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Supplementary Text For Experiments

Model performance on task-specific datasets

As demonstrated in supplementary Figure S1,S2 and Table S1,S2, the PhosF3C model consistently

outperforms other methods on both the PhosAF and DeepIPs datasets, showcasing its robust feature

extraction capabilities and suitability for phosphorylation site prediction tasks.

Details about the importance value and entropy of different properties

Using Random Forest and Biopython to analyze the importance of different chemical properties

and the distribution of information entropy, as shown in Table S3,S4

Additional chemical properties’ distribution on low and high norm group

We used Biopython to calculate various biochemical properties, including Isoelectric Point, Hy-

drophobicity (GRAVY), Polarity, Molecular Weight, Aromaticity, Hydrophobic Residue Ratio,

Stability, and Hydrophobicity Index. Figure S3 shows the distribution of various chemical prop-

erties in high and low F-norm groups across S, T, and Y residues. Based on the specific data, the

following characteristics can be observed:

• Isoelectric Point: The distribution of the high F-norm group is broader, with a standard

deviation of 1.12, while the low F-norm group has a smaller standard deviation of 0.87,

indicating greater variability in the high F-norm group.

• Molecular Weight: The peak of the high F-norm group is flatter, with a standard deviation

of 412.6, compared to the low F-norm group’s standard deviation of 298.4, suggesting that

the high F-norm group contains more extreme values.

• Hydrophobicity Index: The high F-norm group exhibits a wider range with a larger tail,

having a standard deviation of 4.75, while the low F-norm group’s standard deviation is only

3.25.

For the Frobenius norm groups, the high-norm group displayed a broader and more dispersed

distribution, indicating greater variability in these biochemical properties. In contrast, the low-norm
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group exhibited a more compact and consistent distribution. This difference highlights the presence

of richer abstract feature information in the high-norm group, suggesting its potential to capture

diverse physicochemical and structural characteristics.

Other Protein Task

In this work, we present a comparison of dataset and model performance across three different

protein-related tasks: DeepKCR, Methylation, and SSMFN. see in Figure S4

Training Hyperparameters

The training process utilizes LoRA (Low-Rank Adaptation) for efficient fine-tuning of the model,

reducing memory usage while allowing parameter updates. For the first configuration, a batch size

of 256 is employed, and the Adam optimizer is used with a learning rate of 1 × 10−4, betas set to

𝛽1 = 0.9, 𝛽2 = 0.999, and a weight decay of 1 × 10−4. The second configuration, which uses the

Conformer architecture, applies a smaller batch size of 64, with the Adam optimizer configured

with a learning rate of 5× 10−5, betas of 𝛽1 = 0.9, 𝛽2 = 0.999, and a weight decay of 1× 10−4. The

loss function for both configurations is Cross-Entropy Loss. The model architecture includes both

a Transformer branch and a CNN branch, where the weights for both branches are set equally at

0.5, ensuring balanced contributions from each branch in the final output and early stopping were

applied to handle the problem of overfitting.
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Figure S1: A presents the PR and ROC curves for performance evaluation on PhosAF Dataset, B

shows the UMAP visualization of the dataset, providing a low-dimensional representation of the

data distribution during training.
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Figure S2: A presents the PR and ROC curves for performance evaluation on DeepIps Dataset, B

shows the UMAP visualization of the dataset, providing a low-dimensional representation of the

data distribution during training.
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Figure S3: Distribution density of all properties in the high and low norm groups, with the variances

of the distributions also recorded to capture the spread and variability within each group.
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Deep-Kcr methylation SSMFN

Figure S4: Figures (a), (b), and (c) display the data information for three protein-related tasks:

histone lysine crotonylation (Kcr), methylation, and the Sequential and Spatial Methylation Fusion

Network (SSMFN), along with the distribution of positive and negative samples for each dataset.

Figures (d), (e), and (f) show the comparison of the PhosF3C model’s performance with baseline

models in these tasks.

S7



Type Model AUC ACC MCC F1 RECALL PRECISION

S PSP 0.8564 0.7731 0.5628 0.7702 0.8601 0.6974

Musite 0.9029 0.789 0.5965 0.7874 0.8834 0.7102

Phos 0.9014 0.7869 0.5914 0.7847 0.8785 0.709

IPS 0.7532 0.7555 0.5245 0.7503 0.8309 0.684

PhosF3C 0.9155 0.8264 0.6542 0.813 0.8533 0.7763

T PSP 0.8285 0.7719 0.526 0.6996 0.7796 0.6346

Musite 0.8674 0.7928 0.5696 0.7256 0.8041 0.6611

Phos 0.8557 0.7872 0.5452 0.7086 0.7592 0.6643

IPS 0.7855 0.7608 0.5516 0.7162 0.8857 0.6011

PhosF3C 0.8934 0.7914 0.5733 0.7292 0.8245 0.6537

Y PSP 0.6853 0.6139 0.2311 0.6258 0.6623 0.593

Musite 0.6914 0.6139 0.239 0.6474 0.7272 0.5833

Phos 0.7093 0.6456 0.3077 0.6818 0.7792 0.606

IPS 0.7278 0.69 0.399 0.7232 0.8265 0.6429

PhosF3C 0.7178 0.6329 0.2872 0.6778 0.7922 0.5922

Table S1: Performance metrics on the PhosAF dataset categorized by phosphorylation site type.
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Type Model AUC ACC MCC F1 RECALL PRECISION

S PSP 0.8745 0.7464 0.5169 0.7797 0.8973 0.6893

MusiteDeep2.0 0.8677 0.731 0.4972 0.773 0.9158 0.6687

Phos 0.8321 0.7012 0.4384 0.7506 0.8994 0.6441

IPS 0.7081 0.7928 0.425 0.7414 0.8522 0.6561

PhosF3C 0.875 0.751 0.5279 0.7843 0.9055 0.6918

T PSP 0.8535 0.7714 0.5453 0.7818 0.819 0.7478

MusiteDeep2.0 0.8269 0.7524 0.5123 0.7719 0.8381 0.7154

Phos 0.8223 0.7333 0.4709 0.75 0.8 0.7059

IPS 0.7322 0.7095 0.4386 0.7469 0.8571 0.6618

PhosF3C 0.8584 0.7667 0.5466 0.7897 0.8762 0.7188

Y PSP 0.6871 0.6429 0.286 0.6512 0.6667 0.6364

MusiteDeep2.0 0.771 0.7381 0.4767 0.7442 0.7619 0.7273

Phos 0.6735 0.619 0.2392 0.6364 0.6667 0.6087

IPS 0.839 0.7143 0.4472 0.75 0.8571 0.6667

PhosF3C 0.7302 0.6429 0.2942 0.6809 0.7619 0.6154

Table S2: Performance metrics on the DeepIps dataset categorized by phosphorylation site type.
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Feature S T Y

Helix -0.977 -0.991 -0.994

Sheet -1.098 -1.089 -1.210

Coil -1.086 -0.997 -1.193

Isoelectric Point 0.731 0.904 0.952

Hydrophobicity (GRAVY) 1.362 1.452 0.952

Polarity -0.628 -0.840 -0.457

Molecular Weight 0.537 0.780 1.212

Aromaticity -1.170 -1.312 -1.155

Hydrophobic Residue Ratio -0.747 -0.629 -0.813

Surface Charge 1.010 0.994 1.227

Stability 0.530 0.864 0.607

Hydrophobicity Index 1.536 0.864 0.875

Table S3: Feature inportance values for Serine (S), Threonine (T), and Tyrosine (Y) across various

properties.
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Feature S T Y

Helix 0.744 0.752 0.741

Sheet 0.743 0.752 0.741

Coil 0.744 0.752 0.741

Isoelectric Point 0.381 0.349 0.349

Hydrophobicity (GRAVY) 0.705 0.716 0.697

Polarity 0.744 0.753 0.742

Molecular Weight -1.680 -1.737 -1.760

Aromaticity 0.745 0.753 0.742

Hydrophobic Residue Ratio 0.744 0.752 0.741

Surface Charge -1.107 -1.181 -1.189

Stability -1.087 -1.237 -0.858

Hydrophobicity Index -1.675 -1.424 -1.688

Table S4: Feature entropy values for Serine (S), Threonine (T), and Tyrosine (Y) across various

properties.
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