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Materials and Methods
Preparation of MXene – 48% HF
The synthesis of MXene – 48% HF followed the same procedure as the fabrication of MXene described in the manuscript, except that 40% HF was replaced with 48% HF. 
Preparation of C/N@TiO2 – 48% HF
The sample was prepared by mixing 5wt% MXene – 48% HF with 95wt% gCN, followed by grinding the mixture using a mortar and subsequently heating it at 600 ℃ for 4 hours under air conditions using a muffle furnace.


Results and discussion 
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Fig. S1. (a) SEM and (b) TEM of graphitic carbon nitride (gCN). 
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Fig. S2. (a) Raman spectra, (b) nitrogen adsorption-desorption isotherms, (c) pore size distribution of gCN, TiO2_MXene, and C/N@TiO2.
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Fig. S3. Mott-Schottky plots of (a) gCN, (b) TiO2_MXene, and (c) C/N@TiO2 performed at different frequencies. 
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Fig. S4. Hydrogen evolution from water splitting catalyzed by (a) gCN, MXene, TiO2_MXene_550, C/N@TiO2_X_550 – amount dependence of MXene and gCN calcinated under air conditions at 550℃, (c) gCN, MXene, TiO2_MXene_600, and C/N@TiO2_5_T – temperature dependence of mixture of 5wt% MXene and 95wt% gCN calcinated under air conditions at different temperatures. Comparison of photogenerated hydrogen under simulated solar light exposure catalyzed by (b) gCN, MXene, TiO2_MXene_550, and C/N@TiO2_X_550 – amount dependence of MXene and gCN calcinated under air conditions at 550℃, (d) gCN, MXene, TiO2_MXene_600, and C/N@TiO2_5_T – temperature dependence of mixture of 55wt% MXene and 95wt% gCN calcinated under air conditions at different temperatures. 
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Fig. S5. Hydrogen evolution from water splitting catalyzed by C/N@TiO2 – 40 % HF and C/N@TiO2 – 48 % HF. 



Table S1. Comparison of performance of C/N@TiO2 toward photocatalytic H2 generation with other reported photocatalysts in the current state of the art. 
	Material
	Energy bandgap [eV]
	BET surface area [m2/g]
	Parameters of photocatalytic H2 evolution reaction
	H2 production [µmol/h/g]
	Ref.

	
	
	
	Lamp
	Light
	Sacrificial agent
	Co-catalyst
	
	

	C/N@TiO2
	3.1
	25
	150 W Xe
	simulated solar light
	16 % TEOA
	-
	9415
	This work

	C-TiO2/g-C3N4
	-
	129
	300 W Xe
	≥420 nm
	10 % TEOA
	2 wt% Pt
	1409
	4

	C-TiO2/g-C3N4
	2.6
	80
	300 W Xe
	≥420 nm
	10 % TEOA
	2 wt% Pt
	1146
	S1

	C-TiO2@g-C3N4
	3.1
	53
	300 W Xe
	≥420 nm
	10 % methanol
	-
	36
	S2

	g-C3N4/Au/C-TiO2
	2.9
	-
	300 W Xe
	≥420 nm
	10 % TEOA
	-
	129
	S3

	g-C3N4/TiO2
	2.8
	176
	250 W
	≥420 nm
	10 % TEOA
	-
	1041
	S4

	B-TiO2/g-C3N4
	2.7
	97
	300 W Xe
	-
	10 % TEOA
	-
	809
	S5

	d-Ti3C2/TiO2/g-C3N4
	2.7
	34
	300 W Xe
	≥420 nm
	10 % TEOA
	3 wt% Pt
	1620
	S6

	g-C3N4-TiO2/rGO
	2.6
	-
	250 W Xe
	200-800 nm
	5% glycerol
	-
	23143
	S7

	
	
	
	
	
	5% TEOA
	
	8510
	

	M-ZnS@g-C3N4/TiO2
	3.1
	374
	300 W Xe
	≥400 nm
	10 % TEOA
	-
	422
	S8

	g-C3N4/Ti3C2 MXene
	2.4
	-
	300 W Xe
	≥420 nm
	10 % TEOA
	-
	727
	S9

	g-C3N4@Ti3C2 QDs
	2.6
	40
	300 W Xe
	A.M. 1.5G
	15 % TEOA
	-
	5112
	S10

	g-C3N4/Ti3CN MXene
	2.0
	-
	300 W Xe
	-
	10 % TEOA
	2 wt% Pt
	7630
	S11

	g-C3N4/p-Ti3C2TX
	2.5
	-
	350 W Xe
	≥400 nm
	10 % TEOA
	-
	18
	S12

	TiO2/Ti3C2/g-C3N4
	2.8
	-
	300 W Xe
	-
	10 % TEOA
	-
	1150
	S13

	Ti3C2 MXene-derived TiO2/g-C3N4
	2.7
	129
	300 W Xe
	-
	10 % methanol
	3 wt% Pt
	11600
	S14
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