10

11

12

13

14

15

16

17

18

Supplementary information for

Constraining climate model projections

with observations amplifies future runoff declines

Hanjun Kim!, Flavio Lehner!>?,

Katherine Dagon?, David M. Lawrence?, Sean Swenson?, Andrew W. Wood?>*

"Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA
3Polar Bears International, Bozeman, MT, USA

“Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA

*Corresponding author: Hanjun Kim (hk764(@cornell.edu)



mailto:hk764@cornell.edu

CMIP6 models

Model names

Institution

Fraction of
closed basins
(area weighted)

# of Basins with

negative values
(>10%)

ACCESS-CM2 CSIRO and ARCCSS, Australia 0.819
ACCESS-ESM1-5 CSIRO and ARCCSS, Australia 0.843
BCC-CSM2-MR BCC, China 0.816 11
CAMS-CSM1-0 CAMS, China 0.693

CESM2 NCAR, USA 0.975
CESM2-WACCM NCAR, USA 0.977
CNRM-CM6-1 CNRM, France 0.613
CNRM-CM6-1-HR | CNRM, France 0.664
CNRM-ESM2-1 CNRM, France 0.602

CanESM5 CCCma, Canada 0.728

CanESM5-1 CCCma, Canada 0.716

EC-Earth3 SMHI, Sweden / EC-Earth Consortium 0.762
EC-Earth3-CC SMHI, Sweden / EC-Earth Consortium 0.882
EC-Earth3-Veg SMHI, Sweden / EC-Earth Consortium | 0.873
EC-Earth3-Veg-LR | SMHI, Sweden / EC-Earth Consortium | 0.849
FIO-ESM-2-0 FIO, China 0.943 2
HadGEM3-GC31-LL | MOHC, UK 0.655

INM-CM4-8 INM, Russia 0.929 9
INM-CM5-0 INM, Russia 0.936
IPSL-CM6A-LR IPSL, France 0.871
MCM-UA-1-0 Univ. of Arizona, USA 0.899

MIROC6 AORI, NIES, and JAMSTEC, Japan 0.926
MPI-ESM1-2-HR MPI-M, Germany 0.859
MPI-ESM1-2-LR MPI-M, Germany 0.816

MRI-ESM2-0 MRI, Japan 0.816
NorESM2-LM NCC, Norway 0.835
NorESM2-MM NCC, Norway 0.980
UKESM1-0-LL MOHC, UK 0.669
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CMIP5 models

Model names

Institution

Fraction of
closed basins

# of Basins with
negative values

(area weighted) | (>10%)
bce-csml-1 BCC, CMA, China 0.882 3
bce-csml-1-m BCC, CMA, China 0.952 6
CCSM4 NCAR, USA 0.953 1
CESM1-BGC NCAR, USA 0.953 1
CMCC-CM CMCC, Italy 0.851
CNRM-CM5 CNRM, France 0.851
CanESM2 CCCma, Canada 0.896
FGOALS-g2 CAS, china 0.903 4
GFDL-CM3 NOAA GFDL, USA 0.738
GFDL-ESM2G NOAA GFDL, USA 0.777
GFDL-ESM2M NOAA GFDL, USA 0.800
inmcm4 INM, Russia 0.882 9
IPSL-CMS5A-LR IPSL, France 0.702
IPSL-CM5A-MR IPSL, France 0.714
MIROC-ESM AORI, NIES, and JAMSTEC, Japan 0.899
g/g};&c‘ESM' AORI, NIES, and JAMSTEC, Japan 0.899
MIROCS5 AORI, NIES, and JAMSTEC, Japan 0911
MPI-ESM-LR MPI-M, Germany 0.905
MPI-ESM-MR MPI-M, Germany 0.906
MRI-CGCM3 MRI, Japan 0.758
NorESM1-M NCC, Norway 0.852 2
NorESM1-ME NCC, Norway 0.832 2

Supplementary Table. 1| List of CMIP5/6 models used in the study. The models providing

total runoff, precipitation, surface air temperature, and evapotranspiration across historical

and model scenarios (SSP2-4.5, RCP4.5) are listed. Gray shading indicates models which do

not satisfy the water budget closure, determined as when the area fraction of basins with

closed water balance is less than 0.6 of global river basins (Method). Number of basins with

negative runoff values is also described for each model (Method).
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Inter-model corr. between T sensitivities of Q and ET
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Supplementary Fig. 1| Relationship between the temperature sensitivities of runoff and
evapotranspiration. Inter-model correlation coefficients between the historical temperature
sensitivities of runoff (§Q/8T) and evapotranspiration (§ET/6T). The sensitivity of
evapotranspiration is calculated by substituting evapotranspiration (ET) instead of runoff (Q)
in Eq. (3), following the methodology for runoff sensitivity (Methods). Hatched basins
indicate where the correlation coefficient is statistically not significant using a z-test at 95%

confidence level.
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the observational constraint. a,b, Observational constraint relative to predictions versus

relative to simulated runoff projections for (a) CMIP6 and (b) CMIP5. Observational

constraining effects are further decomposed into components driven by T sensitivity (a) and

P sensitivity (). ¢-f, The multi-model median (MMM) observational constraining effect

driven by P sensitivity bias for (¢) SSP2-4.5 and (d) RCP4.5 scenarios, and T sensitivity bias

for (e) SSP2-4.5 and (f) RCP4.5 scenarios.
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Supplementary Fig. 3| Inter-model correlation of temperature sensitivity to various
mean state variables. a-h, Inter-model correlation coefficient of historical (1947-2017)
temperature sensitivity to historical mean state variables: (a) temperature (T), (b)
precipitation (P), (¢) runoft (Q), (d) evapotranspiration (ET), (e) soil moisture in the upper 10
cm of the upper layer (SM), (f) transpiration divided by evapotranspiration (Trans/ET), (g)
runoff ratio (Q/P), and (h) potential evapotranspiration divided by precipitation (PET/P).
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Supplementary Fig. 4 Comparison between Global Runoff Reanalysis (GRUN) and
other observational runoff datasets. a-c, Water-year and basin averaged runoff for (a)
Columbia, (b) Norther Sierras, (¢) Upper Colorado River, and (d) Murray River basins with
naturalized streamflow. The GRUN runoft is averaged for the basin mask corresponding to
the streamflow gauge catchment. e,f, Water-year and basin averaged runoft for (e) Yangtze
and (f) Yellow river basins, where the China Natural Runoff Dataset! based on hydrologic
models are compared to the GRUN runoff. Inter-annual correlations between GRUN and
other datasets are indicated in the titles. The runoff and streamflow are represented as percent
anomalies relative to the long-term mean (1962-2017). Note that the naturalized streamflow
for the Chinese river basins is produced by the Variable Infiltration Capacity model, which is
specifically tunned for natural or near-natural gauge streamflow!. To validate GRUN runoff
sensitivity with naturalized streamflow, we only use the dataset which corrects the gauge

streamflow directly (a-d).
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Runoff ratio for each basin (1947-2017)
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Supplementary Fig. 5| Historical runoff ratio in models and GRUN dataset. Runoff ratio
calculated by dividing runoff by precipitation for each basin. The runoff ratio is calculated for
each water year and then averaged for historical period (1947-2017). Results are shown for
the GRUN dataset and individual CMIP5/CMIP6 models, with thin lines representing the
individual CMIP models. Note that the GRUN dataset derived from GSWP3 is excluded from

the main paper due to its unrealistically large runoff ratio compared to others.
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R? between 8Qpred and 8Qsim
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Supplementary Fig. 6| Training accuracy of the regression models using runoff
sensitivity. The coefficient of determination (R?) between runoff variations and predictions
by runoff sensitivity, calculated with 5-year moving windows. R? values for historical period
(1947-2017) of CMIP6, CMIP5, and GRUN dataset are calculated separately for each model
and basin and then aggregated into a box and whisker plot. Predictions are decomposed into
contributions from precipitation and temperature variations without interaction term (gray),
precipitation and temperature variations with interaction term (black), precipitation variation
(blue), and temperature variation (orange). The dotted line indicates statistically significant

R?, determined using ¢-test at a 95% confidence interval.
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129  Supplementary Fig. 7| Effect of runoff storage shown by autocorrelation. a-c,

130  Autocorrelation of annual runoff with increasing time lag years for the historical period

131 (1947-2017) in (a) CMIP6, (b) CMIPS5, and (¢) GRUN dataset. In (a-b), thin lines represent
132  the autocorrelation for each basin and each model, while thick lines denote the multi-model
133 mean. In (c), thin lines correspond to each basin and each atmospheric forcing of GRUN

134  dataset, and thick lines indicate the average across all forcing datasets. Gray dotted lines mark

135  the statistically significant autocorrelation at 95% confidence interval.
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Supplementary Fig. 8| Impact of recent warming on the temperature sensitivity

estimation. a, Timeseries of annual temperature anomalies in the Upper Colorado River

basin compared to the historical period (1947-2017), averaged using 5-year moving windows.

Thick lines indicate the multi-ensemble average, and thin lines indicate each member. b, T

sensitivity calculated with 70-year time windows advanced from the early historical period
(1867-1937) to the future (2017-2087) with 10-year intervals. ¢, Multi-member averaged

temperature anomalies for 131 global river basins. d, Inter-member standard deviation of T

sensitivity for each 70-year time window, calculated for 131 global river basins. The black

vertical dashed line indicates the end year of the historical period. Note that the T sensitivity

tends to converge as recent warming emerges, indicating that T sensitivity in the historical

period reflects runoft sensitivity to climate change.
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(a) Inter-model R b/w SENS & SENS(PET) (HIST6) 10 (b) Inter-model R b/w SENS & SENS(PET) (Future)
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Supplementary Fig. 9| Temperature as a proxy for potential evapotranspiration when
predicting the runoff changes. a,b, Inter-model correlation between runoff sensitivities
using temperature (T) and potential evapotranspiration (PET) calculated for (a) historical and
(b) future period. The black dashed line indicates statistically significant correlation
coefficients based on a t-test at a 95% confidence interval, and the number of basins with
significant correlations are indicated in the legend. c,d, Scatter plots between multi-model
median simulated runoff projections and predictions using (¢) historical and (d) future runoff
sensitivities. The number of basins with significant predictions are indicated in the legend
following the method applied in Fig. 2b. Note that 25 CMIP6 models are used for this

analysis according to data availability related to PET.
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179  Supplementary Fig. 10| Consistent results regardless of the regression methods. a,b,
180  Same to Fig. 2b and Fig. 4b with runoff sensitivity estimated using the ordinary least square
181  regression method. ¢,d, same to (a,b) but with runoff sensitivity estimated from the

182  orthogonal regression method.
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Supplementary Fig. 11| Impact of non-stationarity and internal climate variability on
the runoff sensitivity. Inter-model R? between historical runoff sensitivity and various
combinations of the runoff sensitivity for each basin, aggregated across 131 basins to a

typical box and whisker plot.



210

211
212
213

214

Reference

1. Gou, J. et al. CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and
Climate Studies in China. Bulletin of the American Meteorological Society 102, E929—
E947 (2021).



