU...+p,U9



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

- Partial Least Squares (PLS):

PLS regression50 is an alternative to the PCR, where the EOFs, are calculated such that they
are orthogonal and that the covariance between Y and the projection of x on the EOFs is
maximized. To do so, we need to resolve the following dependent equations:
1 _
v’ = arg max Cov(Y,Xv)
lv|=1
2 _
ve = arg max Cov(Y,Xv)
[v|=1
vIvl=0
P =
v arg max Cov(Y,Xv)
lv|=1
vTv_.l.:O
vIvp—1=0
Analogously to the PCR, the latent variables (LVs; PCs analog in PLS) are calculated by
projecting X on the matrix V = (vj)lsjsp: U = xV. Using KFCV (cf. Methods, section “K-Fold
Cross-Validation (KFCV)”), we determine [ < p LVs kept for the regression. We then construct

the regression model by estimating the best linear regression between (U%,...,U)and Y:

Y =By + B UMA... +B,U%+¢e where € is a gaussian white noise.

B = (Bx)o<k<qis estimated by g = (ﬁk)osksq, the Ordinary Least Squares estimator. The
extended AMV index is then obtained by applying the estimated regression coefficients to
the projected new observations on the EOFs:

Y, = Bo + pLU+...+p,U1
- Elastic Net regression (Enet):

In the multiple regression case, ﬁ = (ﬁo,...,ﬁp)is estimated by the Ordinary Least Squares
estimator. This usual regression is known to often result in a poor reconstruction accuracy
due to several assumptions made on the original data, such as homoscedasticity. Previous
studies developed regularized regression approaches to overcome the OLS defaults. The

Elastic Net regression”! is a combination of the Ridge regression and the Lasso regression.
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The Ridge regression shrinks towards zero the estimated coefficients associated to predictors
unlinked to the predictand. By contrast, Lasso also reduces the variability of the estimates,
but in this case by shrinking to zero the estimated coefficients associated to unreliable
variables. Hence, a selection is made by rejecting variables associated to coefficients shrunk
to zero.

A regularized regression adds a threshold constraint using the [norm of B:||B|I¥ =
|k

f=1|ﬂj . With k=1 for Lasso and k=2 for Ridge. The loss function of Elastic Net is given by:

P 2 p P
Lenet(ﬁ) =|ly _ZBij + 1 Z|BJ| +/122ﬁj2
=1 5 j=1 j=1

Where, A4, and A, are penalty factors.
Let w = (Wj)1<j<p = (5gn(B;))1<j<p, Where sgn is the sign function. The loss function can
then be denoted as:

Lt = IY = XBI3 + 4w + 1,67

The estimated coefficients by minimizing the loss functions are:

al
W)

peret = (XTX + (1 —a)AD1(XTY —
Where a € [0,1]. If @ = 1, a Ridge regression is performed, and if @ = 0, a Lasso regression
is performed.

The reconstruction is obtained by applying the estimated regression coefficients ﬁe"et on
xt,...,xP.

~ ] A~

Ve = Z?:lx ﬁjenet
The optimization of a and A is performed using KFCV (cf. Methods, section “K-Fold cross-

validation (KFCV)”) for both by crossing different possible values for each of them. As they

respectively take their values in the continuous sets [0,1] and RP, they have to be
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discretized. The more they are, the more robust the reconstruction will be, at the expanse of
the computational time.

Random Forest (RF):

The RF regression has been introduced in the early 21 century®? and consists in aggregating
regression trees.

We denote each set of predictand/predictor {(Y;, x;)}1<i<n PUt ON the root of the tree. The
first step consists in cutting that root in two child nodes. A cut is defined as: {x/ < d} U
{x/ > d}. Where j € {1,...,p}and d € R. Cutting a node with {x/ < d}U {x/ > d}, means
that the years of observations for which the j* value of the proxy record is lower than d are
placed in the left child node c;and the others in the right child node ¢,. The method selects
the best pair (j, d) that minimizes a loss function. Here, we aim at minimizing the variance of

Yin each child node. The variance of a given node c is defined as:

> -

it X{€c

Where ¥, = ;Zi:XiEc Y.

card(c)

Two subsets of {(Y;,%;)1<i<n} are thus obtained through the optimal cut: {(¥;, %;);ec,} and
{(Yo X iec, -

The same procedure is recursively applied to the child nodes c;and c¢,. We then stop these
recursive calculations when a chosen depth of the tree is reached.

There exists different kind of regression trees* in random forest, the commonly used
regression trees are called random-input regression trees. It consists in only a randomly
selected set of g < pvariables between (xj)lsjsp used for constructing the tree. A large

number of K random-input regression trees is computed. For each tree, g < p proxy records

are randomly selected with probability %and the method is applied until the depth of the
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tree reaches m. It should be noted that for each tree, the g selected variables can contain
variables not used if it does not give any optimal cut through the different nodes. Thereby, a
single variable can be used more than one time in the same tree.

The reconstruction is obtained by splitting each testing series in the different random input
regression trees previous constructed. In each tree, the estimation attributed to an
observation is the empirical average of Y inside the node where the corresponding
observation ends up, given the cuts made on the corresponding predictors. For each testing
series, the K reconstructions are averaged to give the final reconstruction.

A priori, this method requires the optimization of two parameters: the number of trees K and
the number of proxy records for each tree m. In practice, K does not require to be tuned, as
long as K is large given p, which guarantees convergent reconstructions for a given m. mis
the only parameter to optimize here. KFCV (cf. Methods, section “K-Fold Cross-Validation
(KFCV)") is then applied to optimize m, with a high K (here set to 200, different K than the
KFCV one), to empirically select the best RF model.

We here simplified the Random Forests theory such that only the main steps are presented.

However, this theory is complex and for more information, the reader can refer to ref. 52.



