

1 Supplementary Information: Regression methods

2 In the general case, we denote $Y \in \mathbb{R}^n$ the predictand, which corresponds to the AMV index,
3 and $x \in \mathbb{R}^{n \times p}$, which corresponds to the matrix of observations from p proxy records
4 associated to the observations of Y . We then denote $x' \in \mathbb{R}^{m \times p}$, other observations for
5 which we search to reconstruct Y . Each regression method needs to optimise one or more
6 statistical parameters. For example, for PCR, the reconstruction is highly sensitive to the
7 number of Principal Components used for regressing the climate index. Hence, each of these
8 statistical parameters are optimized using K-Fold cross validation metric (KFCF, with K=10 in
9 this study) (cf. Methods, section “K-Fold cross-validation (KFCV)”)^{49,97,98}.

10 - Principal Components Regression (PCR):

11 The PCR⁴⁹ consists in finding the best linear combination to regress Y using the principal
12 components of x . We denote $S = x^T x \in \mathbb{R}^{p \times p}$, the variance-covariance matrix of x , where
13 x^T is the transposed vector of x . The eigenvectors of S , or Empirical Orthogonal Functions
14 (EOFs), denoted $V = (v^j)_{1 \leq j \leq p}$, are obtained by diagonalising S , which is equivalent to
15 calculate the EOFs such that the variance of the projection of x on themselves is maximized.
16 The Principal Components (PCs), denoted $U = (u^j)_{1 \leq j \leq p}$, are calculated by projecting x on
17 V : $U = xV$. Using KFCV (cf. Methods, section “K-Fold cross-validation (KFCV)”), we determine
18 $q \leq p$ PCs kept for the regression. The PCR model is constructed by estimating the best linear
19 regression between (U^1, \dots, U^q) and Y . The linear regression model is:

20 $Y = \beta_0 + \beta_1 U^1 + \dots + \beta_q U^q + \varepsilon$, where ε is a gaussian white noise.

21 $\beta = (\beta_k)_{0 \leq k \leq q}$ is estimated by $\hat{\beta} = (\hat{\beta}_k)_{0 \leq k \leq q}$, defined as the Ordinary Least Squares
22 estimator. The extended AMV index is obtained by applying the estimated regression
23 coefficients to the projected new observations on the EOFs:

$$\hat{Y}_q = \hat{\beta}_0 + \hat{\beta}_1 U^1 + \dots + \hat{\beta}_q U^q$$

24 - Partial Least Squares (PLS):

25 PLS regression⁵⁰ is an alternative to the PCR, where the EOFs, are calculated such that they
26 are orthogonal and that the covariance between Y and the projection of x on the EOFs is
27 maximized. To do so, we need to resolve the following dependent equations:

$$\begin{aligned}v^1 &= \arg \max_{\substack{\nu \in \mathbb{R} \\ |\nu|=1}} \text{Cov}(Y, X\nu) \\v^2 &= \arg \max_{\substack{\nu \in \mathbb{R} \\ |\nu|=1 \\ v^T v^1 = 0}} \text{Cov}(Y, X\nu) \\&\dots \\v^p &= \arg \max_{\substack{\nu \in \mathbb{R} \\ |\nu|=1 \\ v^T v^1 = 0 \\ \dots \\ v^T v^{p-1} = 0}} \text{Cov}(Y, X\nu)\end{aligned}$$

28
29 Analogously to the PCR, the latent variables (LVs; PCs analog in PLS) are calculated by
30 projecting X on the matrix $V = (v^j)_{1 \leq j \leq p}$: $U = xV$. Using KFCV (cf. Methods, section “K-Fold
31 Cross-Validation (KFCV)”), we determine $l \leq p$ LVs kept for the regression. We then construct
32 the regression model by estimating the best linear regression between (U^1, \dots, U^l) and Y :

33 $Y = \beta_0 + \beta_1 U^1 + \dots + \beta_q U^q + \varepsilon$ where ε is a gaussian white noise.

34 $\beta = (\beta_k)_{0 \leq k \leq q}$ is estimated by $\hat{\beta} = (\hat{\beta}_k)_{0 \leq k \leq q}$, the Ordinary Least Squares estimator. The
35 extended AMV index is then obtained by applying the estimated regression coefficients to
36 the projected new observations on the EOFs:

$$\hat{Y}_q = \hat{\beta}_0 + \hat{\beta}_1 U^1 + \dots + \hat{\beta}_q U^q$$

37 - Elastic Net regression (Enet):

38 In the multiple regression case, $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ is estimated by the Ordinary Least Squares
39 estimator. This usual regression is known to often result in a poor reconstruction accuracy
40 due to several assumptions made on the original data, such as homoscedasticity. Previous
41 studies developed regularized regression approaches to overcome the OLS defaults. The
42 Elastic Net regression⁵¹ is a combination of the Ridge regression and the Lasso regression.

43 The Ridge regression shrinks towards zero the estimated coefficients associated to predictors
 44 unlinked to the predictand. By contrast, Lasso also reduces the variability of the estimates,
 45 but in this case by shrinking to zero the estimated coefficients associated to unreliable
 46 variables. Hence, a selection is made by rejecting variables associated to coefficients shrunk
 47 to zero.

48 A regularized regression adds a threshold constraint using the l_k norm of β : $\|\beta\|_k^k =$
 49 $\sum_{j=1}^k |\beta_j|^k$. With $k=1$ for Lasso and $k=2$ for Ridge. The loss function of Elastic Net is given by:

$$L^{enet}(\beta) = \left\| Y - \sum_{j=1}^p \beta_j X^j \right\|_2^2 + \lambda_1 \sum_{j=1}^p |\beta_j| + \lambda_2 \sum_{j=1}^p \beta_j^2$$

50 Where, λ_1 and λ_2 are penalty factors.

51 Let $w = (w_j)_{1 \leq j \leq p} = (sgn(\beta_j))_{1 \leq j \leq p}$, where sgn is the sign function. The loss function can
 52 then be denoted as:

$$53 \quad L^{enet} = \|Y - X\beta\|_2^2 + \lambda_1 w^T \beta + \lambda_2 \beta^T \beta$$

54 The estimated coefficients by minimizing the loss functions are:

$$55 \quad \hat{\beta}^{enet} = (X^T X + (1 - \alpha) \lambda I)^{-1} (X^T Y - \frac{\alpha \lambda}{2} w)$$

56 Where $\alpha \in [0,1]$. If $\alpha = 1$, a Ridge regression is performed, and if $\alpha = 0$, a Lasso regression
 57 is performed.

58 The reconstruction is obtained by applying the estimated regression coefficients $\hat{\beta}^{enet}$ on
 59 x^1, \dots, x^p .

$$60 \quad \hat{Y}_{\lambda, \alpha} = \sum_{j=1}^p x^j \hat{\beta}_j^{enet}$$

61 The optimization of α and λ is performed using KFCV (cf. Methods, section “K-Fold cross-
 62 validation (KFCV)”) for both by crossing different possible values for each of them. As they
 63 respectively take their values in the continuous sets $[0,1]$ and \mathbb{R}^p , they have to be

64 discretized. The more they are, the more robust the reconstruction will be, at the expance of
65 the computational time.

66 Random Forest (RF):

67 The RF regression has been introduced in the early 21st century⁵² and consists in aggregating
68 regression trees.

69 We denote each set of predictand/predictor $\{(Y_i, x_i)\}_{1 \leq i \leq n}$ put on the root of the tree. The
70 first step consists in cutting that root in two child nodes. A cut is defined as: $\{x^j \leq d\} \cup$
71 $\{x^j \geq d\}$. Where $j \in \{1, \dots, p\}$ and $d \in R$. Cutting a node with $\{x^j \leq d\} \cup \{x^j \geq d\}$, means
72 that the years of observations for which the j^{th} value of the proxy record is lower than d are
73 placed in the left child node c_1 and the others in the right child node c_2 . The method selects
74 the best pair (j, d) that minimizes a loss function. Here, we aim at minimizing the variance of
75 Y in each child node. The variance of a given node c is defined as:

$$\sum_{i: x_i \in c} (Y_i - \bar{Y}_c)^2$$

76 Where $\bar{Y}_c = \frac{1}{\text{card}(c)} \sum_{i: x_i \in c} Y_i$.

77 Two subsets of $\{(Y_i, x_i)\}_{1 \leq i \leq n}$ are thus obtained through the optimal cut: $\{(Y_i, x_i)_{i \in c_1}\}$ and
78 $\{(Y_i, x_i)_{i \in c_2}\}$.

79 The same procedure is recursively applied to the child nodes c_1 and c_2 . We then stop these
80 recursive calculations when a chosen depth of the tree is reached.

81 There exists different kind of regression trees¹⁴ in random forest, the commonly used
82 regression trees are called random-input regression trees. It consists in only a randomly
83 selected set of $q < p$ variables between $(x^j)_{1 \leq j \leq p}$ used for constructing the tree. A large
84 number of K random-input regression trees is computed. For each tree, $q < p$ proxy records
85 are randomly selected with probability $\frac{1}{p}$ and the method is applied until the depth of the

86 tree reaches m . It should be noted that for each tree, the q selected variables can contain
87 variables not used if it does not give any optimal cut through the different nodes. Thereby, a
88 single variable can be used more than one time in the same tree.

89 The reconstruction is obtained by splitting each testing series in the different random input
90 regression trees previous constructed. In each tree, the estimation attributed to an
91 observation is the empirical average of Y inside the node where the corresponding
92 observation ends up, given the cuts made on the corresponding predictors. For each testing
93 series, the K reconstructions are averaged to give the final reconstruction.

94 A priori, this method requires the optimization of two parameters: the number of trees K and
95 the number of proxy records for each tree m . In practice, K does not require to be tuned, as
96 long as K is large given p , which guarantees convergent reconstructions for a given m . m is
97 the only parameter to optimize here. KFCV (cf. Methods, section “K-Fold Cross-Validation
98 (KFCV)”) is then applied to optimize m , with a high K (here set to 200, different K than the
99 KFCV one), to empirically select the best RF model.

100 We here simplified the Random Forests theory such that only the main steps are presented.
101 However, this theory is complex and for more information, the reader can refer to ref. 52.