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Supporting equation
i = avb                                          Equation S1
log(i) = blog(v) + log(a)                     Equation S2
where i and v represent the peak current and scan rate, respectively, a and b are constant. The value of b reveals the sodium storage mechanism, i.e., a diffusion-limited process with b = 0.5, a surface-limited process with b = 1.0.
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Fig.S1 SEM images of the samples: a, b M2-PBA, c, d M4-PBA, and e, f M5-PBA
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Fig.S2 TEM images of M2-PBA
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Fig.S3 TEM images of M4-PBA
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Fig.S4 TEM images of M5-PBA
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Fig.S5 XPS full spectrum of the three samples with M2-PBA in red, M4-PBA in green, M5-PBA in blue. 
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Fig.S6 XPS fine spectrum of M2-PBA. a C 1s, b N 1s, c O 1s, d Mn 2p, and e Fe 2p.
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[bookmark: _Hlk177376839]Fig.S7 XPS fine spectrum of M4-PBA. a C 1s, b N 1s, c O 1s, d Mn 2p, e Fe 2p, f Co 2p, and g Ni 2p.
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Fig.S8 XPS fine spectrum of M5-PBA. a C 1s, b N 1s, c O 1s, d Mn 2p, e Fe 2p, f Co 2p, g Ni 2p, and h Cu 2p.
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Fig.S9 EPR results of M2-PBA, M4-PBA and M5-PBA. 
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Fig.S10 a TG, b DSC curves of M2-PBA, M4-PBA and M5-PBA.
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Fig.S11 FT-IR results of M2-PBA, M4-PBA and M5-PBA.
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Fig.S12 Raman spectra of M2-PBA, M4-PBA and M5-PBA.


[image: ]
Fig.S13 a IS values, b QS values and c Γ comparation of Mössbauer spectra in M2-PBA, M4-PBA and M5-PBA.
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Fig. S14 The first five times galvanostatic charge and discharge curves of a M2-PBA and b M5-PBA.
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Fig.S15 Comparation of dQ/dV curves. a M2-PBA, b M4-PBA, and c M5-PBA.
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Fig.S16 Comparation of cycling performance at 1 C for M2-PBA, M4-PBA and M5-PBA.
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Fig.S17 Comparation of EIS testing results. a M2-PBA, b M4-PBA, and c M5-PBA.
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Fig.S18 Comparation of DRT results. a M2-PBA, b M4-PBA, and c M5-PBA.
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Fig.S19 a GITT testing curves, Na+ diffusion coefficients altered with electrode voltage for b charging and c discharging procedure in M2-PBA, M4-PBA and M5-PBA.
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Fig.S20 CV curves at various scan rates: a M2-PBA, b M4-PBA, and c M5-PBA. Corresponding line-fitting slopes: d M2-PBA, e M4-PBA, and f M5-PBA. 
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Fig.S21 Comparation of rate performance.
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Fig.S22 Comparation of full cell electrochemical performance. a specific capacity of PBA cathodes and hard carbon anode, b specific energy.
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Fig.S23 Comparation of in-situ FT-IR full spectra during the first two cycles. a M2-PBA, b M4-PBA, and c M5-PBA.
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Fig.S24 In-situ FT-IR results of a M2-PBA, and b M5-PBA.


[image: ]
Fig.S25 The area ratios of peaks 1 and 2 in in-situ FT-IR for a M2-PBA, b M4-PBA and c M5-PBA.
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Fig.S26 Ex-situ ICP-OES testing results of the dissolvement metal elements in the electrolyte for M2-PBA, M4-PBA and M5-PBA with current density of 5C. Three sets of parallel samples form error bands, and the hollow circle mark represents the average of the three samples. a, b Fe content, and c, d Mn content.
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[bookmark: _Hlk181023083]Fig.S27 Ex-situ XANES profiles of a M2-PBA and b M5-PBA at different SOC with pre-edge in the insets. (The final state of charge for the first discharge cycle was defined as SOC-1, while the charging and discharging final states of charge for the second cycle were defined as SOC-2 and SOC-3, respectively.)


[image: ]
Fig.S28 Ex-situ EXAFS profiles of a M2-PBA and b M5-PBA at different SOC. (The final state of charge for the first discharge cycle was defined as SOC-1, while the charging and discharging final states of charge for the second cycle were defined as SOC-2 and SOC-3, respectively.)
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Fig.S29 In-situ XRD full patterns of M4-PBA.
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Fig.S30 Ex-situ XRD results of M2-PBA. a full pattern, b-d detailed patterns and corresponding e galvanostatic charge and discharge curves.
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Fig.S31 Ex-situ XRD results of M5-PBA. a full pattern, b-d detailed patterns and corresponding e galvanostatic charge and discharge curves.

Table S1 Testing results of ICP-OES
	M5-PBA
	Elements
	Na
	Mn
	Fe
	Co
	Ni
	Cu

	
	Mass (mg/ml)
	4.681
	0.2178
	1.1462
	0.1915
	0.1913
	0.1695

	
	Formula
	Na1.898Mn0.211Fe0.202 Co0.199 Ni0.198Cu0.190[Fe(CN)6]0.927·0.675H2O

	M4-PBA
	Elements
	Na
	Mn
	Fe
	Co
	Ni
	

	
	Mass (mg/ml)
	4.7525
	0.2745
	1.2386
	0.2386
	0.2309
	

	
	Formula
	Na1.927Mn0.266Fe0.247 Co0.248 Ni0.239 [Fe(CN)6]0.943·0.862H2O

	M2-PBA
	Elements
	Na
	Mn
	Fe
	
	
	

	
	Mass (mg/ml)
	4.538
	0.5191
	1.4101
	
	
	

	
	Formula
	Na1.84Mn0.503Fe0.497 [Fe(CN)6]0.892·1.633H2O





Table S2 Rietveld refined result of M2-PBA
	M2-PBA Monoclinic, space group P21/n,
a=10.54333 Å, b=7.4986 Å, c=7.27486 Å, V=574.610 Å3

	Atom
	x
	y
	z
	Occ.
	Site

	C1
	0.005
	0.301
	0.313
	1
	4e

	C2
	0.183
	0.5
	0.5
	1
	4e

	C3
	0.0034
	0.6838
	0.3
	1
	4e

	N1
	0.0049
	0.1994
	0.197
	1
	4e

	N2
	0.3024
	0.502
	0.5022
	1
	4e

	N3
	0
	0.8063
	0.26
	1
	4e

	Na
	0.249
	0.516
	0.023
	1
	4e

	Mn
	0
	0
	0
	0.5
	2a

	Fe1
	0
	0.5
	0.5
	1
	2d

	Fe2
	0
	0
	0
	0.5
	2a





Table S3 Rietveld refined result of M4-PBA
	M4-PBA Monoclinic, space group P21/n,
a=10.20561 Å, b=7.36109 Å, c=7.13838 Å, V=535.735 Å3

	Atom
	x
	y
	z
	Occ.
	Site

	C1
	0.005
	0.303
	0.323
	1
	4e

	C2
	0.183
	0.517
	0.523
	1
	4e

	C3
	0.0034
	0.6838
	0.2989
	1
	4e

	N1
	0.0048
	0.1984
	0.197
	1
	4e

	N2
	0.3022
	0.504
	0.5022
	1
	4e

	N3
	0.003
	0.8063
	0.209
	1
	4e

	Na
	0.229
	0.497
	0.023
	1
	4e

	Mn
	0
	0
	0
	0.25
	2a

	Fe1
	0
	0.5
	0.5
	1
	2d

	Fe2
	0
	0
	0
	0.25
	2a

	Co
	0
	0
	0
	0.25
	2a

	Ni
	0
	0
	0
	0.25
	2a





Table S4 Rietveld refined result of M4-PBA
	M5-PBA Monoclinic, space group P21/n,
a=10.3029 Å, b=7.39674 Å, c=7.17513 Å, V=546.706 Å3

	Atom
	x
	y
	z
	Occ.
	Site

	C1
	0.006
	0.303
	0.324
	1
	4e

	C2
	0.186
	0.527
	0.529
	1
	4e

	C3
	0.0034
	0.6831
	0.3002
	1
	4e

	N1
	0.0052
	0.1992
	0.196
	1
	4e

	N2
	0.3011
	0.5044
	0.5016
	1
	4e

	N3
	0.0025
	0.806
	0.207
	1
	4e

	Na
	0.262
	0.539
	0.005
	1
	4e

	Mn
	0
	0
	0
	0.2
	2a

	Fe1
	0
	0.5
	0.5
	1
	2d

	Fe2
	0
	0
	0
	0.2
	2a

	Co
	0
	0
	0
	0.2
	2a

	Ni
	0
	0
	0
	0.2
	2a

	Cu
	0
	0
	0
	0.2
	2a





Table S5 Detailed fitting parameters of Mössbauer spectra
	M2-PBA
	IS(mm/s)
	QS(mm/s)
	Γ(mm/s)
	Area(%)

	High-spin Fe3+
	0.34
	1.26
	0.58
	4.1

	High-spin Fe2+
	1.11
	1.23
	0.8
	28.9

	Low-spin Fe2+
	-0.22
	0.17
	0.46
	67



	M4-PBA
	IS(mm/s)
	QS(mm/s)
	Γ(mm/s)
	Area(%)

	High-spin Fe3+
	0.3
	0.59
	0.19
	2.9

	High-spin Fe2+
	1.06
	1.19
	0.41
	30

	Low-spin Fe2+
	-0.22
	0.13
	0.36
	67.1



	M5-PBA
	IS(mm/s)
	QS(mm/s)
	Γ(mm/s)
	Area(%)

	High-spin Fe3+
	0.2
	0.95
	0.19
	2.5

	High-spin Fe2+
	1.02
	1.18
	0.5
	28.2

	Low-spin Fe2+
	-0.21
	0.29
	0.52
	69.2





Table S6 Comparison of the electrochemical performance of the as-prepared PBAs with other researcher for SIBs reported within the past three years
	Samples
	Capacity
(mAh·g-1@mA·g-1)
	Cycle life
(cycles, retention%@mA·g-1)
	Rate performance
(mAh·g-1@ mA·g-1)
	Reference

	M4-PBA
	142.4@14.875
	1000, 91.7@743.75
	85.1@2975
	This work

	MnNiPB-4xcit
	93@100
	500, 96@100
	70@4000
	Angew. Chem. Int. Ed.1

	HE-PBA
	120@10
	100, 94@100
	62@1000
	Adv. Mater.2

	R-PB
	145@15
	3500, 59.1@750
	93.8@1500
	Adv. Energy Mater.3

	HEM-HCF
	117@100
	200, 90@100
	79@1000
	Adv. Funct. Mater.4

	FeZn-PB
	145@20
	500, 74.9@1000
	98.5@1000
	Chemical Engineering Journal5

	SC-HEPBA
	115.4@100
	1000, 76.1@500
	74.4@3000
	Energy Storage Materials6

	HE-HCF
	105.1@15
	10000, 95@1500
	55.7@3000
	Angew. Chem. Int. Ed.7

	MnHCF-5%CoxB
	149@34
	450, 81@750
	130@1700
	Angew. Chem. Int. Ed.8

	NKPB-3
	147.9@15
	300, 83.5@150
	about 105@300
	Angew. Chem. Int. Ed.9

	K-FeMnPBA3
	139.1@100
	700, 77.1@100
	118.3@3000
	Adv. Funct. Mater.10

	PB-130
	113.6@30
	1200, 85.5@1200
	86@2000
	ACS Nano11

	HE-PW
	129@10
	1000, about 67@500
	73@500
	Angewandte Chemie International Edition12

	PBA(Cu)□Fe
	135.7@20
	200, 78.5@500
	77.5@1000
	Adv. Funct. Mater.13

	MnCuNi-PBA
	116@10
	500, 81.8@100
	66.2@2000
	Adv. Mater.14

	MNHCF-3
	about 100@15
	10000, 90.1@750
	90.9@3000
	ACS Nano15

	SP-PBA
	120.6@25
	1500, 85.7@500
	80@2500
	Adv. Mater.16

	NaFeHCF@rGO
	124.6@25
	1000, 81@1000
	102.4@4000
	Adv. Energy Mater.17

	EDTA-1MVC
	122.5@100
	10000, 86.32@6000
	82@6000
	Small18

	PB-325
	131@24
	NA
	99@1200
	Chemical Engineering Journal19

	AgHCF@CNTs
	168.4@50
	500, 74@500
	90.7@2000
	ACS Energy Lett20

	HC-PB
	140@34
	1000, 94.6@1700
	105@5100
	Energy Storage Materials21
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