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Supplementary Notes 1 

Supplementary Note 1 | rsFPs properties in live-cell imaging 2 

Reversibly photo-switchable fluorescent proteins (rsFPs)1,2 are essential to our method, 3 

as imaging performance depends closely on the switching kinetics of these proteins. 4 

Conventional rsFPs are typically classified by their switching mechanisms into two 5 

primary modes: positive and negative. In the negative mode, the wavelength that 6 

induces fluorescence also switches the rsFPs from the on-state to the off-state. In 7 

contrast, in the positive mode, the light that excites fluorescence transfers the protein 8 

from the off-state to the on-state. The inherent characteristics of rsFPs can significantly 9 

affect imaging performance. For live-cell imaging, there are four key characteristics, 10 

including the brightness of the protein in its on-state, the on-off switching speed, the 11 

fluorescence contrast ratio of on/off states and the switching fatigue, which influence 12 

image intensity, imaging speed, image contrast and imaging duration, respectively. 13 

Skylan-NS3, a truly monomeric rsFP, was first developed by Xi Zhang et al. and 14 

tailored for patterned activation nonlinear structured illumination microscopy (PA NL-15 

SIM)4. Comparing with other rsFPs, such as Dronpa5 and rsEGFP26, Skylan-NS offers 16 

a superior number of switching cycles, higher photon output per cycle, and a more 17 

favorable on/off contrast ratio3. In live-cell experiments, Skylan-NS effectively labels 18 

various cellular components without inducing artificial aggregation, demonstrating its 19 

monomeric nature and suitability for cellular labeling. 20 



Supplementary Note 2 | Detailed optical layout 21 

The schematic of the optical system is shown in Supplementary Fig. 1. Here for 22 

simplicity, we only show the activation light (405 nm) and excitation light (488 nm) in 23 

this figure’s main part. Actually, in our LA-SIM system, five lasers with wavelengths 24 

of 405 nm (365 mW, Cobolt, 06-MLD-405 nm), 445 nm (400 mW, Cobolt, 06-MLD-25 

445 nm), 488 nm (500 mW, Coherent, Sapphire 488-500 LPX), 560 nm (500 mW, MPB 26 

Communications, 2RU-VFL-P-500-560-B1R) and 642 nm (500 mW, MPB 27 

Communications, 2RU-VFL-P-500-642-B1R) are expanded to a 1/e² diameter of 2.5 28 

mm using two lenses and then combined by a reflecting mirror and four dichroic mirrors 29 

(see inset in Supplementary Fig. 1). After combination, the lasers pass through an 30 

acousto-optic tunable filter (AOTF, AA Quanta Tech, AOTFnC-400.650-TN) which is 31 

employed to select the desired wavelength and control the laser intensity. Following the 32 

AOTF, a half wave plate (Bolder Vision Optik, BVO AHWP3) and a polarization beam 33 

splitter (Edmund, #49002) split the laser beam into two illumination paths. In the light 34 

sheet generation path, the laser passes through an achromatic doublet lens (L1, 20 mm 35 

FL/12.5 mm dia.) and a pair of cylindrical lenses (CL1, 50 mm FL/25.4 mm dia, 36 

Thorlabs, ACY254-50A; CL2, 250 mm FL/25.4 mm dia, Thorlabs, ACY254-250A) to 37 

shape the beam into a rectangular profile. This shaped beam is then modulated by 38 

patterns displayed on the spatial light modulator (SLM, Forth Dimension, QXGA-39 

3DM). The SLM features a resolution of 2048×1536 ferroelectric liquid crystal pixels. 40 

When paired with a polarizing beam splitter cube (Edmund, #49002) and an achromatic 41 

half-wave plate (Bolder Vision Optik, BVO AHWP3), it enables a phase retardance of 42 

0 or π in the diffracted beam, depending on the on/off status of the pixels. The diffracted 43 

light from the SLM is then focused through a 450 mm focal length lens (L2, 450 mm 44 

FL/40 mm dia, Edmund 49-282) onto a customized annular mask. This annular mask 45 

has a series of different size constraints that can filter out unwanted diffraction orders 46 

corresponding to different lattice patterns. After passing through the annular mask, the 47 

selected diffraction orders are magnified by a pair of relay lenses (L3, 70 mm FL/30 48 

mm dia, Optosigma DLB 30-70PM, L4, 75 mm FL/30 mm dia, Optosigma DLB 30-49 

75PM) and then conjugated to a scanning module that includes two galvanometers 50 



(Cambridge Technology, 6210H) and a pair of relay lenses with the same focal length 51 

(L5, L6, 70 mm FL/25 mm dia, Optosigma DLB 25-70PM) configured in a 4f 52 

arrangement. Each galvanometer is conjugated to the back pupil plane of the 53 

illumination objective (Thorlabs, TL20X-MPL, 0.6 NA, 5.5 mm WD), allowing the 54 

system to scan along both the x-axis and z-axis of the sample. The image of the annular 55 

mask is further magnified by a factor of ~2.29 times using a relay lens (L7, 175 mm 56 

FL/25 mm dia, Edmund, 47-644; L8, 400 mm FL/25.4 mm dia, Thorlabs, AC254-400-57 

A) and conjugated to the back focal plane of the illumination objective. The 58 

illumination objective then transforms the image to create the desired light sheet at its 59 

front focal plane, illuminating the sample. The emitted fluorescence is collected by the 60 

detection objective (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD) and imaged by 61 

a tube lens (L13, 400 mm FL / 50 mm dia, Thorlabs, AC508-400-A). The image is then 62 

magnified by another pair of lenses (L12, 120 mm FL/30 mm dia, Optosigma, DLB 30-63 

120PM, L14, 170 mm FL/30 mm dia, Optosigma, DLB 30-170PM) with a total 64 

magnification of ~70× from the sample plane to the camera plane and recorded by an 65 

sCMOS camera (Hamamatsu, Orca Flash 4.0 v3 sCMOS) after passing through an 66 

emission filter.  67 

In the structured excitation arm of the system, stripe patterns are sequentially 68 

displayed on the SLM, synchronized with the generation of the activation light sheet. 69 

Before projection onto the SLM, the laser beam is magnified 11.4× through a pair of 70 

relay lenses (L9, 17.5 mm FL/12.5 mm dia, Edmund 49-928; L10, 200 mm FL/30 mm 71 

dia, Optosigma, DLB-30-200PM). The reflected laser beam from the SLM passes 72 

through a 350 mm focal length lens (L11, 350 mm FL/30 mm dia, Optosigma, DLB-73 

30-350PM) and focuses onto the mask to filter out unwanted diffraction orders. The 74 

laser beam then passes through the mask and a customized six/ten-section half-wave 75 

plate to alter its polarization state. After passing through the dichroic mirror (Chroma), 76 

the beam is magnified 3.33× through relay lenses (L12, L13) and directed into the 77 

detection objective to form SIM patterns on the sample. In this setup, the SLM is 78 

conjugated to the focal plane of the detection objective while the mask is conjugated to 79 

the back focal plane of the detection objective. 80 



A wide-field imaging setup is also established to facilitate sample localization. 81 

When the flip mirror is positioned in the optical path, the collimated light beam is 82 

expanded by a pair of relay lenses (L15, 10 mm FL/8 mm dia, Thorlabs, AC080-010-83 

A, L16, 100 mm FL/25 mm dia, Thorlabs, AC254-100-A), then demagnified by a lens 84 

(L17, 100 mm FL/25 mm dia, Optosigma, DLB-25-100PM) and the epifluorescence 85 

objective (Nikon, MRD07420, 40X/0.8 NA, 3.5 mm WD) to illuminate the sample. The 86 

fluorescence signal is collected by the epifluorescence objective, passes through lens 87 

L17, and is filtered before being imaged onto an sCMOS camera (Excelitas 88 

Technologies, pco.panda 4.2 bi sCMOS).89 



Supplementary Note 3 | Simulation of LA-NLSIM  90 

We wrote MATLAB codes following the equations described below to visualize the 91 

nonlinear activation process of LA-NLSIM in Extended Data Fig. 5 and Supplementary 92 

Video 8.  93 

In the first step of the activation process, we uniformly activate the fluorescent 94 

molecules as time progresses. The switching speed from the on-state to the off-state 95 

depends on the intensity of the excitation light. Assuming that after irradiation with 96 

laser intensity 𝐼଴ for time 𝜏଴, the activated fluorescent molecules can be completely 97 

returned to the off-state, then the distribution of fluorescent molecules remaining in the 98 

on-state after an exposure time 𝑡 is given by 99 

𝑆௢௡ሺ𝑥ሻ ൌ 𝑒
ି ௧
ఛబூబ

ூ೚೑೑ሺ௫ሻ𝑆ሺ𝑥ሻ ሺ1ሻ 100 

where 𝑆ሺ𝑥ሻ is the sample distribution, 𝐼௢௙௙ሺ𝑥ሻ is the intensity distribution of the turn 101 

off light that can be assumed as a one-dimensional sinusoidally varying pattern  102 

𝐼௢௙௙ ൌ  
𝐼଴
2
ሺ1 െ cosሺ2𝜋𝑘଴𝑥 ൅ 𝜑ሻሻ ሺ2ሻ 103 

Here we define the term, saturation factor (SF), to be the ratio of the exposure time 104 

𝑡 to the off time 𝜏଴. Eq. (1) then becomes 105 

𝑆௢௡ሺ𝑥ሻ ൌ 𝑒ି
ௌி
ଶ ሺଵିୡ୭ୱሺଶగ௞బ௫ାఝሻሻ𝑆ሺ𝑥ሻ ሺ3ሻ 106 

In the last step of patterned read-out, we collect the remaining fluorescence from 107 

the on molecules by shifting the pattern by 𝜋 phase. The intensity distribution of the 108 

readout illumination can be described as 109 

𝐼௥௘௔ௗ௢௨௧ ൌ  
𝐼଴
2
ሺ1 െ cosሺ2𝜋𝑘଴𝑥 ൅ 𝜑 ൅ 𝜋ሻሻ ሺ4ሻ 110 

In this case, the fluorescent molecules that remain in the on-state will be 111 

𝑆௢௡ᇱ ሺ𝑥ሻ ൌ  𝐼௥௘௔ௗ௢௨௧𝑆௢௡ሺ𝑥ሻ𝑒
ିௌிଶ ሺଵିୡ୭ୱሺଶగ௞బ௫ାఝାగሻሻ ሺ5ሻ 112 



Supplementary Note 4 | Conceptual design of SRFormer  113 

a) Architecture design of SRFormer 114 

In the regime of volumetric biological data restoration, 3D residual channel attention 115 

network (3D RCAN)7,8 is considered as one of the most powerful yet simple models. 116 

However, due to its relatively shallow architecture constituted based on traditional 3D 117 

convolutional layers and the channel attention mechanism, the expansibility and feature 118 

extraction capability of 3D RCAN are limited. Recently, transformer-based image 119 

super-resolution models for processing natural images such as the Swin-transformer 120 

image restoration model (SwinIR)9 and dual aggregation transformer (DAT) model10 121 

have emerged, featuring a larger model scale and a better performance in various natural 122 

2D image restoration tasks. However, whether the transformer-based image SR model 123 

outperforms conventional convolutional neural networks in volumetric data super-124 

resolution reconstruction has not been explored. 125 

To this end, our preliminary experiments started with comparing the performance 126 

of SwinIR9, DAT10 and 3D RCAN7 following the network configuration of the original 127 

papers. Interestingly, we found that though with a shallower and small-scale, the 3D 128 

RCAN generated better high-frequency details of biological structures especially in the 129 

axial dimension than the more complex SwinIR and DAT (Extended Data Fig. 6a-c and 130 

Supplementary Fig. 7a-c). We speculated that the underlined reason is the backbone of 131 

SwinIR and DAT focuses on 2D feature extraction, preventing effective utilization of 132 

axial structural continuity of the volumetric LLSM data. Therefore, we then tried 133 

replacing the original 2D convolutional layers and 2D Swin-transformer blocks with 134 

3D convolutional layer and the video Swin-transformer blocks11, respectively, in the 135 

original DAT while not changing its depth and overall architecture, which is denoted as 136 

3D DAT hereafter. As a result, a notable improvement in both axial resolution and 137 

reconstruction fidelity in terms of peak signal-to-noise ratio (PSNR) and structural 138 

similarity (SSIM) is observed after such 3D modification (Supplementary Fig. 7). These 139 

results indicate that 3D feature extraction capability is of vital importance to volumetric 140 

SR models. 141 



Moreover, our previous research12 and other existing literature13,14 have 142 

demonstrated that incorporating frequency feature manipulation and the pyramid 143 

network architecture generally benefits image SR capability of neural network models. 144 

Inspired by this, we further equipped the aforementioned 3D DAT with the U-shaped 145 

architecture for hierarchical feature extraction and spatial-frequency fusion block 146 

(SFFB) for non-local spectral information aggregation (Supplementary Fig. 6 and 147 

Supplementary Note 4b). Particularly, we explored integrating various depths of U-148 

shaped structures, i.e., with different numbers of down-sampling and up-sampling 149 

modules, and found that the one-stage U-shaped architecture, i.e., incorporating only 150 

one down-sampling and up-sampling operations in each forward propagation, yielded 151 

the best SR reconstruction performance.  152 

Most deep learning approaches for microscopy image denoising and super-153 

resolution require training specific models for each type of biological specimens. This 154 

is because a general model trained with multiple biological specimens usually performs 155 

worse than the models trained on a specific type of specimens, due to limitations in 156 

neural network scalability. On the other hand, recent explorations of large language 157 

models suggest that a larger model with more trainable parameters is more robust in 158 

processing multi-tasks parallelly. Therefore, following the scaling law15, we scaled up 159 

the network to 62,767,512 parameters by increasing feature channels and repeating 160 

feature extraction blocks in SRFormer. To our best knowledge, this is the largest model 161 

reported for biological image restoration. We trained the SRFormer model on two 162 

Nvidia A800 GPUs, and our experiments revealed that with all abovementioned 163 

advancements, a well-trained SRFormer enabled volumetric SR reconstruction of 164 

multiple biological specimens with the performance comparable to that achieved by 165 

individual 3D RCAN models trained on datasets of each specific biological structures 166 

(Extended Data Fig. 6). 167 

b) Detailed network architecture of SRFormer  168 

As shown in Supplementary Fig. 6, SRFormer comprises three modules: shallow 169 

feature extraction, deep feature extraction, and high-quality image reconstruction. 170 

Initially, the low-resolution (LR) input image stack 𝑋 ∈ ℝ௓ൈுൈௐ, where 𝑍, 𝐻 and 171 



𝑊 denote the size along three dimensions of the data. 172 

First, the LR image stack is processed through two 3D convolutional layers to 173 

obtain the shallow feature 𝐹௦ଵ ∈ ℝ௓ൈுൈௐൈ஼భ and 𝐹௦ଶ ∈ ℝ௓ൈுൈௐൈ஼మ. The dimensions 174 

of the feature, denoted as 𝐶ଵ  and 𝐶ଶ , are set to 90 and 180, respectively, in our 175 

experiments. Next, the shallow feature 𝐹௦ଵ  is fed into four dual aggregation 176 

transformer block (DATB) groups that are arranged following a U-shaped structure to 177 

generate hierarchical deep features. Specifically, the first group of feature channels 178 

𝐹ௗଵ ∈ ℝ௓ൈுൈௐൈ஼భ  are obtained by sending 𝐹௦ଵ  to the first DATB group, then 𝐹ௗଵ 179 

are sequentially passed through a down-sampling layer, the second DATB group, and 180 

an up-sampling layer (realized by pixel shuffle), generating a group of deep feature 181 

channels 𝐹ௗଶ ∈ ℝ௓ൈுൈௐൈ஼భ . The 𝐹ௗଵ  and 𝐹ௗଶ  are concatenated to constitute 182 

hierarchical deep feature 𝐹௛ௗ ൌ 𝑐𝑜𝑛𝑐𝑎𝑡ሺ𝐹ௗଵ,𝐹ௗଶሻ ∈ ℝ௓ൈுൈௐൈ஼మ, which is then passed 183 

through the last two DATB groups to obtain the refined feature 𝐹ௗ ∈ ℝ௓ൈுൈௐൈ஼మ. Each 184 

DATB group consists of 6 consecutive 3D DATB, and one 3D spatial-frequency fusion 185 

block (SFFB). Each DATB is constructed by one 3D dual spatial transformer blocks 186 

(3D DSTB) and one 3D dual channel transformer blocks (3D DCTB).  187 

Finally, the combined feature of the shallow feature 𝐹௦ଶ and the refined feature 𝐹ௗ 188 

is fed into an up-sampling block and a 3D convolutional layer to generate the final 189 

super-resolution image 𝑌෠ ∈ ℝ௓ᇲൈுᇲൈௐᇲ
, where the parameters 𝑍ᇱ, 𝐻ᇱ and 𝑊ᇱ are set 190 

to 3 ൈ 𝑍, 2 ൈ 𝐻 and 2 ൈ𝑊, respectively.191 



Supplementary Note 5 | Characterization of SRFormer LA-SIM 192 

a) Calculation of assessment metrics 193 

To quantitatively evaluate the images reconstructed by SRFormer LA-SIM and other 194 

methods, we used the PSNR and SSIM between the SR image 𝑌෠ and the ground truth 195 

(GT) image 𝑌. Since the signal intensity of the SR and GT images differs in dynamic 196 

range, we applied a linear transformation12 to the SR image as follows 197 

𝑌෨  ൌ  α𝑌෠  ൅  β ሺ6ሻ 198 

where α and β represent the transformation coefficients aimed at minimizing the 199 

squared error between the transformed image and the normalized GT image, 𝑌෨  200 

denotes the linear transformed SR image. This problem can be formulated as a linear 201 

regression problem: 202 

min
஑,ஒ

ቚหα𝑌෠  ൅  β െ  𝑌หቚ
ଶ

ଶ
ሺ7ሻ 203 

The closed-form solution to this problem is given by: 204 

αෝ ൌ
∑ 𝑌௜ ൈ ቀ𝑌෨௜ െ mean൫𝑌෨൯ቁே
௜ୀଵ

∑ 𝑌෨௜
ଶ െ 𝑁 ൈ mean൫𝑌෨൯

ଶே
௜ୀଵ

ሺ8ሻ 205 

β෠ ൌ 𝑁 ൈ෍൫𝑌୧ െ αෝ ൈ 𝑌෨௜൯

ே

௜ୀଵ

ሺ9ሻ 206 

where αෝ  and β෠  denote the optimal values of the transformation coefficients α 207 

and β, respectively. 208 

The final PSNR and SSIM are calculated as follows: 209 

PSNR൫𝑌෨ ,𝑌൯ ൌ 10 ൈ logଵ଴ ቆ
N

∑ ሺ𝑌௜ െ 𝑌෨௜ሻଶே
௜ୀଵ

ቇ ሺ10ሻ 210 

SSIM൫𝑌෨ ,𝑌൯ ൌ
ሺ2μ௒෨μ௒ ൅ cଵሻሺ2σ௒෨௒ ൅ cଶሻ

൫μ௒෨
ଶ ൅ μ௒

ଶ ൅ cଵ൯൫σ௒෨
ଶ ൅ σ௒

ଶ ൅ cଶ൯
ሺ11ሻ 211 

whereμ௒෨ , μ௒, σ௒෨  and σ௒ denote the mean values and standard deviations of the 212 

SR image 𝑌෨   and the GT image 𝑌 , respectively. σ௒෨௒  denotes the cross-covariance 213 

between the SR image 𝑌෨   and GT image 𝑌 . The constants cଵ  and cଶ  used in this 214 

paper are 0.012 and 0.032, respectively. 215 

b) Ablation study of SRFormer 216 



As is discussed in the Methods section of the main text and Supplementary Note 4, 217 

there are three key advancements in SRFormer over existing transformer-based image 218 

SR neural network models such as SwinIR9 and DAT10. First, instead of using 2D 219 

convolutional layers and 2D shifted window (Swin) transformer blocks16, we used 3D 220 

convolutional layers and Swin transformer blocks designed for 3D data11 in SRFormer 221 

for volumetric feature extraction. Second, we designed a U-shaped architecture for the 222 

cascading DATB groups to enable hierarchical feature manipulation within the network. 223 

Third, by incorporating Fourier space learning12,13, we endowed SRFormer with an 224 

extended receptive field across the whole image, further strengthening the 225 

representation capability of the model.  226 

To demonstrate the effectiveness of above modifications, we conducted ablation 227 

experiments for SRFormer using LLSM and rDL LA-SIM image pairs of three different 228 

biological specimens including outer mitochondrial membrane (Mito), microtubules 229 

(MTs), and F-actin. In detail, we trained several image SR models including the original 230 

DAT models with 2D feature extraction modules (i.e., 2D convolution and 2D Swin 231 

transformer blocks), denoted as 2D DAT, modified DAT models with 3D feature 232 

extraction modules (i.e., 3D convolution and 3D Swin transformer blocks), denoted as 233 

3D DAT, modified SRFormer model without SFFB blocks (denoted as SRFormer w/o 234 

SFFB), modified SRFormer model without U-shaped architecture (denoted as 235 

SRFormer w/o U-shape), in which four DATB groups are connected sequentially, and 236 

the proposed SRFormer model with all reinforcements mentioned above. 237 

Typical results of these models and quantitative comparisons in terms of PSNR and 238 

SSIM are shown in Supplementary Fig. 7, from which we draw such conclusions: (1) 239 

By comparing 2D DAT to other four models with 3D adaptation, we found that the 3D 240 

feature extraction modules substantially enhance axial resolution in the inferred 241 

volumetric SR results. (2) By comparing 3D DAT with SRFormer w/o SFFB and 242 

SRFormer w/o U-shape, we found that the incorporation of either SFFB or one-stage 243 

U-shaped architecture is able to slightly improve the SR resolvability both qualitatively 244 

and quantitatively. However, these two models struggle with reconstructing the hollow 245 

reconstruction of the outer mitochondrial membrane (Supplementary Fig. 7a) and are 246 



prone to generating unnatural structure in MTs and F-actin images (Supplementary Fig. 247 

7b, c). (3) Benefiting from volumetric and hierarchical feature extraction capability 248 

provided by 3D adaptation, SFFB, and U-shaped architecture, SRFormer can 249 

distinguish the hollow structure of outer mitochondrial membrane in both lateral and 250 

axial (Supplementary Fig. 7a), and reconstruct tubular structure with similar 251 

morphology and comparable resolution with rDL LA-SIM, i.e., the GT used in training. 252 

Meanwhile, SRFormer achieves the highest reconstruction PSNR and SSIM compared 253 

to other models. 254 

c) Comparison of SRFormer with 3D RCAN and SwinIR 255 

To further validate the superior performance of SRFormer in volumetric image super-256 

resolution tasks, we compared it with two state-of-the-art deep learning algorithms: 257 

three-dimensional residual channel attention networks (3D RCAN)7, a commonly 258 

adopted neural network model for 3D biological data denoising and super-resolution, 259 

and SwinIR9, a well-recognized neural network for image restoration which is 260 

constructed based on the Swin Transformer. We first independently trained three 3D 261 

RCAN models using three datasets of Mito, MTs and F-actin, respectively, referred to 262 

as 3D RCAN specific models. Next, we trained 3D RCAN, SwinIR (following its 263 

original configuration9 with 2D feature extraction modules), and SRFormer models 264 

using a mixed dataset of all three biological structures, referred to as general models. 265 

As such, the “3D RCAN Specific” models were trained for processing data of a single 266 

type of specimen, and “3D RCAN General”, “SwinIR General”, and “SRFormer 267 

General” models each was trained to process data of various types of biological 268 

structures. Extended Data Fig. 6 presents representative SR images reconstructed using 269 

these models, which indicate several conclusions, including: (1) Although built based 270 

on conventional convolutional architecture, the 3D RCAN general model outperformed 271 

the transformer-based SwinIR model due to its volumetric feature extraction and 272 

aggregation capability; (2) the 3D RCAN specific model trained for a certain type of 273 

specimen achieved relatively better accuracy compared to the 3D RCAN general model 274 

trained with all relative datasets. This result is consistent with findings in other 275 

literature12 that independent image SR neural network models should be trained for 276 



each biological specimen to achieve optimal SR performance; (3) Consistent with the 277 

scaling law15, with over 60 million trainable parameters and sufficient training data, 278 

SRFormer trained with datasets of all types of specimens achieved better performance 279 

than the 3D RCAN general model and even the three 3D RCAN specific models. It 280 

successfully reconstructed the hollow outer membrane of mitochondria in three 281 

dimensions (Supplementary Fig. 7a), as well as tubular structures of MTs and F-actin 282 

(Supplementary Fig. 7b, c). Additionally, the quantitative comparison between 283 

SRFormer and other models, shown in Supplementary Fig. 7d-f, also demonstrates the 284 

superior reconstruction fidelity and robustness to variations in signal-to-noise ratio  285 

and structural differences among various cell types.286 



Supplementary Figures 

 

Supplementary Fig. 1 | Schematic of LA-SIM system. See Methods and Supplementary Note 2 for 

more information.



 

Supplementary Fig. 2 | Hardware control schematic of LA-SIM system.  

FPGA: field-programmable gate array; DIO: digital input and output; AO: analog output; AI: analog 

input; SLM: spatial light modulator; Galvo: galvanometer; PZT: piezoelectric transducer; AOTF: 

acousto-optic tunable filter. FPGA provides the analog and digital outputs to control the essential 

electronics for image acquisition. The AO ports connect and control devices requiring analog voltage 

modulation, including Galvo, PZT and AOTF (for controlling power output). The DO ports connect and 

control devices requiring highly synchronized operation, including Camera, SLM and AOTF (for 

controlling switch state). The AI and DI ports receive feedback signals from Galvo and PZT. The camera 

acquisition card in the computer receives data from the camera. Different acquisition timing is designed 

based on imaging mode requirements. Refer to the Methods section and Supplementary Figs. 3-5 for 

additional details.



 

Supplementary Fig. 3 | Timing diagrams for hardware control, LA-LSIM without axial thinning 

acquisition for one orientation one phase.



 

Supplementary Fig. 4 | Timing diagrams for hardware control, LA-LSIM with axial thinning 

acquisition for one orientation one phase.  



 

Supplementary Fig. 5 | Timing diagrams for hardware control, volume acquisition for two scanning 

modes. Sample scanning mode is the volumetric acquisition mode in which the specimen is translated 

with a high-precision piezo stage through the stationary light sheet. Objective with light-sheet scanning 

mode is achieved by moving the light sheet and detection objective together through the specimen.



 

Supplementary Fig. 6 | Network architecture of SRFormer. a, The schematic of the inference phase 

of SRFormer. b, The architecture of dual aggregation transformer block (DATB) group. c, The 

architecture of 3D dual spatial transformer block (3D DSTB). d, The architecture of 3D dual channel 

transformer block (3D DCTB). e, The architecture of spatial-frequency fusion block (SFFB). f, The 

architecture of adaptive spatial self-attention (AS-SA). g, The architecture of adaptive channel self-

attention (AC-SA). h, The architecture of channel-interaction (C-I). i, The architecture of spatial-

interaction (S-I).



 

Supplementary Fig. 7 | Ablation study of SRFormer. a-c, Representative maximum intensity 

projections (MIP, xy-plane) and yz-slices of LLSM image stacks (first column) and SR images of Mito 

(a), MTs (b), and F-actin (c) reconstructed by 2D DAT (second column), 3D DAT (third column), 

SRFormer w/o U-shape (fourth column), SRFormer w/o SFFB (fifth column), and SRFormer LA-SIM 

(sixth column). Super-resolution rDL LA-SIM MIP images are provided for reference in the seventh 

column. Arrows indicate the x position for the yz-slices shown below. Scale bar, 2 μm. d, Statistical 

comparison of PSNR and SSIM values for the output SR images produced by 2D DAT, 3D DAT, 

SRFormer w/o U-shape, SRFormer w/o SFFB, and SRFormer on test datasets of Mito (d), MTs (e), and 

F-actin (f) (n=1000). 

 

 

 

  



Supplementary Tables 

Supplementary Table 1 | Imaging parameters of LA-SIM 

Data Imaging mode 
Sample 

(situation) 
Label 

Volume size of 

raw data 

(Width×Height 

×Z-slice) 

Exposure time for one phase one orientation 

(ms) 
NA 

Time 

points 
activation  

axial 

thinning 
0-phase pi-phase Activation 

Excita

tion 

Fig. 1e-g, k, l 

Supplementary Video 3 
LA-LSIM-z COS-7 (fixed) Skylan-NS-Ensconsin 640×640×445 5 25 15 15 

0.35 

0.14 
1.0 / 

Fig. 2a-e, g 

Supplementary Video 5 
LA-LSIM Hela (live) Skylan-NS-Lifeact 512×512×91 1 / 5 5 

0.35 

0.14 
1.0 150 

Fig. 2i-l 

Supplementary Video 7 
LA-LSIM-z COS-7 (live) Skylan-NS-Tomm20 448×672×401 2 5 5 5 

0.35 

0.14 
1.0 45 

Fig. 3a-c 

Supplementary Video 9 
LA-NLSIM- z COS-7 (fixed) Skylan-NS-Ensconsin 800×800×491 5 25 20 10 

0.35 

0.14 
1.0 / 

Extended Data Fig. 3a 

Supplementary Video 4 
LA-LSIM-z COS-7 (fixed) Skylan-NS-Tomm20 512×512×242 7 20 15 15 

0.35 

0.14 
1.0 / 

Extended Data Fig. 3b 

Supplementary Video 6 
LA-LSIM COS-7 (live) Skylan-NS-Tomm20 512×512×65 2 / 10 10 

0.35 

0.14 
1.0 / 

Extended Data Fig. 4b-e 
LA-LSIM-z Hela (fixed) Skylan-NS-Lifeact 512×512×221 3 15 15 15 

0.35 

0.14 
1.0 / 

3D-SIM Hela (fixed) Skylan-NS-Lifeact 512×512×101 5 / 20 (excitation) / 1.0 / 



Supplementary Table 2 | Imaging parameters of SRFormer LA-SIM 

Data 
Imaging method 

(Acquisition mode) 
Sample Label 

Excitation 

NA 

Excitation 

λ (nm) 

Exposure 

time per 

raw image 

(ms) 

Volume size of 

raw data 

(Width×Height 

×Z-slice×Channel) 

Cycle time 

(Acquisition 

+ resting 

time) (s) 

Time 

Points 

(Video) 

Fig. 4c-f 

Supplementary Video 10 

LLSM 

(sheet-scan mode) 
COS-7 

Ensconsin-mStayGold 

SKL-mCherry 

 LAMP1-Halo  

0.35,0.14 

488 

560 

642 

10 

10 

10 

320×832×191×3 6.42 690 

Fig. 5a-c 

Supplementary Video 12 

LLSM 

(sheet-scan mode) 
COS-7 

G3BP1-mStayGold 

LAMP1-Halo 
0.35,0.14 

488 

560 

10 

10 
352×768×181×2 4.11 500 

Fig. 5d 

Supplementary Video 14 

LLSM 

(sheet-scan mode) 
COS-7 

G3BP1-mStayGold 

LAMP1-Halo 
0.35,0.14 

488 

560 

10 

10 
512×512×101×2 2.44 55 

Fig. 5e 

Extended Data Fig. 8 

Supplementary Video 15 

LLSM 

(slit-scan mode) 

Mouse 

embryo 
LAMP1-mStayGold 0.07 488 10 1024×1024×401×1 30 300 

Extended Data Fig. 7 

Supplementary Video 11 

LLSM 

(sheet-scan mode) 
COS-7 

Ensconsin-3×mStaygold 

Tomm20-mCherry 
0.35, 0.14 

488 

560 

10 

10 
288×768×151×2 3.33 400 

Extended Data Fig. 9 

 

LLSM 

(slit-scan mode) 

Mouse 

embryo 
LAMP1-mStayGold 0.07 488 10 1024×1024×301×1 30 / 

3D-SIM 
Mouse 

embryo 
LAMP1-mStayGold 1.49 488 30 512×512×37×1 32.69 / 



Captions for Supplementary Videos 

 

Supplementary Video 1 | Animation of LA-LSIM illumination and acquisition steps without (part 

I) and with (part II) sandwiched axial thinning.



 

Supplementary Video 2 | Animation of LA-NLSIM illumination and acquisition steps without (part 

I) and with (part II) sandwiched axial thinning.



 

Supplementary Video 3 | Volume rendering of LA-LSIM-z image acquired from fixed COS-7 cell 

expressing Ensconsin-Skylan-NS, showing the progressive resolution enhancement from LLSM, 

LLSM with axial thinning, to LA-LSIM-z and LA-LSIM-z with rDL denoising. See also Fig. 1.



 

Supplementary Video 4 | Volume rendering and 3D projection of LLSM (left) and rDL LA-LSIM-

z images from fixed COS-7 cell expressing Tomm20-Skylan-NS. The x-z scrolling views present 

resolution improvements in both lateral and axial dimensions via rDL LA-LSIM-z. See also 

Extended Data Fig. 2.



 

Supplementary Video 5 | 3D projections of LLSM (left) and rDL LA-LSIM (right) imaging of a 

live Hela cell expressing Lifeact-Skylan-NS, showing the F-actin cytoskeleton dynamics over the 

whole cell volume for 150 time points lasting ~37 mins. See also Fig 2. 



 

Supplementary Video 6 | 3D projections of rDL LA-LSIM imaging of live COS-7 cell expressing 

Tomm20-Skylan-NS, showing the mitochondrial fission and fusion membrane dynamics over the 

whole cell volume for 50 time points lasting ~18 mins. See also Extended Data Fig. 2. 



 
Supplementary Video 7 | 3D projections and surface rendering of rDL LA-LSIM-z imaging of live 

COS-7 cell expressing Tomm20-Skylan-NS for 45 time points lasting ~84 mins. See also Fig.2.



 

Supplementary Video 8 | Illustration of the sequential steps of LLS activation, 0-phase patterned 

excitation, and pi-phase patterned excitation in the illumination procedure of LA-NLSIM.



 

Supplementary Video 9 | 3-D projection of rDL LA-NLSIM-z image acquired from fixed COS-7 

cell expressing Ensconsin-Skylan-NS. The magnified views show the resolution and SNR 

comparison of LLSM (top), LA-NLSIM-z (middle), and rDL LA-NLSIM-z (bottom). See also Fig. 

3.



 

Supplementary Video 10 | Long-term three-color SRFormer LA-SIM imaging of COS-7 cell 

expressing Ensconsin-mStayGold (gray), SKL-mCherry (red) and LAMP1-HaloTag (blue), 

revealing the dynamic interactions among lysosomes, peroxisomes and microtubules over the whole 

cell volume for 690 time points lasting ~74 mins. See also Fig. 4.



 

Supplementary Video 11 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell 

expressing Ensconsin-3×mStayGold and Tomm20-mCherry, showing the mitochondrial membrane 

dynamics and their translocation along microtubule tracks. See also Extended Data Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Video 12 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell 

expressing G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 µM NaAsO2 for 30 

min, showing the common dynamic interactions between lysosomes and stress granules over the 

whole cell volume for 500 time points lasting ~34 mins. See also Fig. 5.



 

Supplementary Video 13 | Two additional examples showing the lysosome movements mediate 

the fission of stress granule condensates.



 
Supplementary Video 14 | Two-color SRFormer LA-SIM imaging of COS-7 cell expressing 

G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 µM NaAsO2 for 30 min, showing 

that a moving lysosome mediates the fission of large stress granule condensates. See also Fig. 5. 



 
Supplementary Video 15 | Long-term SRFormer LA-SIM imaging of mouse early embryo labeled 

with LAMP1-mStayGold, revealing the dynamics of each individual lysosome over the whole 

embryo range for 300 time points lasting 2.5 hours. See also Fig. 5, extended Data Fig. 8. 
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