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Supplementary Information: Regression methods 1 

In the general case, we denote ܻ ∈ ℝ௡ the predictand, which corresponds to the AMV index, 2 

and ݔ ∈ ℝ௡×௣, which corresponds to the matrix of observations from ݌ proxy records 3 

associated to the observations of ܻ. We then denote ݔ′ ∈ ℝ௠×௣, other observations for 4 

which we search to reconstruct ܻ. Each regression method needs to optimise one or more 5 

statistical parameters. For example, for PCR, the reconstruction is highly sensitive to the 6 

number of Principal Components used for regressing the climate index. Hence, each of these 7 

statistical parameters are optimized using K-Fold cross validation metric (KFCF, with K=10 in 8 

this study) (cf. Methods, section “K-Fold cross-validation (KFCV)”)49,97,98. 9 

- Principal Components Regression (PCR): 10 

The PCR49 consists in finding the best linear combination to regress ܻ using the principal 11 

components of ݔ. We denote ܵ = ݔ்ݔ ∈ ℝ௣×௣, the variance-covariance matrix of ݔ, where 12 ்ݔ is the transposed vector of ݔ. The eigenvectors of ܵ, or Empirical Orthogonal Functions 13 

(EOFs), denoted ܸ =  ଵஸ௝ஸ௣, are obtained by diagonalising ܵ, which is equivalent to 14(௝ݒ)

calculate the EOFs such that the variance of the projection of ݔ on themselves is maximized. 15 

The Principal Components (PCs), denoted ܷ = ܷ :ܸ on 16 ݔ ଵஸ௝ஸ௣, are calculated by projecting(௝ݑ) = ݍ Using KFCV (cf. Methods, section “K-Fold cross-validation (KFCV)”), we determine 17 .ܸݔ ≤  PCs kept for the regression. The PCR model is constructed by estimating the best linear 18 ݌

regression between (ܷଵ, . . . , ܷ௤) and ܻ. The linear regression model is: 19 ܻ = ଴ߚ + .+ଵܷଵߚ . . ௤ܷ௤ߚ+ + ߚ is a gaussian white noise. 20 ߝ where ,ߝ = መߚ ଴ஸ௞ஸ௤is estimated by(௞ߚ) =  ଴ஸ௞ஸ௤, defined as the Ordinary Least Squares 21(መ௞ߚ)

estimator. The extended AMV index is obtained by applying the estimated regression 22 

coefficients to the projected new observations on the EOFs: 23 ෠ܻ௤ = መ଴ߚ + .+መଵܷଵߚ . .  መ௤ܷ௤ߚ+
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- Partial Least Squares (PLS): 24 

PLS regression50 is an alternative to the PCR, where the EOFs, are calculated such that they 25 

are orthogonal and that the covariance between ܻ and the projection of ݔ on the EOFs is 26 

maximized. To do so, we need to resolve the following dependent equations: 27 ݒଵ = ݃ݎܽ max௩∈ℝ|௩|ୀଵ ,ܻ)ݒ݋ܥ ଶݒ (ݒܺ = ݃ݎܽ max௩∈ℝ|௩|ୀଵ0=1ݒܶݒ
,ܻ)ݒ݋ܥ  (ݒܺ

௣ݒ 28 … = ݃ݎܽ max௩∈ℝ|௩|ୀଵ0=1−݌ݒܶݒ…0=1ݒܶݒ
,ܻ)ݒ݋ܥ  (ݒܺ

Analogously to the PCR, the latent variables (LVs; PCs analog in PLS) are calculated by 29 

projecting ܺ on the matrix ܸ = :ଵஸ௝ஸ௣(௝ݒ) ܷ =  Using KFCV (cf. Methods, section “K-Fold 30 .ܸݔ

Cross-Validation (KFCV)”), we determine ݈ ≤  LVs kept for the regression. We then construct 31 ݌

the regression model by estimating the best linear regression between (ܷଵ, . . . , ܷ௟)and ܻ: 32 ܻ = ଴ߚ + .+ଵܷଵߚ . . ߚ is a gaussian white noise. 33 ߝ where	ߝ+௤ܷ௤ߚ+ = መߚ ଴ஸ௞ஸ௤is estimated by(௞ߚ) =  ଴ஸ௞ஸ௤, the Ordinary Least Squares estimator. The 34(መ௞ߚ)

extended AMV index is then obtained by applying the estimated regression coefficients to 35 

the projected new observations on the EOFs: 36 ෠ܻ௤ = መ଴ߚ + .+መଵܷଵߚ . .  መ௤ܷ௤ߚ+
- Elastic Net regression (Enet): 37 

In the multiple regression case, ߚመ = ,መ଴ߚ) . . . ,  መ௣)is estimated by the Ordinary Least Squares 38ߚ

estimator. This usual regression is known to often result in a poor reconstruction accuracy 39 

due to several assumptions made on the original data, such as homoscedasticity. Previous 40 

studies developed regularized regression approaches to overcome the OLS defaults. The 41 

Elastic Net regression51 is a combination of the Ridge regression and the Lasso regression. 42 
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The Ridge regression shrinks towards zero the estimated coefficients associated to predictors 43 

unlinked to the predictand. By contrast, Lasso also reduces the variability of the estimates, 44 

but in this case by shrinking to zero the estimated coefficients associated to unreliable 45 

variables. Hence, a selection is made by rejecting variables associated to coefficients shrunk 46 

to zero. 47 

A regularized regression adds a threshold constraint using the ݈௞norm of ߚ: ௞௞‖ߚ‖ =48 ∑ หߚ௝ห௞௝ୀଵ ௞
. With k=1 for Lasso and k=2 for Ridge. The loss function of Elastic Net is given by: 49 

(ߚ)௘௡௘௧ܮ = ቯܻ −෍ߚ௝ܺ௝௣
௝ୀଵ ቯଶ

ଶ + ௝ห௣ߚଵ෍หߣ
௝ୀଵ + ௝ଶ௣ߚଶ෍ߣ

௝ୀଵ  

Where, ߣଵ and ߣଶ are penalty factors. 50 

Let ݓ = ଵஸ௝ஸ௣(௝ݓ) =  is the sign function. The loss function can 51 ݊݃ݏ ଵஸ௝ஸ௣, where((௝ߚ)݊݃ݏ)

then be denoted as: 52 ܮ௘௡௘௧ = ‖Y − Xߚ‖ଶଶ + ߚ்ݓଵߣ +  53  ߚ்ߚଶߣ

The estimated coefficients by minimizing the loss functions are: 54 

መ௘௡௘௧ߚ  = (்ܺܺ + (1 − ்ܻܺ)ଵି(ܫߣ(ߙ − ఈఒଶ  55 (ݓ

Where ߙ ∈ [0,1]. If ߙ = 1, a Ridge regression is performed, and if ߙ = 0, a Lasso regression 56 

is performed.  57 

The reconstruction is obtained by applying the estimated regression coefficients ߚመ௘௡௘௧ on 58 ݔଵ, . . . ,  ௣. 59ݔ

 ෠ܻఒ,ఈ = ∑ ௣௝ୀଵݔ ௝  መ௝௘௡௘௧ 60ߚ

The optimization of ߙ and ߣ is performed using KFCV (cf. Methods, section “K-Fold cross-61 

validation (KFCV)”) for both by crossing different possible values for each of them. As they 62 

respectively take their values in the continuous sets [0,1] and ℝ௣, they have to be 63 
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discretized. The more they are, the more robust the reconstruction will be, at the expanse of 64 

the computational time. 65 

Random Forest (RF): 66 

The RF regression has been introduced in the early 21st century52 and consists in aggregating 67 

regression trees. 68 

We denote each set of predictand/predictor {( ௜ܻ,  ௜)}ଵஸ௜ஸ௡ put on the root of the tree. The 69ݔ

first step consists in cutting that root in two child nodes. A cut is defined as: {ݔ௝ ≤ ݀} ௝ݔ} 70∪ ≥ ݀}. Where ݆ ∈ {1, . . . , ݀ and{݌ ∈ ܴ. Cutting a node with {ݔ௝ ≤ ݀} ∪ ௝ݔ} ≥ ݀}, means 71 

that the years of observations for which the ݆௧௛ value of the proxy record is lower than ݀ are 72 

placed in the left child node ܿଵand the others in the right child node ܿଶ. The method selects 73 

the best pair (݆, ݀) that minimizes a loss function. Here, we aim at minimizing the variance of 74 ܻin each child node. The variance of a given node ܿ is defined as: 75 

෍ ( ௜ܻ − ሜܻ௖)௜:	௑೔∈௖
ଶ
 

Where ሜܻ௖ = ଵ௖௔௥ௗ(௖) ∑ ௜ܻ௜:௑೔∈௖ . 76 

Two subsets of {( ௜ܻ, )} :are thus obtained through the optimal cut	௜)ଵஸ௜ஸ௡}ݔ ௜ܻ, )} ௜)௜∈௖భ} and 77ݔ ௜ܻ,  ௜)௜∈௖మ}. 78ݔ

The same procedure is recursively applied to the child nodes ܿଵand ܿଶ. We then stop these 79 

recursive calculations when a chosen depth of the tree is reached. 80 

There exists different kind of regression trees14 in random forest, the commonly used 81 

regression trees are called random-input regression trees. It consists in only a randomly 82 

selected set of ݍ <  ଵஸ௝ஸ௣ used for constructing the tree. A large 83(௝ݔ) variables between݌

number of K random-input regression trees is computed. For each tree, ݍ <  proxy records 84	݌

are randomly selected with probability  ଵ௣	and the method is applied until the depth of the 85 
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tree reaches ݉. It should be noted that for each tree, the ݍ selected variables can contain 86 

variables not used if it does not give any optimal cut through the different nodes. Thereby, a 87 

single variable can be used more than one time in the same tree. 88 

The reconstruction is obtained by splitting each testing series in the different random input 89 

regression trees previous constructed. In each tree, the estimation attributed to an 90 

observation is the empirical average of ܻ	inside the node where the corresponding 91 

observation ends up, given the cuts made on the corresponding predictors. For each testing 92 

series, the ܭ	reconstructions are averaged to give the final reconstruction. 93 

A priori, this method requires the optimization of two parameters: the number of trees K and 94 

the number of proxy records for each tree ݉. In practice, ܭ	does not require to be tuned, as 95 

long as ܭ	is large given ݌, which guarantees convergent reconstructions for a given ݉. ݉	is 96 

the only parameter to optimize here. KFCV (cf. Methods, section “K-Fold Cross-Validation 97 

(KFCV)”) is then applied to optimize ݉, with a high ܭ	(here set to 200, different K than the 98 

KFCV one), to empirically select the best RF model. 99 

We here simplified the Random Forests theory such that only the main steps are presented. 100 

However, this theory is complex and for more information, the reader can refer to ref. 52. 101 


