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CMIP6 models 

Model names Institution 
Fraction of 
closed basins 
(area weighted) 

# of Basins with 
negative values 
(>10%) 

ACCESS-CM2 CSIRO and ARCCSS, Australia 0.819   

ACCESS-ESM1-5 CSIRO and ARCCSS, Australia 0.843   

BCC-CSM2-MR BCC, China 0.816  11 
CAMS-CSM1-0 CAMS, China 0.693   

CAS-ESM2-0 CAS, China 0.283  1 
CESM2 NCAR, USA 0.975  2 
CESM2-WACCM NCAR, USA 0.977  2 
CMCC-CM2-SR5 CMCC, Italy 0.032  5 
CMCC-ESM2 CMCC, Italy 0.044  5 
CNRM-CM6-1 CNRM, France 0.613   

CNRM-CM6-1-HR CNRM, France 0.664   

CNRM-ESM2-1 CNRM, France 0.602   

CanESM5 CCCma, Canada 0.728   

CanESM5-1 CCCma, Canada 0.716   

EC-Earth3 SMHI, Sweden / EC-Earth Consortium 0.762   

EC-Earth3-CC SMHI, Sweden / EC-Earth Consortium 0.882   

EC-Earth3-Veg SMHI, Sweden / EC-Earth Consortium 0.873   

EC-Earth3-Veg-LR SMHI, Sweden / EC-Earth Consortium 0.849   

FIO-ESM-2-0 FIO, China 0.943  2 
GFDL-CM4 NOAA GFDL, USA 0.112   

GFDL-ESM4 NOAA GFDL, USA 0.114   

GISS-E2-1-G NASA/GISS, USA 0.412   

GISS-E2-1-H NASA/GISS, USA 0.322   

HadGEM3-GC31-LL MOHC, UK 0.655   

INM-CM4-8 INM, Russia 0.929  9 
INM-CM5-0 INM, Russia 0.936  7 
IPSL-CM6A-LR IPSL, France 0.871   

MCM-UA-1-0 Univ. of Arizona, USA 0.899   

MIROC6 AORI, NIES, and JAMSTEC, Japan 0.926   

MPI-ESM1-2-HR MPI-M, Germany 0.859   

MPI-ESM1-2-LR MPI-M, Germany 0.816   

MRI-ESM2-0 MRI, Japan 0.816   

NorESM2-LM NCC, Norway 0.835  6 
NorESM2-MM NCC, Norway 0.980  4 
UKESM1-0-LL MOHC, UK 0.669   



CMIP5 models 

Model names Institution 
Fraction of 
closed basins 
(area weighted) 

# of Basins with 
negative values 
(>10%) 

bcc-csm1-1 BCC, CMA, China 0.882  3 
bcc-csm1-1-m BCC, CMA, China 0.952  6 
CCSM4 NCAR, USA 0.953  1 
CESM1-BGC NCAR, USA 0.953  1 
CMCC-CM CMCC, Italy 0.851   

CNRM-CM5 CNRM, France 0.851   

CanESM2 CCCma, Canada 0.896   

FGOALS-g2 CAS, china 0.903  4 
FIO-ESM FIO, China 0.322  4 
GFDL-CM3 NOAA GFDL, USA 0.738   

GFDL-ESM2G NOAA GFDL, USA 0.777   

GFDL-ESM2M NOAA GFDL, USA 0.800   

GISS-E2-H NASA/GISS, USA 0.054   

GISS-E2-H-CC NASA/GISS, USA 0.038   

GISS-E2-R NASA/GISS, USA 0.031   

GISS-E2-R-CC NASA/GISS, USA 0.043   

inmcm4 INM, Russia 0.882  9 
IPSL-CM5A-LR IPSL, France 0.702   

IPSL-CM5A-MR IPSL, France 0.714   

MIROC-ESM AORI, NIES, and JAMSTEC, Japan 0.899   

MIROC-ESM-
CHEM AORI, NIES, and JAMSTEC, Japan 0.899   

MIROC5 AORI, NIES, and JAMSTEC, Japan 0.911   

MPI-ESM-LR MPI-M, Germany 0.905   

MPI-ESM-MR MPI-M, Germany 0.906   

MRI-CGCM3 MRI, Japan 0.758   

NorESM1-M NCC, Norway 0.852  2 
NorESM1-ME NCC, Norway 0.832  2 

Supplementary Table. 1| List of CMIP5/6 models used in the study. The models providing 19 

total runoff, precipitation, surface air temperature, and evapotranspiration across historical 20 

and model scenarios (SSP2-4.5, RCP4.5) are listed. Gray shading indicates models which do 21 

not satisfy the water budget closure, determined as when the area fraction of basins with 22 

closed water balance is less than 0.6 of global river basins (Method). Number of basins with 23 

negative runoff values is also described for each model (Method). 24 

 25 



 26 

Supplementary Fig. 1| Relationship between the temperature sensitivities of runoff and 27 

evapotranspiration. Inter-model correlation coefficients between the historical temperature 28 

sensitivities of runoff (𝛿𝛿Q/𝛿𝛿T) and evapotranspiration (𝛿𝛿ET/𝛿𝛿T). The sensitivity of 29 

evapotranspiration is calculated by substituting evapotranspiration (ET) instead of runoff (Q) 30 

in Eq. (3), following the methodology for runoff sensitivity (Methods). Hatched basins 31 

indicate where the correlation coefficient is statistically not significant using a t-test at 95% 32 

confidence level. 33 
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 49 

Supplementary Fig. 2| Contribution of temperature and precipitation sensitivity bias to 50 

the observational constraint. a,b, Observational constraint relative to predictions versus 51 

relative to simulated runoff projections for (a) CMIP6 and (b) CMIP5. Observational 52 

constraining effects are further decomposed into components driven by T sensitivity (𝛼𝛼) and 53 

P sensitivity (𝛽𝛽). c-f, The multi-model median (MMM) observational constraining effect 54 

driven by P sensitivity bias for (c) SSP2-4.5 and (d) RCP4.5 scenarios, and T sensitivity bias 55 

for (e) SSP2-4.5 and (f) RCP4.5 scenarios. 56 
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 63 

Supplementary Fig. 3| Inter-model correlation of temperature sensitivity to various 64 

mean state variables. a-h, Inter-model correlation coefficient of historical (1947-2017) 65 

temperature sensitivity to historical mean state variables: (a) temperature (T), (b) 66 

precipitation (P), (c) runoff (Q), (d) evapotranspiration (ET), (e) soil moisture in the upper 10 67 

cm of the upper layer (SM), (f) transpiration divided by evapotranspiration (Trans/ET), (g) 68 

runoff ratio (Q/P), and (h) potential evapotranspiration divided by precipitation (PET/P). 69 

Hatchings indicate regions where the correlation coefficient is not statistically significant at 70 

the 95% confidence level, with the criterion for significance being r=±0.37. 71 
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 73 

Supplementary Fig. 4| Comparison between Global Runoff Reanalysis (GRUN) and 74 

other observational runoff datasets. a-c, Water-year and basin averaged runoff for (a) 75 

Columbia, (b) Norther Sierras, (c) Upper Colorado River, and (d) Murray River basins with 76 

naturalized streamflow. The GRUN runoff is averaged for the basin mask corresponding to 77 

the streamflow gauge catchment. e,f, Water-year and basin averaged runoff for (e) Yangtze 78 

and (f) Yellow river basins, where the China Natural Runoff Dataset1 based on hydrologic 79 

models are compared to the GRUN runoff. Inter-annual correlations between GRUN and 80 

other datasets are indicated in the titles. The runoff and streamflow are represented as percent 81 

anomalies relative to the long-term mean (1962-2017). Note that the naturalized streamflow 82 

for the Chinese river basins is produced by the Variable Infiltration Capacity model, which is 83 

specifically tunned for natural or near-natural gauge streamflow1. To validate GRUN runoff 84 

sensitivity with naturalized streamflow, we only use the dataset which corrects the gauge 85 

streamflow directly (a-d). 86 
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 89 

Supplementary Fig. 5| Historical runoff ratio in models and GRUN dataset. Runoff ratio 90 

calculated by dividing runoff by precipitation for each basin. The runoff ratio is calculated for 91 

each water year and then averaged for historical period (1947-2017). Results are shown for 92 

the GRUN dataset and individual CMIP5/CMIP6 models, with thin lines representing the 93 

individual CMIP models. Note that the GRUN dataset derived from GSWP3 is excluded from 94 

the main paper due to its unrealistically large runoff ratio compared to others. 95 
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 115 

Supplementary Fig. 6| Training accuracy of the regression models using runoff 116 

sensitivity. The coefficient of determination (R2) between runoff variations and predictions 117 

by runoff sensitivity, calculated with 5-year moving windows. R2 values for historical period 118 

(1947-2017) of CMIP6, CMIP5, and GRUN dataset are calculated separately for each model 119 

and basin and then aggregated into a box and whisker plot. Predictions are decomposed into 120 

contributions from precipitation and temperature variations without interaction term (gray), 121 

precipitation and temperature variations with interaction term (black), precipitation variation 122 

(blue), and temperature variation (orange). The dotted line indicates statistically significant 123 

R2, determined using t-test at a 95% confidence interval. 124 
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Supplementary Fig. 7| Effect of runoff storage shown by autocorrelation. a-c, 129 

Autocorrelation of annual runoff with increasing time lag years for the historical period 130 

(1947-2017) in (a) CMIP6, (b) CMIP5, and (c) GRUN dataset. In (a-b), thin lines represent 131 

the autocorrelation for each basin and each model, while thick lines denote the multi-model 132 

mean. In (c), thin lines correspond to each basin and each atmospheric forcing of GRUN 133 

dataset, and thick lines indicate the average across all forcing datasets. Gray dotted lines mark 134 

the statistically significant autocorrelation at 95% confidence interval. 135 



 136 

Supplementary Fig. 8| Impact of recent warming on the temperature sensitivity 137 

estimation. a, Timeseries of annual temperature anomalies in the Upper Colorado River 138 

basin compared to the historical period (1947-2017), averaged using 5-year moving windows. 139 

Thick lines indicate the multi-ensemble average, and thin lines indicate each member. b, T 140 

sensitivity calculated with 70-year time windows advanced from the early historical period 141 

(1867-1937) to the future (2017-2087) with 10-year intervals. c, Multi-member averaged 142 

temperature anomalies for 131 global river basins. d, Inter-member standard deviation of T 143 

sensitivity for each 70-year time window, calculated for 131 global river basins. The black 144 

vertical dashed line indicates the end year of the historical period. Note that the T sensitivity 145 

tends to converge as recent warming emerges, indicating that T sensitivity in the historical 146 

period reflects runoff sensitivity to climate change. 147 
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 158 

Supplementary Fig. 9| Temperature as a proxy for potential evapotranspiration when 159 

predicting the runoff changes. a,b, Inter-model correlation between runoff sensitivities 160 

using temperature (T) and potential evapotranspiration (PET) calculated for (a) historical and 161 

(b) future period. The black dashed line indicates statistically significant correlation 162 

coefficients based on a t-test at a 95% confidence interval, and the number of basins with 163 

significant correlations are indicated in the legend. c,d, Scatter plots between multi-model 164 

median simulated runoff projections and predictions using (c) historical and (d) future runoff 165 

sensitivities. The number of basins with significant predictions are indicated in the legend 166 

following the method applied in Fig. 2b. Note that 25 CMIP6 models are used for this 167 

analysis according to data availability related to PET. 168 
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 178 

Supplementary Fig. 10| Consistent results regardless of the regression methods. a,b, 179 

Same to Fig. 2b and Fig. 4b with runoff sensitivity estimated using the ordinary least square 180 

regression method. c,d, same to (a,b) but with runoff sensitivity estimated from the 181 

orthogonal regression method. 182 
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 194 

Supplementary Fig. 11| Impact of non-stationarity and internal climate variability on 195 

the runoff sensitivity. Inter-model R2 between historical runoff sensitivity and various 196 

combinations of the runoff sensitivity for each basin, aggregated across 131 basins to a 197 

typical box and whisker plot. 198 
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