

Supplementary Information for

Lattice light sheet activation structured illumination volumetric super-resolution live microscopy

Xue Dong*, Quan Meng*, Xiaoyu Yang*, Haoyu Chen*, Chang Qiao*,
Yuhuan Lin, Siwei Zhang, Xiaohan Geng, Linghui Luan, Tao Jiang, Wenfeng Fu,
Amin Jiang, Wencong Xu, Jiabao Guo, Rongfei Wei, Dong Li†

*These authors contributed equally

†Correspondence: li-dong@tsinghua.edu.cn

This PDF file includes:

Supplementary Notes 1-5
Supplementary Figures 1-7
Supplementary Tables 1 and 2
Captions for Supplementary Videos 1-15
Supplementary References

Contents

<u>Section</u>	<u>Page</u>
Supplementary Notes.....	3
Supplementary Note 1 rsFPs properties in live-cell imaging.....	3
Supplementary Note 2 Detailed optical layout.....	4
Supplementary Note 3 Simulation of LA-NLSIM	7
Supplementary Note 4 Conceptual design of SRFormer	8
a) Architecture design of SRFormer.....	8
b) Detailed network architecture of SRFormer	9
Supplementary Note 5 Characterization of SRFormer LA-SIM.....	11
a) Calculation of assessment metrics.....	11
b) Ablation study of SRFormer	11
c) Comparison of SRFormer with 3D RCAN and SwinIR	13
Supplementary Figures	15
Supplementary Tables.....	22
Supplementary Table 1 Imaging parameters of LA-SIM.....	22
Supplementary Table 2 Imaging parameters of SRFormer LA-SIM	23
Captions for Supplementary Videos	24
Supplementary References.....	39

1 **Supplementary Notes**

2 **Supplementary Note 1 | rsFPs properties in live-cell imaging**

3 Reversibly photo-switchable fluorescent proteins (rsFPs)^{1,2} are essential to our method,
4 as imaging performance depends closely on the switching kinetics of these proteins.
5 Conventional rsFPs are typically classified by their switching mechanisms into two
6 primary modes: positive and negative. In the negative mode, the wavelength that
7 induces fluorescence also switches the rsFPs from the on-state to the off-state. In
8 contrast, in the positive mode, the light that excites fluorescence transfers the protein
9 from the off-state to the on-state. The inherent characteristics of rsFPs can significantly
10 affect imaging performance. For live-cell imaging, there are four key characteristics,
11 including the brightness of the protein in its on-state, the on-off switching speed, the
12 fluorescence contrast ratio of on/off states and the switching fatigue, which influence
13 image intensity, imaging speed, image contrast and imaging duration, respectively.

14 Skylan-NS³, a truly monomeric rsFP, was first developed by Xi Zhang et al. and
15 tailored for patterned activation nonlinear structured illumination microscopy (PA NL-
16 SIM)⁴. Comparing with other rsFPs, such as Dronpa⁵ and rsEGFP2⁶, Skylan-NS offers
17 a superior number of switching cycles, higher photon output per cycle, and a more
18 favorable on/off contrast ratio³. In live-cell experiments, Skylan-NS effectively labels
19 various cellular components without inducing artificial aggregation, demonstrating its
20 monomeric nature and suitability for cellular labeling.

21 **Supplementary Note 2 | Detailed optical layout**

22 The schematic of the optical system is shown in Supplementary Fig. 1. Here for
23 simplicity, we only show the activation light (405 nm) and excitation light (488 nm) in
24 this figure's main part. Actually, in our LA-SIM system, five lasers with wavelengths
25 of 405 nm (365 mW, Cobolt, 06-MLD-405 nm), 445 nm (400 mW, Cobolt, 06-MLD-
26 445 nm), 488 nm (500 mW, Coherent, Sapphire 488-500 LPX), 560 nm (500 mW, MPB
27 Communications, 2RU-VFL-P-500-560-B1R) and 642 nm (500 mW, MPB
28 Communications, 2RU-VFL-P-500-642-B1R) are expanded to a $1/e^2$ diameter of 2.5
29 mm using two lenses and then combined by a reflecting mirror and four dichroic mirrors
30 (see inset in Supplementary Fig. 1). After combination, the lasers pass through an
31 acousto-optic tunable filter (AOTF, AA Quanta Tech, AOTFnC-400.650-TN) which is
32 employed to select the desired wavelength and control the laser intensity. Following the
33 AOTF, a half wave plate (Bolder Vision Optik, BVO AHWP3) and a polarization beam
34 splitter (Edmund, #49002) split the laser beam into two illumination paths. In the light
35 sheet generation path, the laser passes through an achromatic doublet lens (L1, 20 mm
36 FL/12.5 mm dia.) and a pair of cylindrical lenses (CL1, 50 mm FL/25.4 mm dia,
37 Thorlabs, ACY254-50A; CL2, 250 mm FL/25.4 mm dia, Thorlabs, ACY254-250A) to
38 shape the beam into a rectangular profile. This shaped beam is then modulated by
39 patterns displayed on the spatial light modulator (SLM, Forth Dimension, QXGA-
40 3DM). The SLM features a resolution of 2048×1536 ferroelectric liquid crystal pixels.
41 When paired with a polarizing beam splitter cube (Edmund, #49002) and an achromatic
42 half-wave plate (Bolder Vision Optik, BVO AHWP3), it enables a phase retardance of
43 0 or π in the diffracted beam, depending on the on/off status of the pixels. The diffracted
44 light from the SLM is then focused through a 450 mm focal length lens (L2, 450 mm
45 FL/40 mm dia, Edmund 49-282) onto a customized annular mask. This annular mask
46 has a series of different size constraints that can filter out unwanted diffraction orders
47 corresponding to different lattice patterns. After passing through the annular mask, the
48 selected diffraction orders are magnified by a pair of relay lenses (L3, 70 mm FL/30
49 mm dia, Optosigma DLB 30-70PM, L4, 75 mm FL/30 mm dia, Optosigma DLB 30-
50 75PM) and then conjugated to a scanning module that includes two galvanometers

51 (Cambridge Technology, 6210H) and a pair of relay lenses with the same focal length
52 (L5, L6, 70 mm FL/25 mm dia, Optosigma DLB 25-70PM) configured in a 4f
53 arrangement. Each galvanometer is conjugated to the back pupil plane of the
54 illumination objective (Thorlabs, TL20X-MPL, 0.6 NA, 5.5 mm WD), allowing the
55 system to scan along both the x -axis and z -axis of the sample. The image of the annular
56 mask is further magnified by a factor of ~ 2.29 times using a relay lens (L7, 175 mm
57 FL/25 mm dia, Edmund, 47-644; L8, 400 mm FL/25.4 mm dia, Thorlabs, AC254-400-
58 A) and conjugated to the back focal plane of the illumination objective. The
59 illumination objective then transforms the image to create the desired light sheet at its
60 front focal plane, illuminating the sample. The emitted fluorescence is collected by the
61 detection objective (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD) and imaged by
62 a tube lens (L13, 400 mm FL / 50 mm dia, Thorlabs, AC508-400-A). The image is then
63 magnified by another pair of lenses (L12, 120 mm FL/30 mm dia, Optosigma, DLB 30-
64 120PM, L14, 170 mm FL/30 mm dia, Optosigma, DLB 30-170PM) with a total
65 magnification of $\sim 70\times$ from the sample plane to the camera plane and recorded by an
66 sCMOS camera (Hamamatsu, Orca Flash 4.0 v3 sCMOS) after passing through an
67 emission filter.

68 In the structured excitation arm of the system, stripe patterns are sequentially
69 displayed on the SLM, synchronized with the generation of the activation light sheet.
70 Before projection onto the SLM, the laser beam is magnified $11.4\times$ through a pair of
71 relay lenses (L9, 17.5 mm FL/12.5 mm dia, Edmund 49-928; L10, 200 mm FL/30 mm
72 dia, Optosigma, DLB-30-200PM). The reflected laser beam from the SLM passes
73 through a 350 mm focal length lens (L11, 350 mm FL/30 mm dia, Optosigma, DLB-
74 30-350PM) and focuses onto the mask to filter out unwanted diffraction orders. The
75 laser beam then passes through the mask and a customized six/ten-section half-wave
76 plate to alter its polarization state. After passing through the dichroic mirror (Chroma),
77 the beam is magnified $3.33\times$ through relay lenses (L12, L13) and directed into the
78 detection objective to form SIM patterns on the sample. In this setup, the SLM is
79 conjugated to the focal plane of the detection objective while the mask is conjugated to
80 the back focal plane of the detection objective.

81 A wide-field imaging setup is also established to facilitate sample localization.
82 When the flip mirror is positioned in the optical path, the collimated light beam is
83 expanded by a pair of relay lenses (L15, 10 mm FL/8 mm dia, Thorlabs, AC080-010-
84 A, L16, 100 mm FL/25 mm dia, Thorlabs, AC254-100-A), then demagnified by a lens
85 (L17, 100 mm FL/25 mm dia, Optosigma, DLB-25-100PM) and the epifluorescence
86 objective (Nikon, MRD07420, 40X/0.8 NA, 3.5 mm WD) to illuminate the sample. The
87 fluorescence signal is collected by the epifluorescence objective, passes through lens
88 L17, and is filtered before being imaged onto an sCMOS camera (Excelitas
89 Technologies, pco.panda 4.2 bi sCMOS).

90 **Supplementary Note 3 | Simulation of LA-NLSIM**

91 We wrote MATLAB codes following the equations described below to visualize the
 92 nonlinear activation process of LA-NLSIM in Extended Data Fig. 5 and Supplementary
 93 Video 8.

94 In the first step of the activation process, we uniformly activate the fluorescent
 95 molecules as time progresses. The switching speed from the on-state to the off-state
 96 depends on the intensity of the excitation light. Assuming that after irradiation with
 97 laser intensity I_0 for time τ_0 , the activated fluorescent molecules can be completely
 98 returned to the off-state, then the distribution of fluorescent molecules remaining in the
 99 on-state after an exposure time t is given by

$$100 \quad S_{on}(x) = e^{-\frac{t}{\tau_0 I_0} I_{off}(x)} S(x) \quad (1)$$

101 where $S(x)$ is the sample distribution, $I_{off}(x)$ is the intensity distribution of the turn
 102 off light that can be assumed as a one-dimensional sinusoidally varying pattern

$$103 \quad I_{off} = \frac{I_0}{2} (1 - \cos(2\pi k_0 x + \varphi)) \quad (2)$$

104 Here we define the term, saturation factor (SF), to be the ratio of the exposure time
 105 t to the off time τ_0 . Eq. (1) then becomes

$$106 \quad S_{on}(x) = e^{-\frac{SF}{2}(1-\cos(2\pi k_0 x + \varphi))} S(x) \quad (3)$$

107 In the last step of patterned read-out, we collect the remaining fluorescence from
 108 the on molecules by shifting the pattern by π phase. The intensity distribution of the
 109 readout illumination can be described as

$$110 \quad I_{readout} = \frac{I_0}{2} (1 - \cos(2\pi k_0 x + \varphi + \pi)) \quad (4)$$

111 In this case, the fluorescent molecules that remain in the on-state will be

$$112 \quad S'_{on}(x) = I_{readout} S_{on}(x) e^{-\frac{SF}{2}(1-\cos(2\pi k_0 x + \varphi + \pi))} \quad (5)$$

113 **Supplementary Note 4 | Conceptual design of SRFormer**

114 **a) Architecture design of SRFormer**

115 In the regime of volumetric biological data restoration, 3D residual channel attention
116 network (3D RCAN)^{7,8} is considered as one of the most powerful yet simple models.
117 However, due to its relatively shallow architecture constituted based on traditional 3D
118 convolutional layers and the channel attention mechanism, the expansibility and feature
119 extraction capability of 3D RCAN are limited. Recently, transformer-based image
120 super-resolution models for processing natural images such as the Swin-transformer
121 image restoration model (SwinIR)⁹ and dual aggregation transformer (DAT) model¹⁰
122 have emerged, featuring a larger model scale and a better performance in various natural
123 2D image restoration tasks. However, whether the transformer-based image SR model
124 outperforms conventional convolutional neural networks in volumetric data super-
125 resolution reconstruction has not been explored.

126 To this end, our preliminary experiments started with comparing the performance
127 of SwinIR⁹, DAT¹⁰ and 3D RCAN⁷ following the network configuration of the original
128 papers. Interestingly, we found that though with a shallower and small-scale, the 3D
129 RCAN generated better high-frequency details of biological structures especially in the
130 axial dimension than the more complex SwinIR and DAT (Extended Data Fig. 6a-c and
131 Supplementary Fig. 7a-c). We speculated that the underlined reason is the backbone of
132 SwinIR and DAT focuses on 2D feature extraction, preventing effective utilization of
133 axial structural continuity of the volumetric LLSM data. Therefore, we then tried
134 replacing the original 2D convolutional layers and 2D Swin-transformer blocks with
135 3D convolutional layer and the video Swin-transformer blocks¹¹, respectively, in the
136 original DAT while not changing its depth and overall architecture, which is denoted as
137 3D DAT hereafter. As a result, a notable improvement in both axial resolution and
138 reconstruction fidelity in terms of peak signal-to-noise ratio (PSNR) and structural
139 similarity (SSIM) is observed after such 3D modification (Supplementary Fig. 7). These
140 results indicate that 3D feature extraction capability is of vital importance to volumetric
141 SR models.

142 Moreover, our previous research¹² and other existing literature^{13,14} have
143 demonstrated that incorporating frequency feature manipulation and the pyramid
144 network architecture generally benefits image SR capability of neural network models.
145 Inspired by this, we further equipped the aforementioned 3D DAT with the U-shaped
146 architecture for hierarchical feature extraction and spatial-frequency fusion block
147 (SFFB) for non-local spectral information aggregation (Supplementary Fig. 6 and
148 Supplementary Note 4b). Particularly, we explored integrating various depths of U-
149 shaped structures, i.e., with different numbers of down-sampling and up-sampling
150 modules, and found that the one-stage U-shaped architecture, i.e., incorporating only
151 one down-sampling and up-sampling operations in each forward propagation, yielded
152 the best SR reconstruction performance.

153 Most deep learning approaches for microscopy image denoising and super-
154 resolution require training specific models for each type of biological specimens. This
155 is because a general model trained with multiple biological specimens usually performs
156 worse than the models trained on a specific type of specimens, due to limitations in
157 neural network scalability. On the other hand, recent explorations of large language
158 models suggest that a larger model with more trainable parameters is more robust in
159 processing multi-tasks parallelly. Therefore, following the scaling law¹⁵, we scaled up
160 the network to 62,767,512 parameters by increasing feature channels and repeating
161 feature extraction blocks in SRFormer. To our best knowledge, this is the largest model
162 reported for biological image restoration. We trained the SRFormer model on two
163 Nvidia A800 GPUs, and our experiments revealed that with all abovementioned
164 advancements, a well-trained SRFormer enabled volumetric SR reconstruction of
165 multiple biological specimens with the performance comparable to that achieved by
166 individual 3D RCAN models trained on datasets of each specific biological structures
167 (Extended Data Fig. 6).

168 **b) Detailed network architecture of SRFormer**

169 As shown in Supplementary Fig. 6, SRFormer comprises three modules: shallow
170 feature extraction, deep feature extraction, and high-quality image reconstruction.
171 Initially, the low-resolution (LR) input image stack $X \in \mathbb{R}^{Z \times H \times W}$, where Z , H and

172 W denote the size along three dimensions of the data.

173 First, the LR image stack is processed through two 3D convolutional layers to
174 obtain the shallow feature $F_{s1} \in \mathbb{R}^{Z \times H \times W \times C_1}$ and $F_{s2} \in \mathbb{R}^{Z \times H \times W \times C_2}$. The dimensions
175 of the feature, denoted as C_1 and C_2 , are set to 90 and 180, respectively, in our
176 experiments. Next, the shallow feature F_{s1} is fed into four dual aggregation
177 transformer block (DATB) groups that are arranged following a U-shaped structure to
178 generate hierarchical deep features. Specifically, the first group of feature channels
179 $F_{d1} \in \mathbb{R}^{Z \times H \times W \times C_1}$ are obtained by sending F_{s1} to the first DATB group, then F_{d1}
180 are sequentially passed through a down-sampling layer, the second DATB group, and
181 an up-sampling layer (realized by pixel shuffle), generating a group of deep feature
182 channels $F_{d2} \in \mathbb{R}^{Z \times H \times W \times C_1}$. The F_{d1} and F_{d2} are concatenated to constitute
183 hierarchical deep feature $F_{hd} = concat(F_{d1}, F_{d2}) \in \mathbb{R}^{Z \times H \times W \times C_2}$, which is then passed
184 through the last two DATB groups to obtain the refined feature $F_d \in \mathbb{R}^{Z \times H \times W \times C_2}$. Each
185 DATB group consists of 6 consecutive 3D DATB, and one 3D spatial-frequency fusion
186 block (SFFB). Each DATB is constructed by one 3D dual spatial transformer blocks
187 (3D DSTB) and one 3D dual channel transformer blocks (3D DCTB).

188 Finally, the combined feature of the shallow feature F_{s2} and the refined feature F_d
189 is fed into an up-sampling block and a 3D convolutional layer to generate the final
190 super-resolution image $\hat{Y} \in \mathbb{R}^{Z' \times H' \times W'}$, where the parameters Z' , H' and W' are set
191 to $3 \times Z$, $2 \times H$ and $2 \times W$, respectively.

192 **Supplementary Note 5 | Characterization of SRFormer LA-SIM**

193 **a) Calculation of assessment metrics**

194 To quantitatively evaluate the images reconstructed by SRFormer LA-SIM and other
 195 methods, we used the PSNR and SSIM between the SR image \hat{Y} and the ground truth
 196 (GT) image Y . Since the signal intensity of the SR and GT images differs in dynamic
 197 range, we applied a linear transformation¹² to the SR image as follows

198
$$\tilde{Y} = \alpha\hat{Y} + \beta \quad (6)$$

199 where α and β represent the transformation coefficients aimed at minimizing the
 200 squared error between the transformed image and the normalized GT image, \tilde{Y}
 201 denotes the linear transformed SR image. This problem can be formulated as a linear
 202 regression problem:

203
$$\min_{\alpha, \beta} \left\| \alpha\hat{Y} + \beta - Y \right\|_2^2 \quad (7)$$

204 The closed-form solution to this problem is given by:

205
$$\hat{\alpha} = \frac{\sum_{i=1}^N Y_i \times (\tilde{Y}_i - \text{mean}(\tilde{Y}))}{\sum_{i=1}^N \tilde{Y}_i^2 - N \times \text{mean}(\tilde{Y})^2} \quad (8)$$

206
$$\hat{\beta} = N \times \sum_{i=1}^N (Y_i - \hat{\alpha} \times \tilde{Y}_i) \quad (9)$$

207 where $\hat{\alpha}$ and $\hat{\beta}$ denote the optimal values of the transformation coefficients α
 208 and β , respectively.

209 The final PSNR and SSIM are calculated as follows:

210
$$\text{PSNR}(\tilde{Y}, Y) = 10 \times \log_{10} \left(\frac{N}{\sum_{i=1}^N (Y_i - \tilde{Y}_i)^2} \right) \quad (10)$$

211
$$\text{SSIM}(\tilde{Y}, Y) = \frac{(2\mu_{\tilde{Y}}\mu_Y + c_1)(2\sigma_{\tilde{Y}Y} + c_2)}{(\mu_{\tilde{Y}}^2 + \mu_Y^2 + c_1)(\sigma_{\tilde{Y}}^2 + \sigma_Y^2 + c_2)} \quad (11)$$

212 where $\mu_{\tilde{Y}}$, μ_Y , $\sigma_{\tilde{Y}}$ and σ_Y denote the mean values and standard deviations of the
 213 SR image \tilde{Y} and the GT image Y , respectively. $\sigma_{\tilde{Y}Y}$ denotes the cross-covariance
 214 between the SR image \tilde{Y} and GT image Y . The constants c_1 and c_2 used in this
 215 paper are 0.01^2 and 0.03^2 , respectively.

216 **b) Ablation study of SRFormer**

217 As is discussed in the Methods section of the main text and Supplementary Note 4,
218 there are three key advancements in SRFormer over existing transformer-based image
219 SR neural network models such as SwinIR⁹ and DAT¹⁰. First, instead of using 2D
220 convolutional layers and 2D shifted window (Swin) transformer blocks¹⁶, we used 3D
221 convolutional layers and Swin transformer blocks designed for 3D data¹¹ in SRFormer
222 for volumetric feature extraction. Second, we designed a U-shaped architecture for the
223 cascading DATB groups to enable hierarchical feature manipulation within the network.
224 Third, by incorporating Fourier space learning^{12,13}, we endowed SRFormer with an
225 extended receptive field across the whole image, further strengthening the
226 representation capability of the model.

227 To demonstrate the effectiveness of above modifications, we conducted ablation
228 experiments for SRFormer using LLSM and rDL LA-SIM image pairs of three different
229 biological specimens including outer mitochondrial membrane (Mito), microtubules
230 (MTs), and F-actin. In detail, we trained several image SR models including the original
231 DAT models with 2D feature extraction modules (i.e., 2D convolution and 2D Swin
232 transformer blocks), denoted as 2D DAT, modified DAT models with 3D feature
233 extraction modules (i.e., 3D convolution and 3D Swin transformer blocks), denoted as
234 3D DAT, modified SRFormer model without SFFB blocks (denoted as SRFormer w/o
235 SFFB), modified SRFormer model without U-shaped architecture (denoted as
236 SRFormer w/o U-shape), in which four DATB groups are connected sequentially, and
237 the proposed SRFormer model with all reinforcements mentioned above.

238 Typical results of these models and quantitative comparisons in terms of PSNR and
239 SSIM are shown in Supplementary Fig. 7, from which we draw such conclusions: (1)
240 By comparing 2D DAT to other four models with 3D adaptation, we found that the 3D
241 feature extraction modules substantially enhance axial resolution in the inferred
242 volumetric SR results. (2) By comparing 3D DAT with SRFormer w/o SFFB and
243 SRFormer w/o U-shape, we found that the incorporation of either SFFB or one-stage
244 U-shaped architecture is able to slightly improve the SR resolvability both qualitatively
245 and quantitatively. However, these two models struggle with reconstructing the hollow
246 reconstruction of the outer mitochondrial membrane (Supplementary Fig. 7a) and are

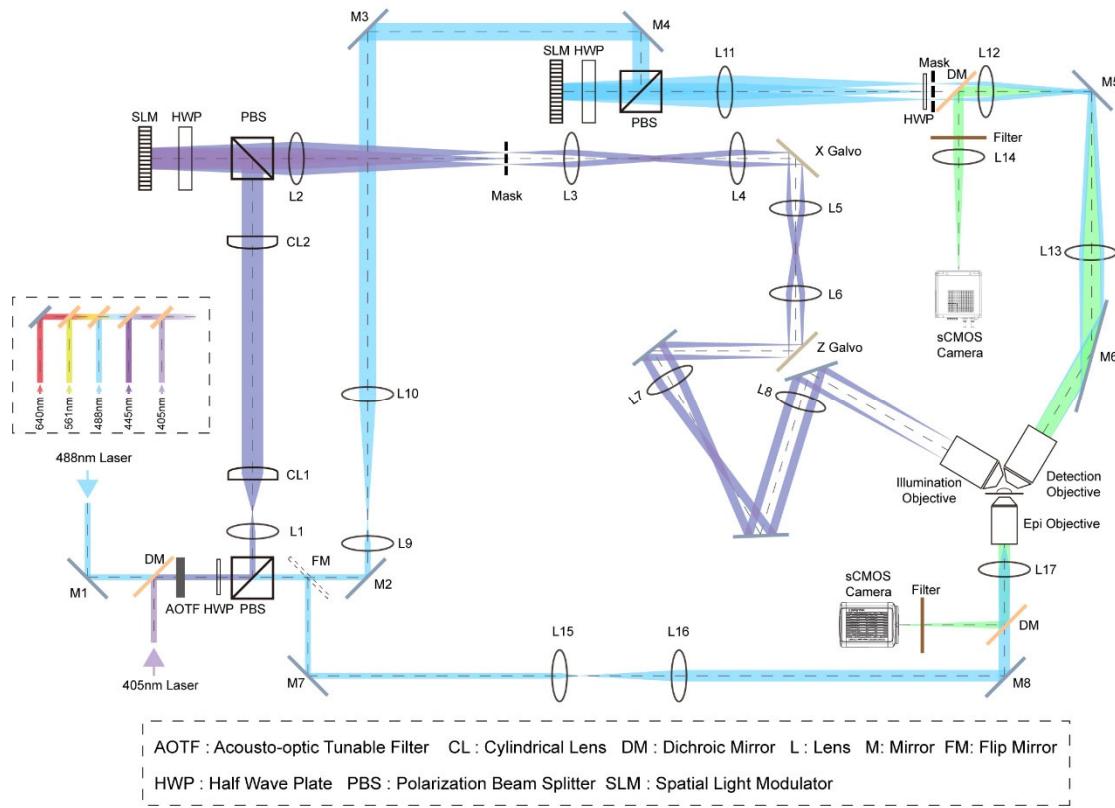
247 prone to generating unnatural structure in MTs and F-actin images (Supplementary Fig.
248 7b, c). (3) Benefiting from volumetric and hierarchical feature extraction capability
249 provided by 3D adaptation, SFFB, and U-shaped architecture, SRFormer can
250 distinguish the hollow structure of outer mitochondrial membrane in both lateral and
251 axial (Supplementary Fig. 7a), and reconstruct tubular structure with similar
252 morphology and comparable resolution with rDL LA-SIM, i.e., the GT used in training.
253 Meanwhile, SRFormer achieves the highest reconstruction PSNR and SSIM compared
254 to other models.

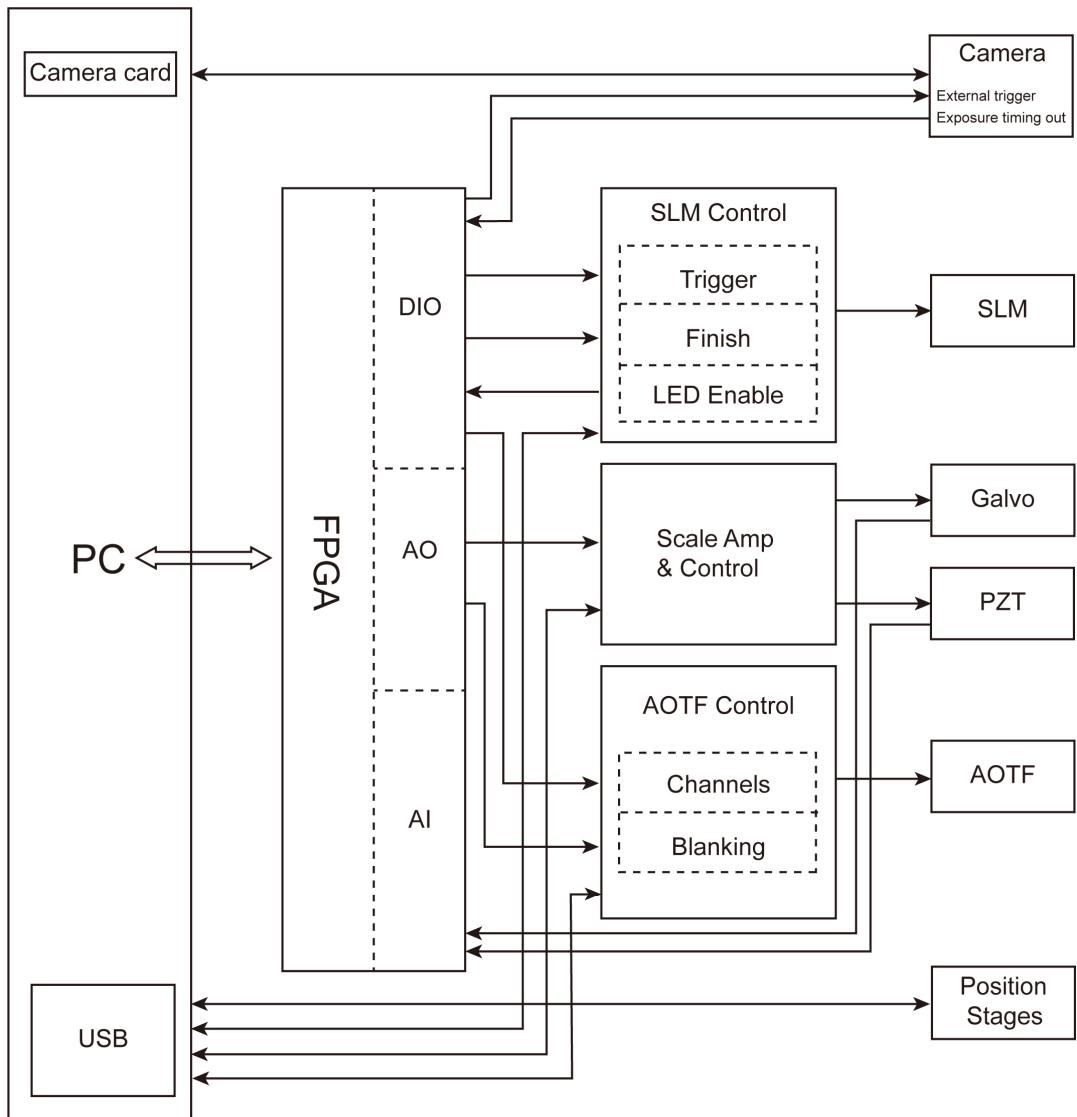
255 **c) Comparison of SRFormer with 3D RCAN and SwinIR**

256 To further validate the superior performance of SRFormer in volumetric image super-
257 resolution tasks, we compared it with two state-of-the-art deep learning algorithms:
258 three-dimensional residual channel attention networks (3D RCAN)⁷, a commonly
259 adopted neural network model for 3D biological data denoising and super-resolution,
260 and SwinIR⁹, a well-recognized neural network for image restoration which is
261 constructed based on the Swin Transformer. We first independently trained three 3D
262 RCAN models using three datasets of Mito, MTs and F-actin, respectively, referred to
263 as 3D RCAN specific models. Next, we trained 3D RCAN, SwinIR (following its
264 original configuration⁹ with 2D feature extraction modules), and SRFormer models
265 using a mixed dataset of all three biological structures, referred to as general models.
266 As such, the “3D RCAN Specific” models were trained for processing data of a single
267 type of specimen, and “3D RCAN General”, “SwinIR General”, and “SRFormer
268 General” models each was trained to process data of various types of biological
269 structures. Extended Data Fig. 6 presents representative SR images reconstructed using
270 these models, which indicate several conclusions, including: (1) Although built based
271 on conventional convolutional architecture, the 3D RCAN general model outperformed
272 the transformer-based SwinIR model due to its volumetric feature extraction and
273 aggregation capability; (2) the 3D RCAN specific model trained for a certain type of
274 specimen achieved relatively better accuracy compared to the 3D RCAN general model
275 trained with all relative datasets. This result is consistent with findings in other
276 literature¹² that independent image SR neural network models should be trained for

277 each biological specimen to achieve optimal SR performance; (3) Consistent with the
278 scaling law¹⁵, with over 60 million trainable parameters and sufficient training data,
279 SRFormer trained with datasets of all types of specimens achieved better performance
280 than the 3D RCAN general model and even the three 3D RCAN specific models. It
281 successfully reconstructed the hollow outer membrane of mitochondria in three
282 dimensions (Supplementary Fig. 7a), as well as tubular structures of MTs and F-actin
283 (Supplementary Fig. 7b, c). Additionally, the quantitative comparison between
284 SRFormer and other models, shown in Supplementary Fig. 7d-f, also demonstrates the
285 superior reconstruction fidelity and robustness to variations in signal-to-noise ratio
286 and structural differences among various cell types.

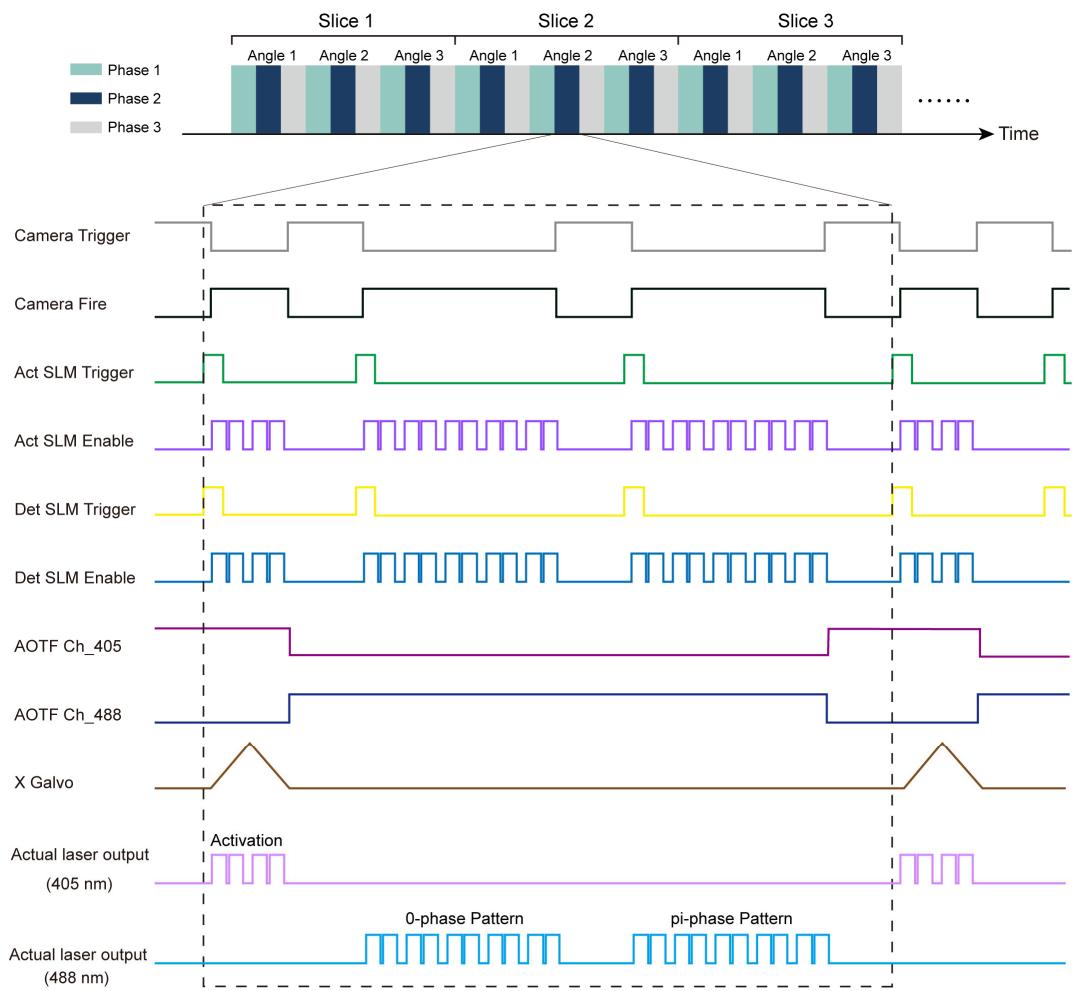
Supplementary Figures



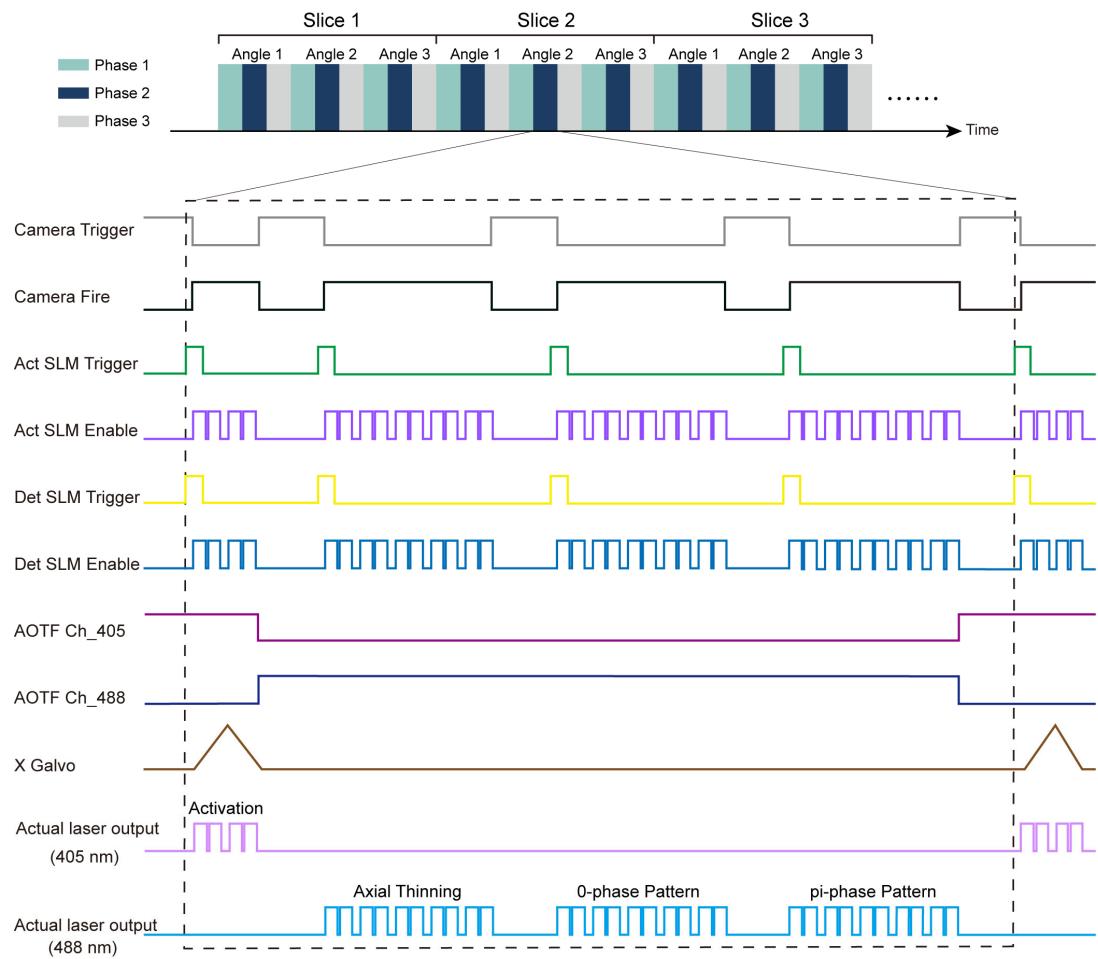


Supplementary Fig. 2 | Hardware control schematic of LA-SIM system.

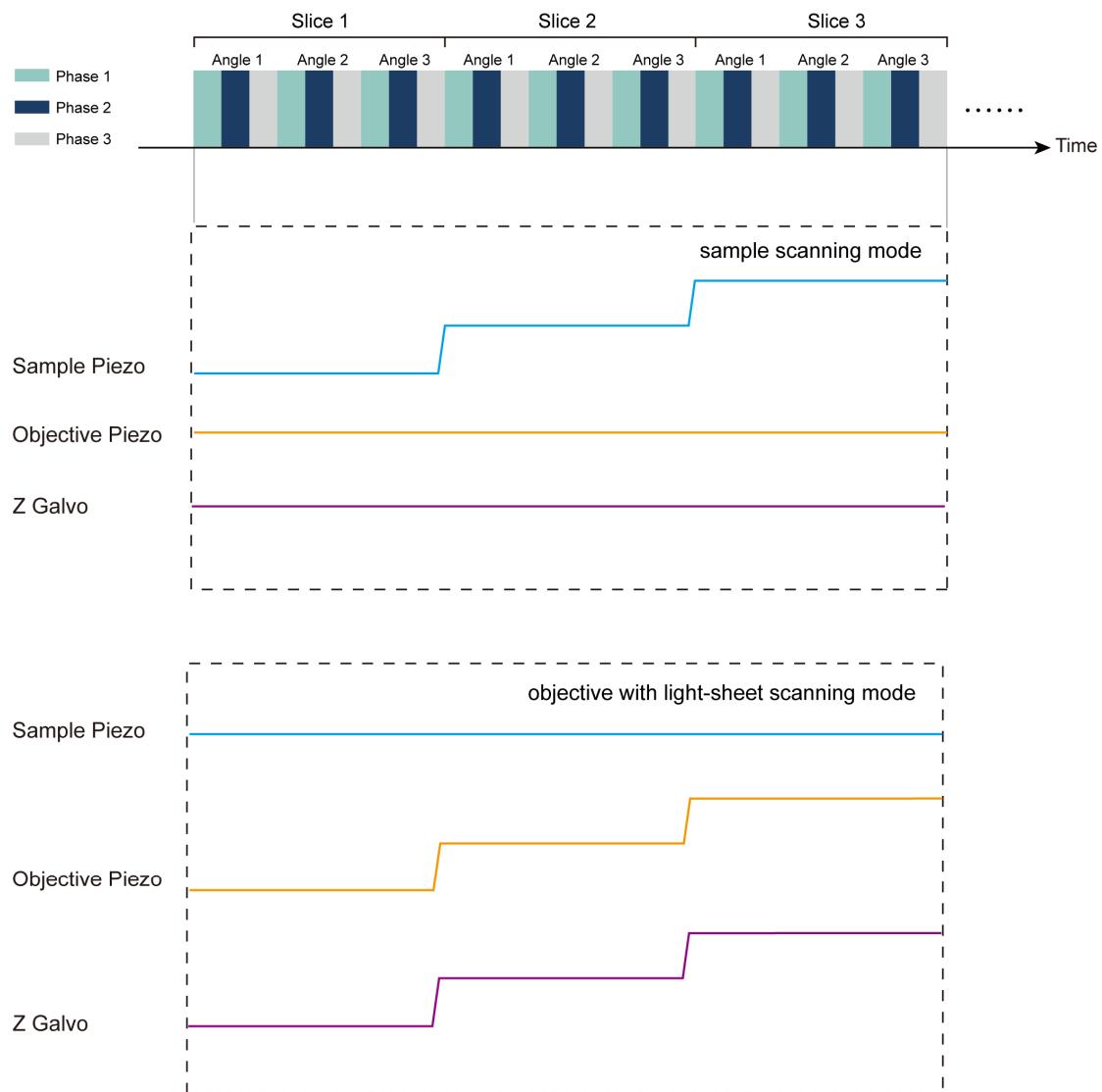
FPGA: field-programmable gate array; DIO: digital input and output; AO: analog output; AI: analog input; SLM: spatial light modulator; Galvo: galvanometer; PZT: piezoelectric transducer; AOTF: acousto-optic tunable filter. FPGA provides the analog and digital outputs to control the essential electronics for image acquisition. The AO ports connect and control devices requiring analog voltage modulation, including Galvo, PZT and AOTF (for controlling power output). The DO ports connect and control devices requiring highly synchronized operation, including Camera, SLM and AOTF (for controlling switch state). The AI and DI ports receive feedback signals from Galvo and PZT. The camera acquisition card in the computer receives data from the camera. Different acquisition timing is designed based on imaging mode requirements. Refer to the Methods section and Supplementary Figs. 3-5 for additional details.



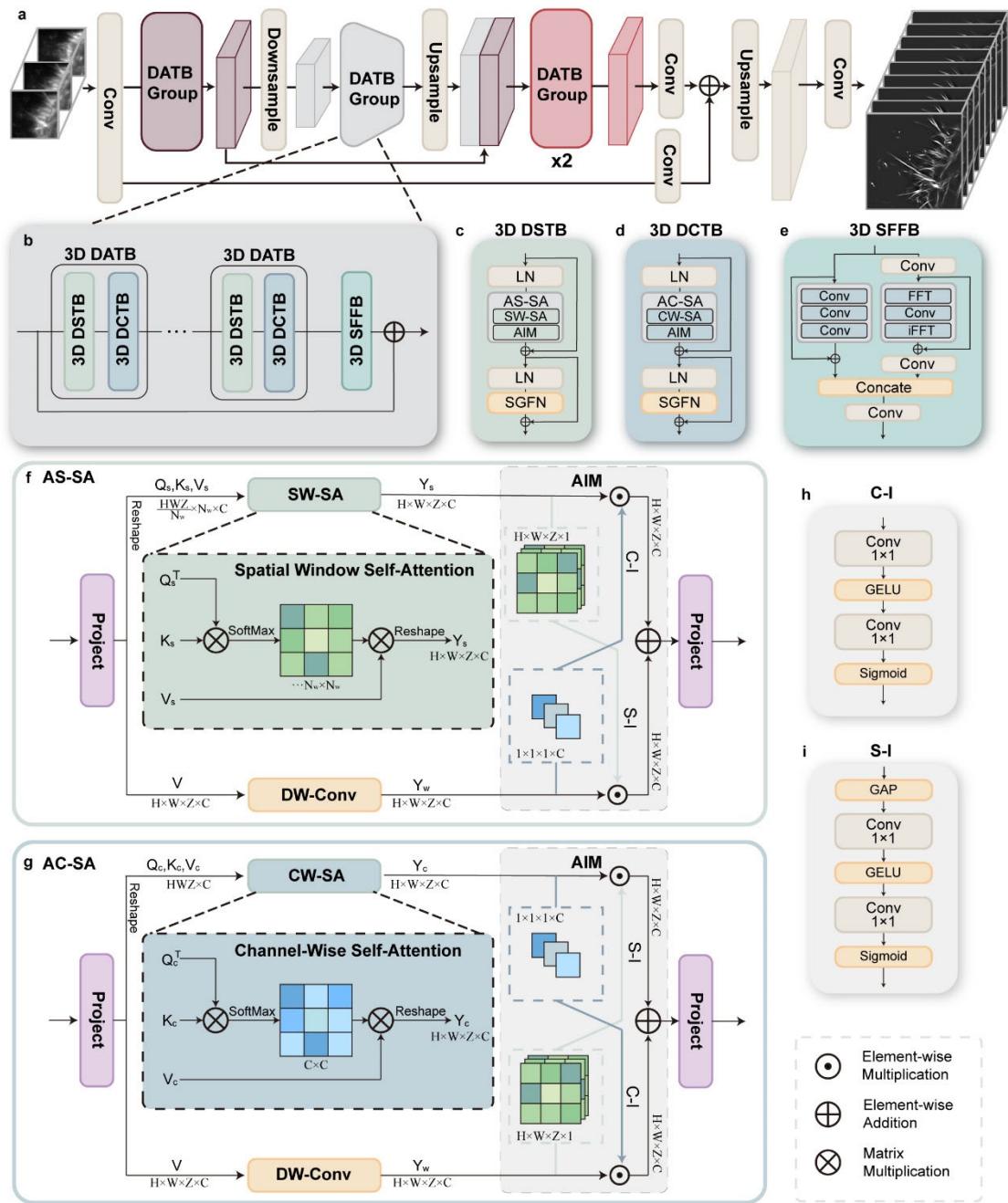
Supplementary Fig. 3 | Timing diagrams for hardware control, LA-LSIM without axial thinning acquisition for one orientation one phase.



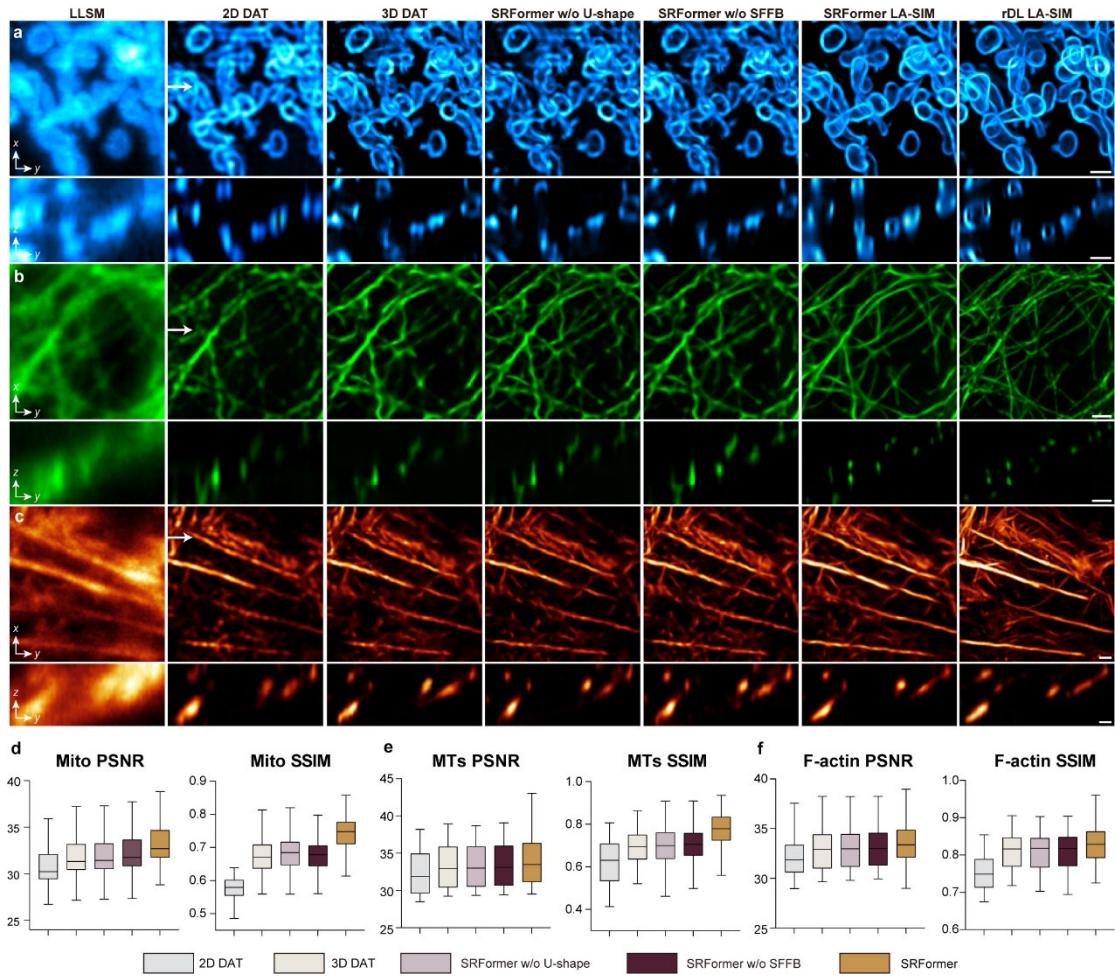
Supplementary Fig. 4 | Timing diagrams for hardware control, LA-LSIM with axial thinning acquisition for one orientation one phase.



Supplementary Fig. 5 | Timing diagrams for hardware control, volume acquisition for two scanning modes. Sample scanning mode is the volumetric acquisition mode in which the specimen is translated with a high-precision piezo stage through the stationary light sheet. Objective with light-sheet scanning mode is achieved by moving the light sheet and detection objective together through the specimen.



Supplementary Fig. 6 | Network architecture of SRFormer. **a**, The schematic of the inference phase of SRFormer. **b**, The architecture of dual aggregation transformer block (DATB) group. **c**, The architecture of 3D dual spatial transformer block (3D DSTB). **d**, The architecture of 3D dual channel transformer block (3D DCTB). **e**, The architecture of spatial-frequency fusion block (SFFB). **f**, The architecture of adaptive spatial self-attention (AS-SA). **g**, The architecture of adaptive channel self-attention (AC-SA). **h**, The architecture of channel-interaction (C-I). **i**, The architecture of spatial-interaction (S-I).



Supplementary Fig. 7 | Ablation study of SRFormer. **a-c,** Representative maximum intensity projections (MIP, xy -plane) and yz -slices of LLSM image stacks (first column) and SR images of Mito (a), MTs (b), and F-actin (c) reconstructed by 2D DAT (second column), 3D DAT (third column), SRFormer w/o U-shape (fourth column), SRFormer w/o SFFB (fifth column), and SRFormer LA-SIM (sixth column). Super-resolution rDL LA-SIM MIP images are provided for reference in the seventh column. Arrows indicate the x position for the yz -slices shown below. Scale bar, 2 μ m. **d-f,** Statistical comparison of PSNR and SSIM values for the output SR images produced by 2D DAT, 3D DAT, SRFormer w/o U-shape, SRFormer w/o SFFB, and SRFormer on test datasets of Mito (d), MTs (e), and F-actin (f) ($n=1000$).

Supplementary Tables

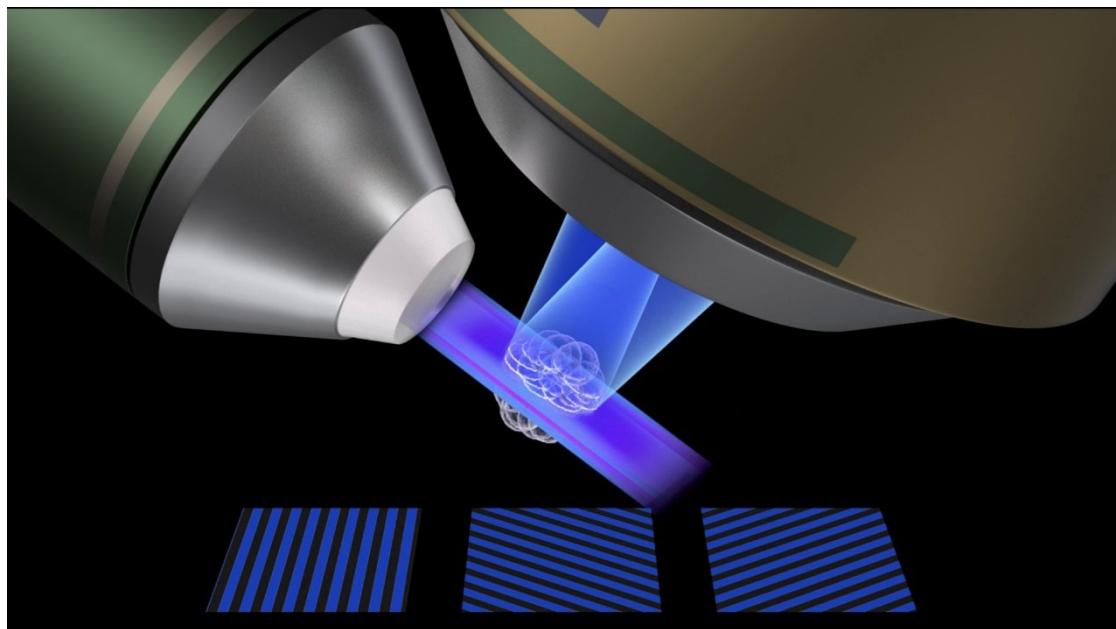
Supplementary Table 1 | Imaging parameters of LA-SIM

Data	Imaging mode	Sample (situation)	Label	Volume size of raw data (Width×Height ×Z-slice)	Exposure time for one phase one orientation (ms)				NA		Time points
					activation	axial thinning	0-phase	pi-phase	Activation	Excita tion	
Fig. 1e-g, k, l Supplementary Video 3	LA-LSIM- <i>z</i>	COS-7 (fixed)	Skylan-NS-Ensconsin	640×640×445	5	25	15	15	0.35 0.14	1.0	/
Fig. 2a-e, g Supplementary Video 5	LA-LSIM	HeLa (live)	Skylan-NS-Lifeact	512×512×91	1	/	5	5	0.35 0.14	1.0	150
Fig. 2i-l Supplementary Video 7	LA-LSIM- <i>z</i>	COS-7 (live)	Skylan-NS-Tomm20	448×672×401	2	5	5	5	0.35 0.14	1.0	45
Fig. 3a-c Supplementary Video 9	LA-NLSIM- <i>z</i>	COS-7 (fixed)	Skylan-NS-Ensconsin	800×800×491	5	25	20	10	0.35 0.14	1.0	/
Extended Data Fig. 3a Supplementary Video 4	LA-LSIM- <i>z</i>	COS-7 (fixed)	Skylan-NS-Tomm20	512×512×242	7	20	15	15	0.35 0.14	1.0	/
Extended Data Fig. 3b Supplementary Video 6	LA-LSIM	COS-7 (live)	Skylan-NS-Tomm20	512×512×65	2	/	10	10	0.35 0.14	1.0	/
Extended Data Fig. 4b-e	LA-LSIM- <i>z</i>	HeLa (fixed)	Skylan-NS-Lifeact	512×512×221	3	15	15	15	0.35 0.14	1.0	/
	3D-SIM	HeLa (fixed)	Skylan-NS-Lifeact	512×512×101	5	/	20 (excitation)	/	1.0	/	

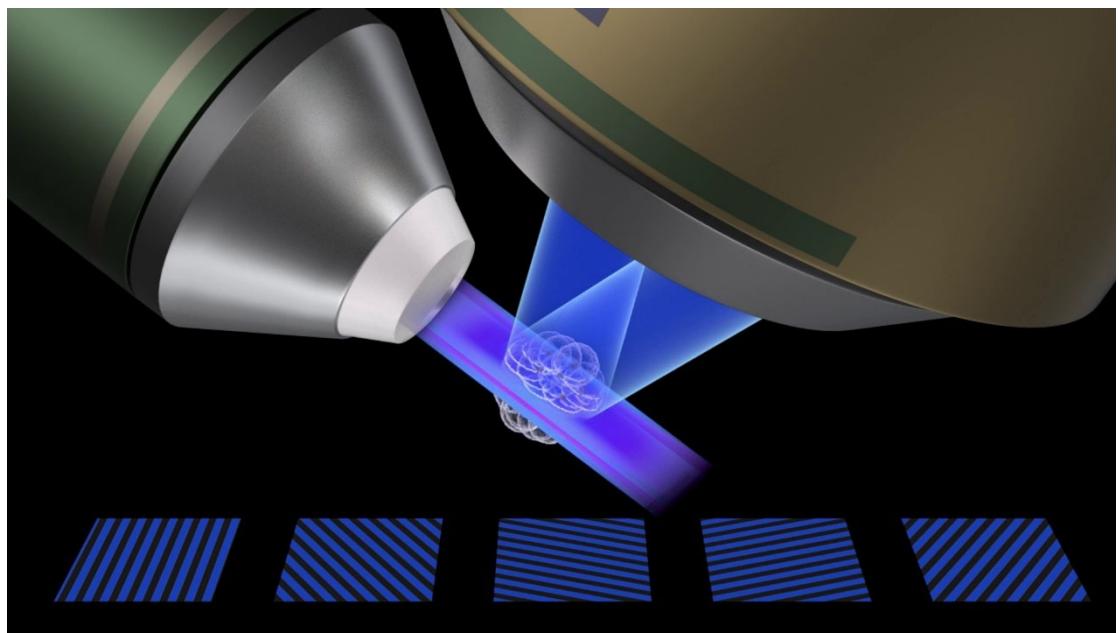
Supplementary Table 2 | Imaging parameters of SRFormer LA-SIM

Data	Imaging method (Acquisition mode)	Sample	Label	Excitation NA	Excitation λ (nm)	Exposure time per raw image (ms)	Volume size of raw data (Width×Height ×Z-slice×Channel)	Cycle time (Acquisition + resting time) (s)	Time Points (Video)
Fig. 4c-f Supplementary Video 10	LLSM (sheet-scan mode)	COS-7	Ensconsin-mStayGold SKL-mCherry LAMP1-Halo	0.35,0.14	488 560 642	10 10 10	320×832×191×3	6.42	690
Fig. 5a-c Supplementary Video 12	LLSM (sheet-scan mode)	COS-7	G3BP1-mStayGold LAMP1-Halo	0.35,0.14	488 560	10 10	352×768×181×2	4.11	500
Fig. 5d Supplementary Video 14	LLSM (sheet-scan mode)	COS-7	G3BP1-mStayGold LAMP1-Halo	0.35,0.14	488 560	10 10	512×512×101×2	2.44	55
Fig. 5e Extended Data Fig. 8 Supplementary Video 15	LLSM (slit-scan mode)	Mouse embryo	LAMP1-mStayGold	0.07	488	10	1024×1024×401×1	30	300
Extended Data Fig. 7 Supplementary Video 11	LLSM (sheet-scan mode)	COS-7	Ensconsin-3×mStaygold Tomm20-mCherry	0.35, 0.14	488 560	10 10	288×768×151×2	3.33	400
Extended Data Fig. 9	LLSM (slit-scan mode)	Mouse embryo	LAMP1-mStayGold	0.07	488	10	1024×1024×301×1	30	/
	3D-SIM	Mouse embryo	LAMP1-mStayGold	1.49	488	30	512×512×37×1	32.69	/

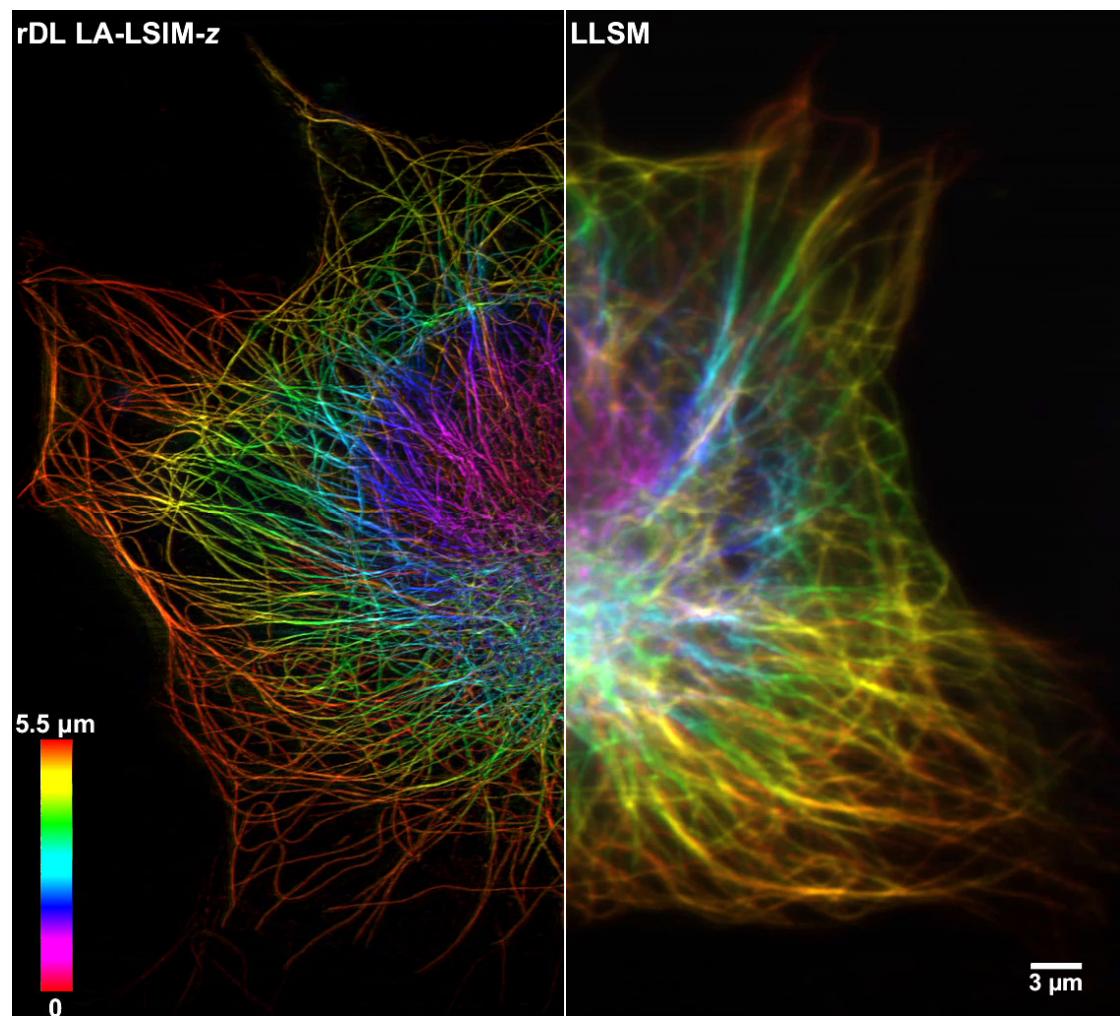
Captions for Supplementary Videos



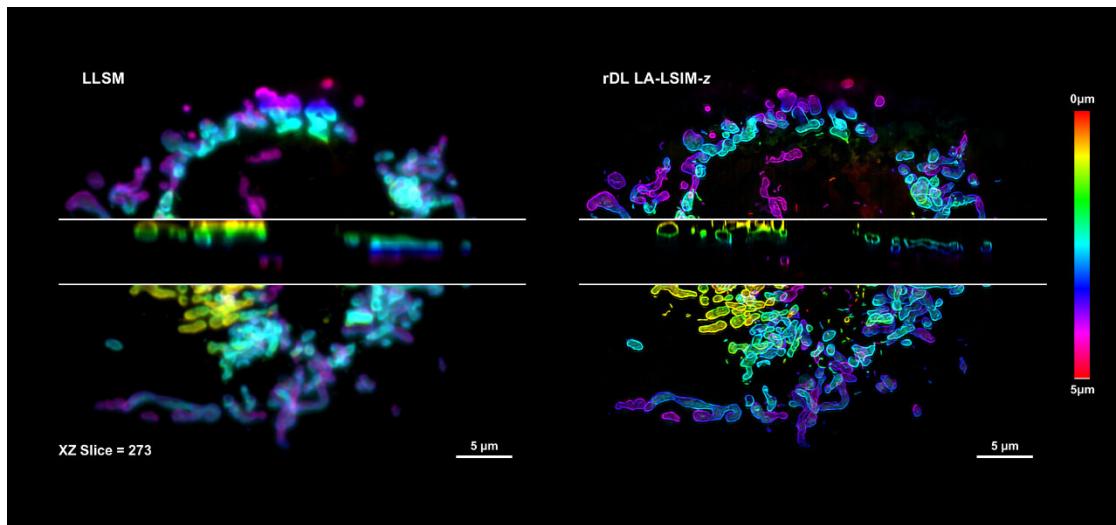
Supplementary Video 1 | Animation of LA-LSIM illumination and acquisition steps without (part I) and with (part II) sandwiched axial thinning.



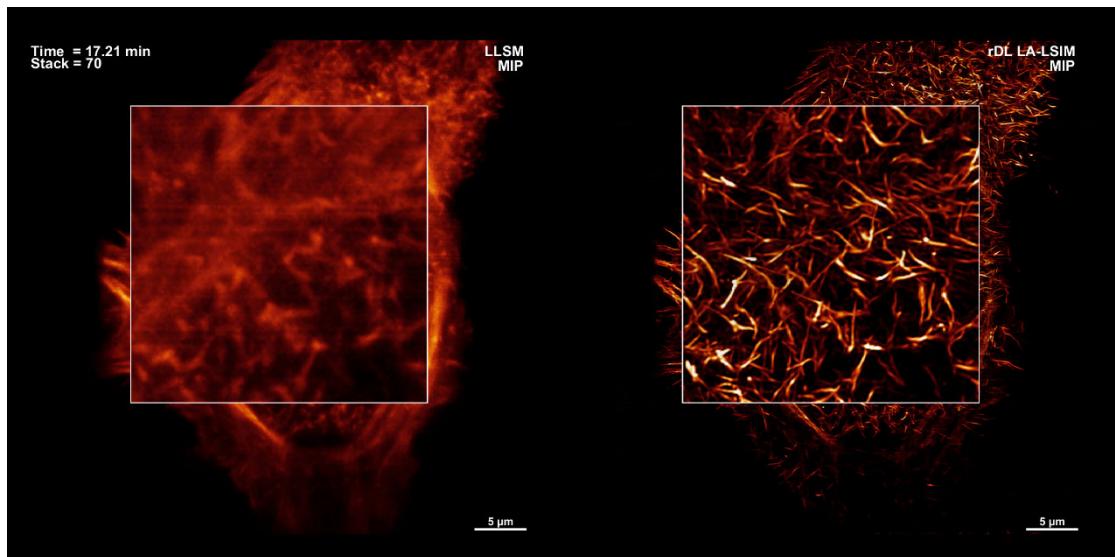
Supplementary Video 2 | Animation of LA-NLSIM illumination and acquisition steps without (part I) and with (part II) sandwiched axial thinning.



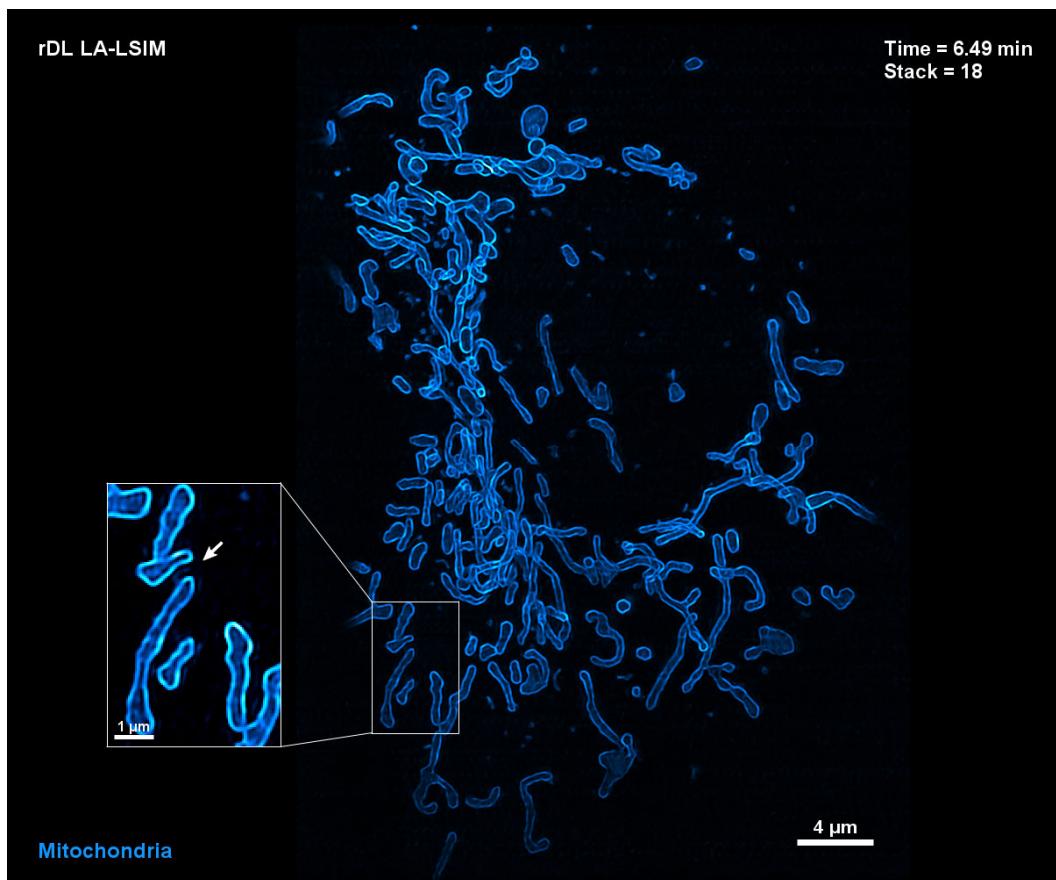
Supplementary Video 3 | Volume rendering of LA-LSIM-*z* image acquired from fixed COS-7 cell expressing Enscosin-Skylan-NS, showing the progressive resolution enhancement from LLSM, LLSM with axial thinning, to LA-LSIM-*z* and LA-LSIM-*z* with rDL denoising. See also **Fig. 1**.



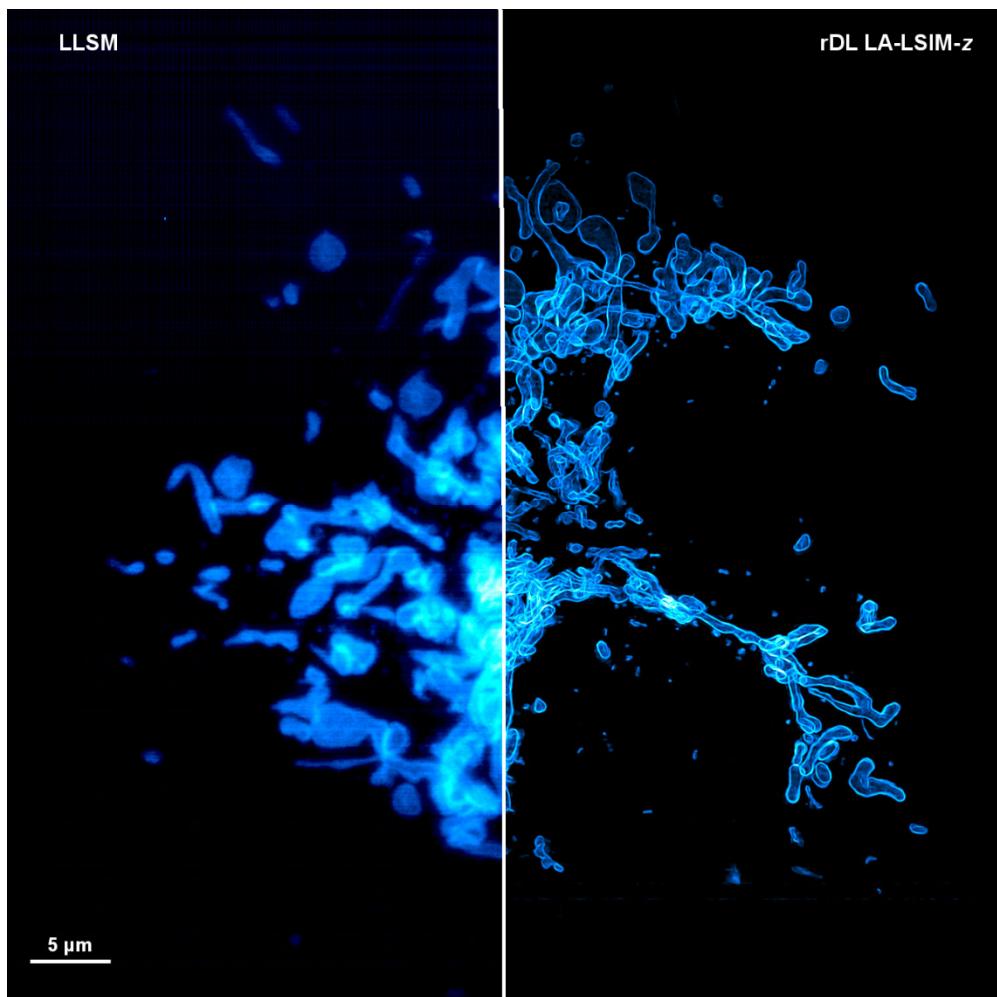
Supplementary Video 4 | Volume rendering and 3D projection of LLSM (left) and rDL LA-LSIM-*z* images from fixed COS-7 cell expressing Tomm20-Skylan-NS. The *x*-*z* scrolling views present resolution improvements in both lateral and axial dimensions via rDL LA-LSIM-*z*. See also **Extended Data Fig. 2**.



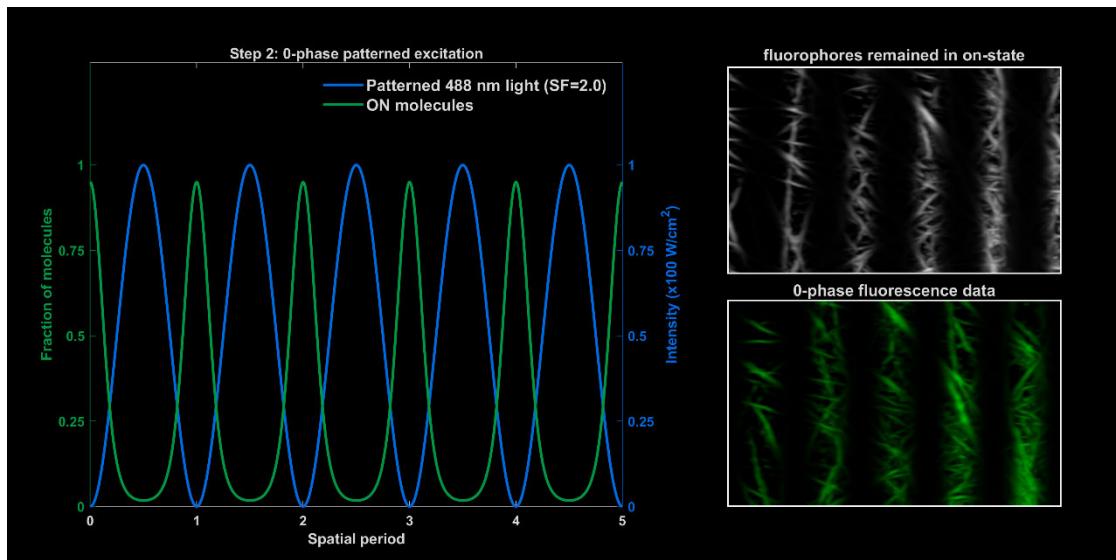
Supplementary Video 5 | 3D projections of LLSM (left) and rDL LA-LSIM (right) imaging of a live HeLa cell expressing Lifeact-Skyylan-NS, showing the F-actin cytoskeleton dynamics over the whole cell volume for 150 time points lasting ~37 mins. See also **Fig 2**.



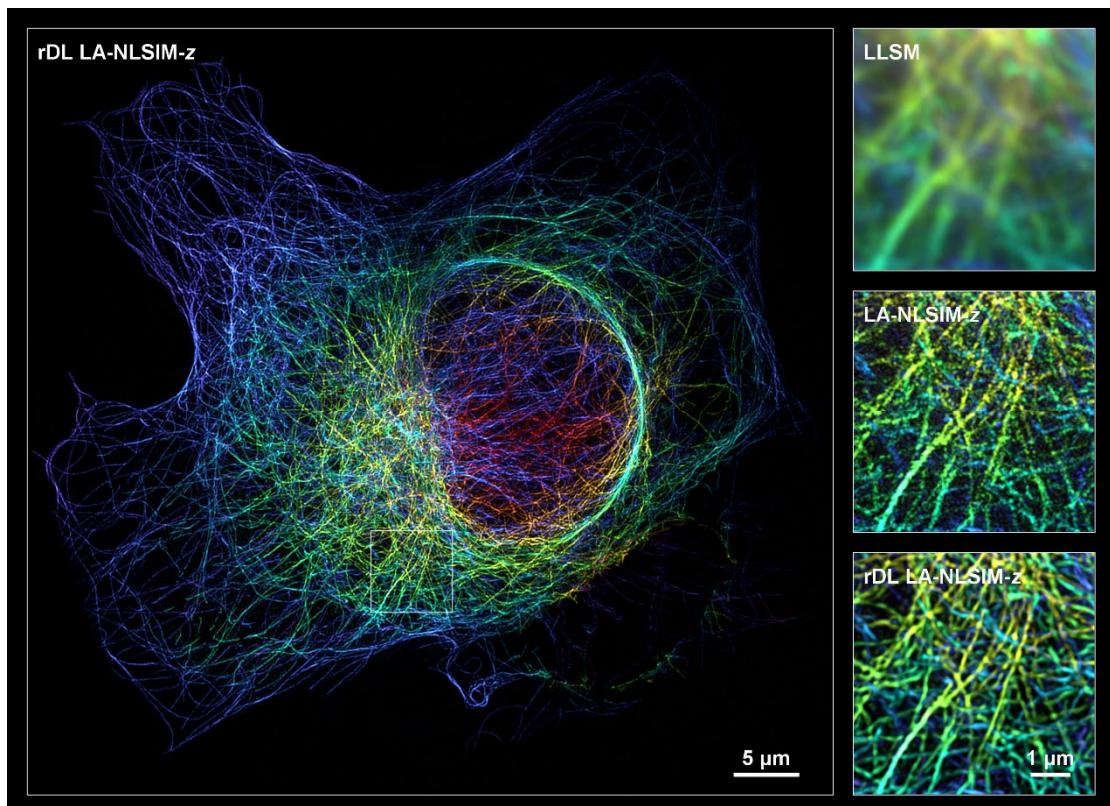
Supplementary Video 6 | 3D projections of rDL LA-LSIM imaging of live COS-7 cell expressing Tomm20-Skyan-NS, showing the mitochondrial fission and fusion membrane dynamics over the whole cell volume for 50 time points lasting ~18 mins. See also **Extended Data Fig. 2**.



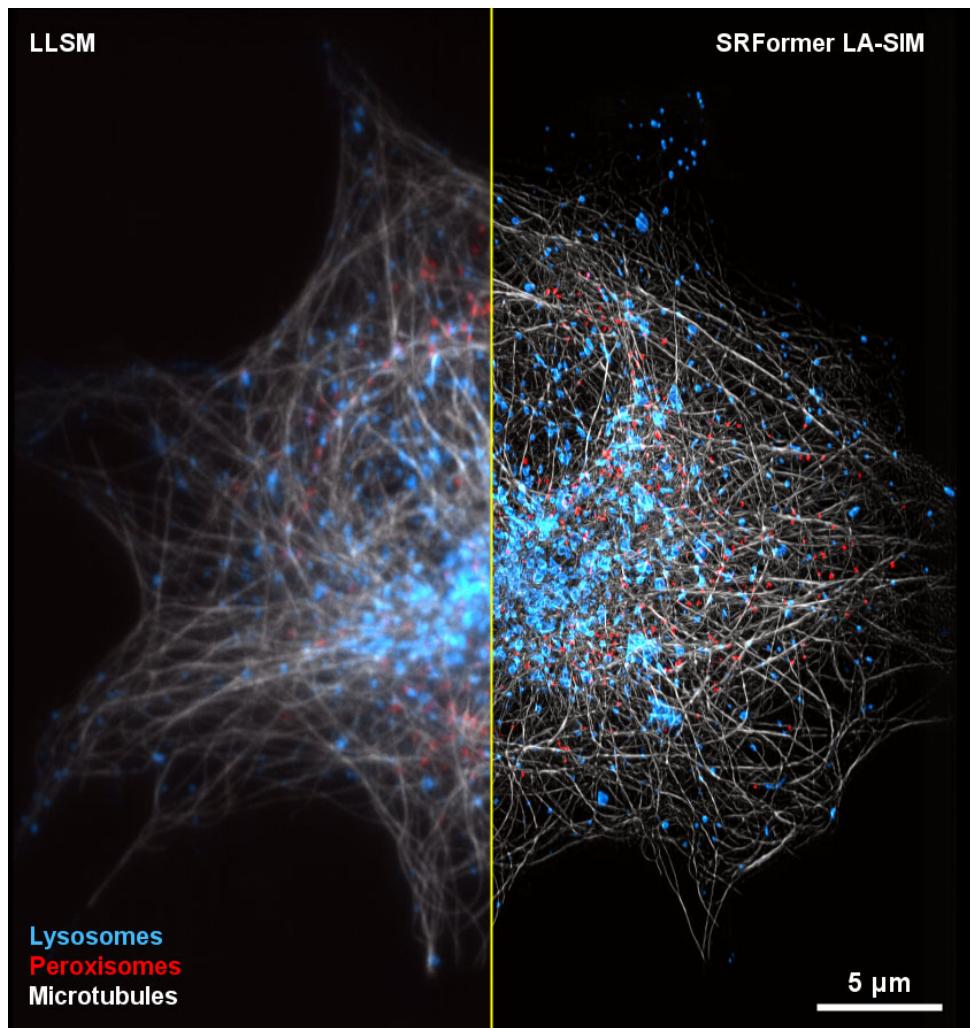
Supplementary Video 7 | 3D projections and surface rendering of rDL LA-LSIM-*z* imaging of live COS-7 cell expressing Tomm20-Skylan-NS for 45 time points lasting ~84 mins. See also **Fig.2**.



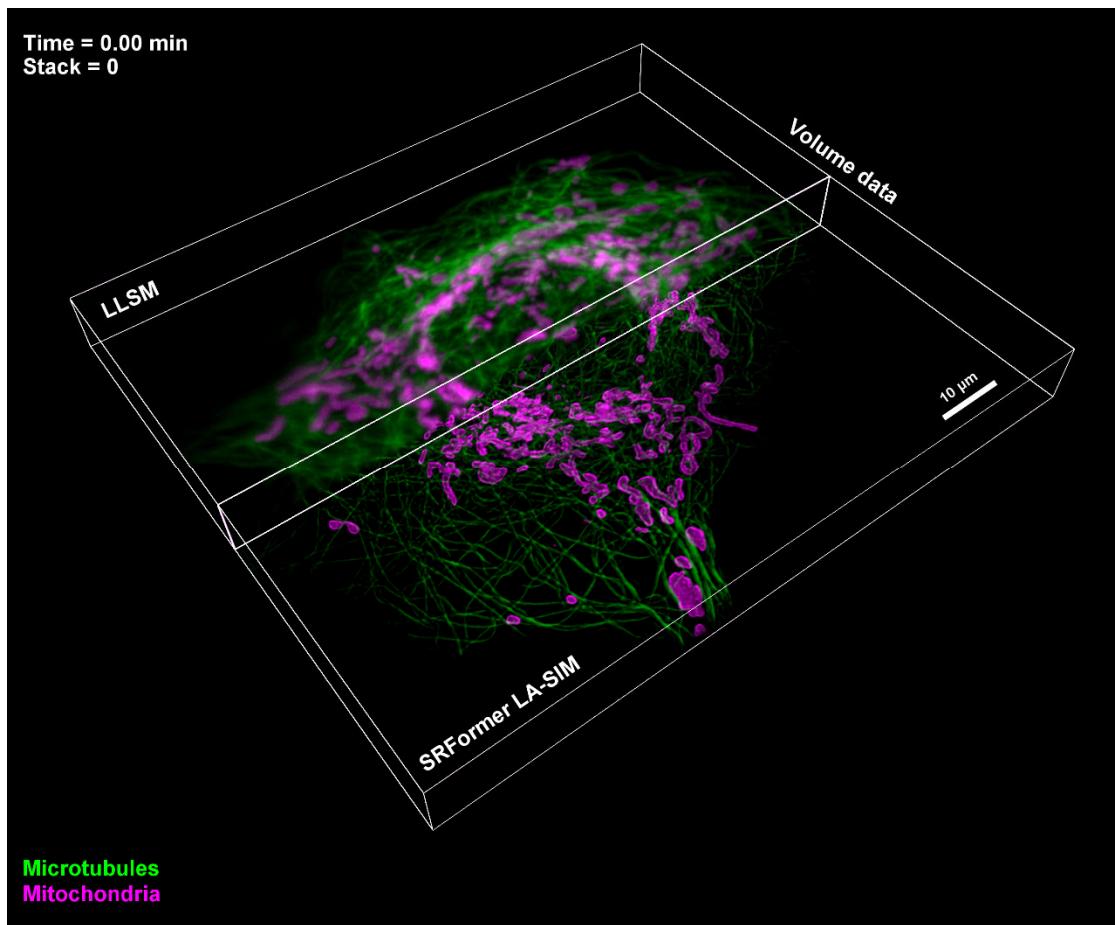
Supplementary Video 8 | Illustration of the sequential steps of LLS activation, 0-phase patterned excitation, and pi-phase patterned excitation in the illumination procedure of LA-NLSIM.



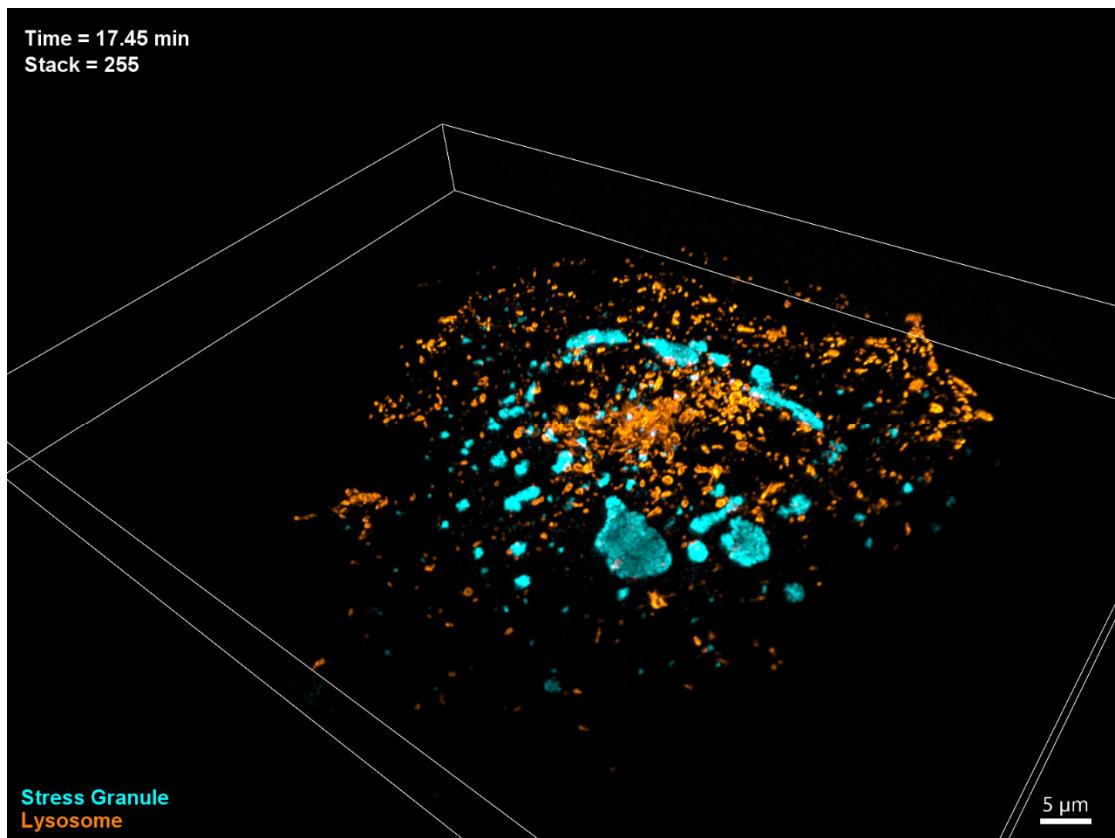
Supplementary Video 9 | 3-D projection of rDL LA-NLSIM-z image acquired from fixed COS-7 cell expressing Enscosin-Skylan-NS. The magnified views show the resolution and SNR comparison of LL SM (top), LA-NLSIM-z (middle), and rDL LA-NLSIM-z (bottom). See also **Fig. 3**.



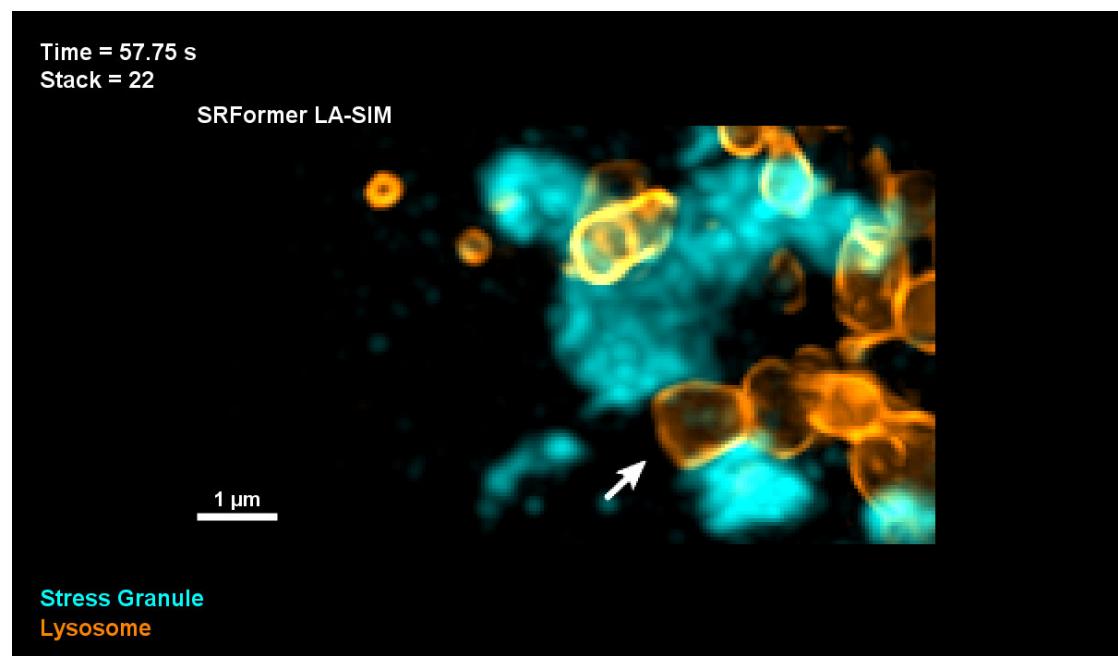
Supplementary Video 10 | Long-term three-color SRFormer LA-SIM imaging of COS-7 cell expressing Enscinsin-mStayGold (gray), SKL-mCherry (red) and LAMP1-HaloTag (blue), revealing the dynamic interactions among lysosomes, peroxisomes and microtubules over the whole cell volume for 690 time points lasting ~74 mins. See also **Fig. 4**.



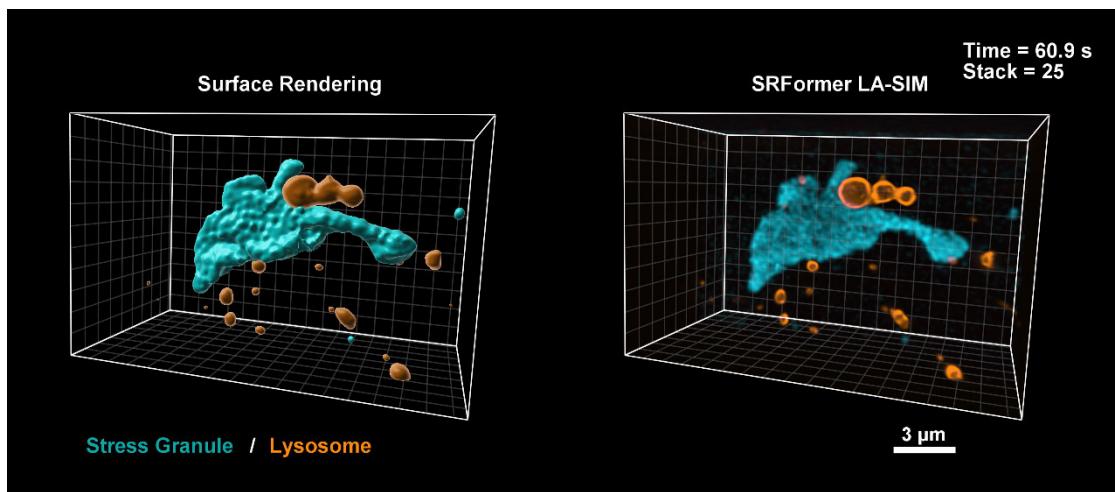
Supplementary Video 11 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell expressing Enscosin-3 \times mStayGold and Tomm20-mCherry, showing the mitochondrial membrane dynamics and their translocation along microtubule tracks. See also **Extended Data Fig. 7**.



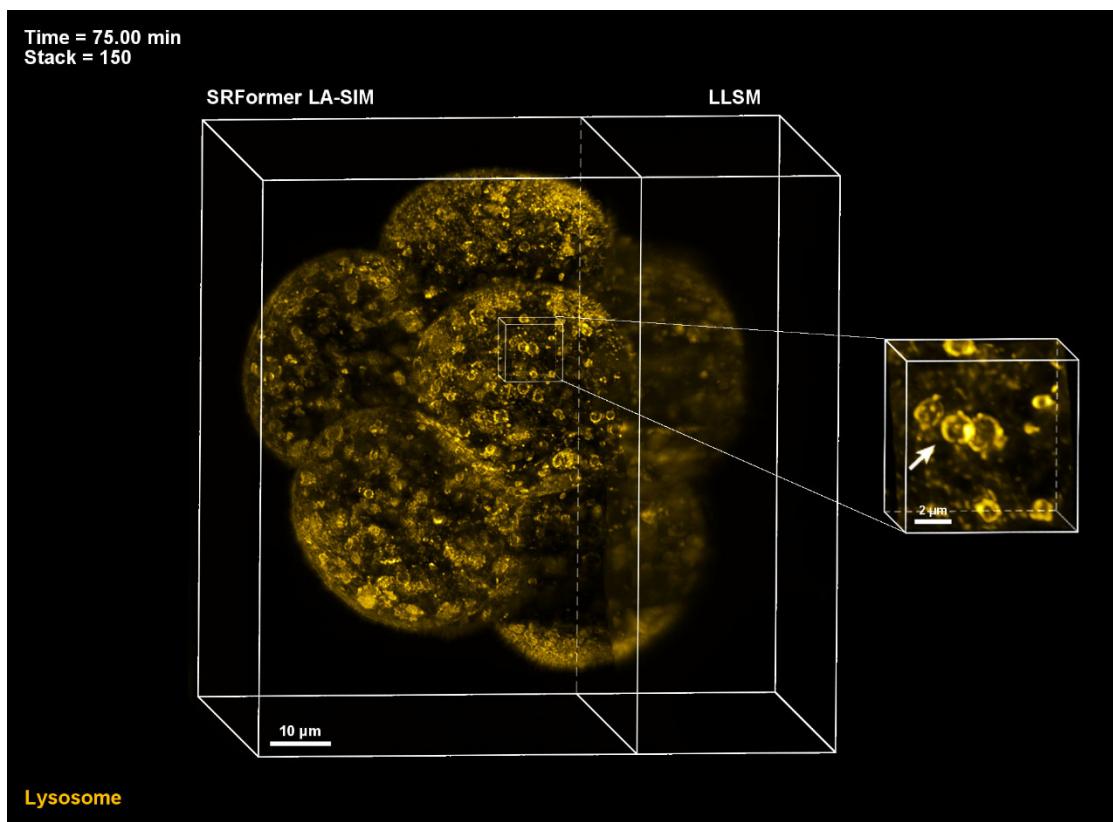
Supplementary Video 12 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell expressing G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 μ M NaAsO₂ for 30 min, showing the common dynamic interactions between lysosomes and stress granules over the whole cell volume for 500 time points lasting ~34 mins. See also **Fig. 5**.



Supplementary Video 13 | Two additional examples showing the lysosome movements mediate the fission of stress granule condensates.



Supplementary Video 14 | Two-color SRFormer LA-SIM imaging of COS-7 cell expressing G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 μ M NaAsO₂ for 30 min, showing that a moving lysosome mediates the fission of large stress granule condensates. See also **Fig. 5**.



Supplementary Video 15 | Long-term SRFormer LA-SIM imaging of mouse early embryo labeled with LAMP1-mStayGold, revealing the dynamics of each individual lysosome over the whole embryo range for 300 time points lasting 2.5 hours. See also **Fig. 5, extended Data Fig. 8**.

Supplementary References

1. Jensen, N. A., Jansen, I., Kamper, M. & Jakobs, S. Reversibly switchable fluorescent proteins for RESOLFT nanoscopy. *Nanoscale Photonic Imaging* 241–261 (2020).
2. Chang, H. *et al.* A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 4455–4460 (2012).
3. Zhang, X. *et al.* Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 10364–10369 (2016).
4. Li, D. *et al.* Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. *Science* **349**, (2015).
5. Habuchi, S. *et al.* Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. *Proceedings of the National Academy of Sciences* **102**, 9511–9516 (2005).
6. Grotjohann, T. *et al.* rsEGFP2 enables fast RESOLFT nanoscopy of living cells. *eLife* **1**, e00248 (2012).
7. Chen, J. *et al.* Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. *Nat Methods* **18**, 678–687 (2021).
8. Zhang, Y. *et al.* Image Super-Resolution Using Very Deep Residual Channel Attention Networks. in *Computer Vision – ECCV 2018* (eds. Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y.) vol. 11211 294–310 (Springer International Publishing, Cham, 2018).
9. Liang, J. *et al.* SwinIR: Image Restoration Using Swin Transformer. Preprint at <https://doi.org/10.48550/arXiv.2108.10257> (2021).
10. Chen, Z. *et al.* Dual Aggregation Transformer for Image Super-Resolution. Preprint at

<https://doi.org/10.48550/arXiv.2308.03364> (2023).

11. Liu, Z. *et al.* Video Swin Transformer. in *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)* 3192–3201 (IEEE, New Orleans, LA, USA, 2022). doi:10.1109/CVPR52688.2022.00320.
12. Qiao, C. *et al.* Evaluation and development of deep neural networks for image super-resolution in optical microscopy. *Nat Methods* **18**, 194–202 (2021).
13. Zhu, Q., Li, P. & Li, Q. Attention Retractable Frequency Fusion Transformer for Image Super Resolution. in *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)* 1756–1763 (IEEE, Vancouver, BC, Canada, 2023). doi:10.1109/CVPRW59228.2023.00176.
14. Chen, X. *et al.* A Comparative Study of Image Restoration Networks for General Backbone Network Design. Preprint at <https://doi.org/10.48550/arXiv.2310.11881> (2024).
15. Kaplan, J. *et al.* Scaling Laws for Neural Language Models. Preprint at <https://doi.org/10.48550/arXiv.2001.08361> (2020).
16. Liu, Z. *et al.* Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. in *2021 IEEE/CVF International Conference on Computer Vision (ICCV)* 9992–10002 (IEEE, Montreal, QC, Canada, 2021). doi:10.1109/ICCV48922.2021.00986.