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Supplementary Notes

Supplementary Note 1 | rsFPs properties in live-cell imaging

Reversibly photo-switchable fluorescent proteins (rsFPs)"? are essential to our method,
as imaging performance depends closely on the switching kinetics of these proteins.
Conventional rsFPs are typically classified by their switching mechanisms into two
primary modes: positive and negative. In the negative mode, the wavelength that
induces fluorescence also switches the rsFPs from the on-state to the off-state. In
contrast, in the positive mode, the light that excites fluorescence transfers the protein
from the off-state to the on-state. The inherent characteristics of rsFPs can significantly
affect imaging performance. For live-cell imaging, there are four key characteristics,
including the brightness of the protein in its on-state, the on-off switching speed, the
fluorescence contrast ratio of on/off states and the switching fatigue, which influence
image intensity, imaging speed, image contrast and imaging duration, respectively.
Skylan-NS?, a truly monomeric rsFP, was first developed by Xi Zhang et al. and
tailored for patterned activation nonlinear structured illumination microscopy (PA NL-
SIM)*. Comparing with other rsFPs, such as Dronpa’® and rsEGFP2°, Skylan-NS offers
a superior number of switching cycles, higher photon output per cycle, and a more
favorable on/off contrast ratio’. In live-cell experiments, Skylan-NS effectively labels
various cellular components without inducing artificial aggregation, demonstrating its

monomeric nature and suitability for cellular labeling.
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Supplementary Note 2 | Detailed optical layout

The schematic of the optical system is shown in Supplementary Fig. 1. Here for
simplicity, we only show the activation light (405 nm) and excitation light (488 nm) in
this figure’s main part. Actually, in our LA-SIM system, five lasers with wavelengths
of 405 nm (365 mW, Cobolt, 06-MLD-405 nm), 445 nm (400 mW, Cobolt, 06-MLD-
445 nm), 488 nm (500 mW, Coherent, Sapphire 488-500 LPX), 560 nm (500 mW, MPB
Communications, 2RU-VFL-P-500-560-BIR) and 642 nm (500 mW, MPB
Communications, 2RU-VFL-P-500-642-B1R) are expanded to a 1/e* diameter of 2.5
mm using two lenses and then combined by a reflecting mirror and four dichroic mirrors
(see inset in Supplementary Fig. 1). After combination, the lasers pass through an
acousto-optic tunable filter (AOTF, AA Quanta Tech, AOTFnC-400.650-TN) which is
employed to select the desired wavelength and control the laser intensity. Following the
AOQOTF, a half wave plate (Bolder Vision Optik, BVO AHWP3) and a polarization beam
splitter (Edmund, #49002) split the laser beam into two illumination paths. In the light
sheet generation path, the laser passes through an achromatic doublet lens (L1, 20 mm
FL/12.5 mm dia.) and a pair of cylindrical lenses (CL1, 50 mm FL/25.4 mm dia,
Thorlabs, ACY254-50A; CL2, 250 mm FL/25.4 mm dia, Thorlabs, ACY254-250A) to
shape the beam into a rectangular profile. This shaped beam is then modulated by
patterns displayed on the spatial light modulator (SLM, Forth Dimension, QXGA-
3DM). The SLM features a resolution of 2048x1536 ferroelectric liquid crystal pixels.
When paired with a polarizing beam splitter cube (Edmund, #49002) and an achromatic
half-wave plate (Bolder Vision Optik, BVO AHWP3), it enables a phase retardance of
0 or & in the diffracted beam, depending on the on/off status of the pixels. The diffracted
light from the SLM is then focused through a 450 mm focal length lens (L2, 450 mm
FL/40 mm dia, Edmund 49-282) onto a customized annular mask. This annular mask
has a series of different size constraints that can filter out unwanted diffraction orders
corresponding to different lattice patterns. After passing through the annular mask, the
selected diffraction orders are magnified by a pair of relay lenses (L3, 70 mm FL/30
mm dia, Optosigma DLB 30-70PM, L4, 75 mm FL/30 mm dia, Optosigma DLB 30-

75PM) and then conjugated to a scanning module that includes two galvanometers



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7l

78

79

80

(Cambridge Technology, 6210H) and a pair of relay lenses with the same focal length
(L5, L6, 70 mm FL/25 mm dia, Optosigma DLB 25-70PM) configured in a 4f
arrangement. Each galvanometer is conjugated to the back pupil plane of the
illumination objective (Thorlabs, TL20X-MPL, 0.6 NA, 5.5 mm WD), allowing the
system to scan along both the x-axis and z-axis of the sample. The image of the annular
mask is further magnified by a factor of ~2.29 times using a relay lens (L7, 175 mm
FL/25 mm dia, Edmund, 47-644; L8, 400 mm FL/25.4 mm dia, Thorlabs, AC254-400-
A) and conjugated to the back focal plane of the illumination objective. The
illumination objective then transforms the image to create the desired light sheet at its
front focal plane, illuminating the sample. The emitted fluorescence is collected by the
detection objective (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD) and imaged by
a tube lens (L13, 400 mm FL /50 mm dia, Thorlabs, AC508-400-A). The image is then
magnified by another pair of lenses (L12, 120 mm FL/30 mm dia, Optosigma, DLB 30-
120PM, L14, 170 mm FL/30 mm dia, Optosigma, DLB 30-170PM) with a total
magnification of ~70x from the sample plane to the camera plane and recorded by an
sCMOS camera (Hamamatsu, Orca Flash 4.0 v3 sCMOS) after passing through an
emission filter.

In the structured excitation arm of the system, stripe patterns are sequentially
displayed on the SLM, synchronized with the generation of the activation light sheet.
Before projection onto the SLM, the laser beam is magnified 11.4x through a pair of
relay lenses (L9, 17.5 mm FL/12.5 mm dia, Edmund 49-928; L10, 200 mm FL/30 mm
dia, Optosigma, DLB-30-200PM). The reflected laser beam from the SLM passes
through a 350 mm focal length lens (L11, 350 mm FL/30 mm dia, Optosigma, DLB-
30-350PM) and focuses onto the mask to filter out unwanted diffraction orders. The
laser beam then passes through the mask and a customized six/ten-section half-wave
plate to alter its polarization state. After passing through the dichroic mirror (Chroma),
the beam is magnified 3.33x through relay lenses (L12, L13) and directed into the
detection objective to form SIM patterns on the sample. In this setup, the SLM is
conjugated to the focal plane of the detection objective while the mask is conjugated to

the back focal plane of the detection objective.
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A wide-field imaging setup is also established to facilitate sample localization.
When the flip mirror is positioned in the optical path, the collimated light beam is
expanded by a pair of relay lenses (L15, 10 mm FL/8 mm dia, Thorlabs, AC080-010-
A, L16, 100 mm FL/25 mm dia, Thorlabs, AC254-100-A), then demagnified by a lens
(L17, 100 mm FL/25 mm dia, Optosigma, DLLB-25-100PM) and the epifluorescence
objective (Nikon, MRD07420, 40X/0.8 NA, 3.5 mm WD) to illuminate the sample. The
fluorescence signal is collected by the epifluorescence objective, passes through lens
L17, and is filtered before being imaged onto an sCMOS camera (Excelitas
Technologies, pco.panda 4.2 bi sCMOS).
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Supplementary Note 3 | Simulation of LA-NLSIM

We wrote MATLAB codes following the equations described below to visualize the
nonlinear activation process of LA-NLSIM in Extended Data Fig. 5 and Supplementary
Video 8.

In the first step of the activation process, we uniformly activate the fluorescent
molecules as time progresses. The switching speed from the on-state to the off-state
depends on the intensity of the excitation light. Assuming that after irradiation with
laser intensity [, for time 7, the activated fluorescent molecules can be completely
returned to the off-state, then the distribution of fluorescent molecules remaining in the

on-state after an exposure time t is given by

—LI (x)
Son(x) = & Tl VTS () (1)
where S(x) is the sample distribution, I,¢¢(x) is the intensity distribution of the turn

off light that can be assumed as a one-dimensional sinusoidally varying pattern
I
Losr = 50(1 — cos(2mkyx + @)) (2)

Here we define the term, saturation factor (SF), to be the ratio of the exposure time

t to the off time t,. Eq. (1) then becomes

Son (x) — e—%(l—cos(anoxﬂp))S(x) (3)
In the last step of patterned read-out, we collect the remaining fluorescence from
the on molecules by shifting the pattern by m phase. The intensity distribution of the

readout illumination can be described as

I
Lreadout = 50(1 - COS(ZT[kOx +@+ ”)) (4)

In this case, the fluorescent molecules that remain in the on-state will be

SF
Sin() = LeadoutSon(x)e ™ 2 170s@Mkox+o+m) )
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Supplementary Note 4 | Conceptual design of SRFormer

a) Architecture design of SRFormer

In the regime of volumetric biological data restoration, 3D residual channel attention
network (3D RCAN)"8 is considered as one of the most powerful yet simple models.
However, due to its relatively shallow architecture constituted based on traditional 3D
convolutional layers and the channel attention mechanism, the expansibility and feature
extraction capability of 3D RCAN are limited. Recently, transformer-based image
super-resolution models for processing natural images such as the Swin-transformer
image restoration model (SwinIR)’ and dual aggregation transformer (DAT) model'°
have emerged, featuring a larger model scale and a better performance in various natural
2D image restoration tasks. However, whether the transformer-based image SR model
outperforms conventional convolutional neural networks in volumetric data super-
resolution reconstruction has not been explored.

To this end, our preliminary experiments started with comparing the performance
of SwinIR’, DAT'? and 3D RCAN? following the network configuration of the original
papers. Interestingly, we found that though with a shallower and small-scale, the 3D
RCAN generated better high-frequency details of biological structures especially in the
axial dimension than the more complex SwinIR and DAT (Extended Data Fig. 6a-c and
Supplementary Fig. 7a-c). We speculated that the underlined reason is the backbone of
SwinIR and DAT focuses on 2D feature extraction, preventing effective utilization of
axial structural continuity of the volumetric LLSM data. Therefore, we then tried
replacing the original 2D convolutional layers and 2D Swin-transformer blocks with
3D convolutional layer and the video Swin-transformer blocks'!, respectively, in the
original DAT while not changing its depth and overall architecture, which is denoted as
3D DAT hereafter. As a result, a notable improvement in both axial resolution and
reconstruction fidelity in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) is observed after such 3D modification (Supplementary Fig. 7). These
results indicate that 3D feature extraction capability is of vital importance to volumetric

SR models.



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Moreover, our previous research'> and other existing literature!>'% have
demonstrated that incorporating frequency feature manipulation and the pyramid
network architecture generally benefits image SR capability of neural network models.
Inspired by this, we further equipped the aforementioned 3D DAT with the U-shaped
architecture for hierarchical feature extraction and spatial-frequency fusion block
(SFFB) for non-local spectral information aggregation (Supplementary Fig. 6 and
Supplementary Note 4b). Particularly, we explored integrating various depths of U-
shaped structures, i.e., with different numbers of down-sampling and up-sampling
modules, and found that the one-stage U-shaped architecture, i.e., incorporating only
one down-sampling and up-sampling operations in each forward propagation, yielded
the best SR reconstruction performance.

Most deep learning approaches for microscopy image denoising and super-
resolution require training specific models for each type of biological specimens. This
is because a general model trained with multiple biological specimens usually performs
worse than the models trained on a specific type of specimens, due to limitations in
neural network scalability. On the other hand, recent explorations of large language
models suggest that a larger model with more trainable parameters is more robust in
processing multi-tasks parallelly. Therefore, following the scaling law'>, we scaled up
the network to 62,767,512 parameters by increasing feature channels and repeating
feature extraction blocks in SRFormer. To our best knowledge, this is the largest model
reported for biological image restoration. We trained the SRFormer model on two
Nvidia A800 GPUs, and our experiments revealed that with all abovementioned
advancements, a well-trained SRFormer enabled volumetric SR reconstruction of
multiple biological specimens with the performance comparable to that achieved by
individual 3D RCAN models trained on datasets of each specific biological structures
(Extended Data Fig. 6).

b) Detailed network architecture of SRFormer
As shown in Supplementary Fig. 6, SRFormer comprises three modules: shallow
feature extraction, deep feature extraction, and high-quality image reconstruction.

Initially, the low-resolution (LR) input image stack X € RZ*#>*W where Z, H and
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W denote the size along three dimensions of the data.

First, the LR image stack is processed through two 3D convolutional layers to
obtain the shallow feature Fy, € RZ*XH*W*C1 and F,, € RZXH*WXC2 The dimensions
of the feature, denoted as C; and C,, are set to 90 and 180, respectively, in our
experiments. Next, the shallow feature Fy; is fed into four dual aggregation
transformer block (DATB) groups that are arranged following a U-shaped structure to
generate hierarchical deep features. Specifically, the first group of feature channels
Fyq € RZ*HXWXC1 gre obtained by sending Fy; to the first DATB group, then Fj;
are sequentially passed through a down-sampling layer, the second DATB group, and
an up-sampling layer (realized by pixel shuftle), generating a group of deep feature

channels F,, € RZXHXWxC

. The Fy; and F,;, are concatenated to constitute
hierarchical deep feature Fyy = concat(Fyq, Fyp) € RE*H*WXC2 wwhich is then passed
through the last two DATB groups to obtain the refined feature F; € RZ*XH*W*Cz2 Each
DATB group consists of 6 consecutive 3D DATB, and one 3D spatial-frequency fusion
block (SFFB). Each DATB is constructed by one 3D dual spatial transformer blocks
(3D DSTB) and one 3D dual channel transformer blocks (3D DCTB).

Finally, the combined feature of the shallow feature Fy, and the refined feature F,

is fed into an up-sampling block and a 3D convolutional layer to generate the final

super-resolution image ¥ € RZ*H W' \yhere the parameters Z’, H' and W' are set

to 3XZ, 2xX H and 2 X W, respectively.
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Supplementary Note 5 | Characterization of SRFormer LA-SIM

a) Calculation of assessment metrics
To quantitatively evaluate the images reconstructed by SRFormer LA-SIM and other
methods, we used the PSNR and SSIM between the SR image ¥ and the ground truth
(GT) image Y. Since the signal intensity of the SR and GT images differs in dynamic
range, we applied a linear transformation'? to the SR image as follows
Y =af + B (6)
where o and [ represent the transformation coefficients aimed at minimizing the
squared error between the transformed image and the normalized GT image, Y
denotes the linear transformed SR image. This problem can be formulated as a linear

regression problem:
=N 2
min [[a? + B - V| 7
o, 2
The closed-form solution to this problem is given by:

N Y X (Yl - mean(?))

(8)

a= — —
N, ¥2—Nx mean(Y)

N
B=N><Z(Yi—’ole7i) (9)

where @ and B denote the optimal values of the transformation coefficients
and f3, respectively.
The final PSNR and SSIM are calculated as follows:

- N
PSNR(Y,Y) =10 xlo _— (10)
(7.v) S10 ( N - Yi)2>

(Cuyuy + ¢1)(2opy + ¢3)

11
2412 +¢)(02+02+¢cy) 1D

SSIM(Y,Y) = G

wherepy, Uy, oy and oy denote the mean values and standard deviations of the
SR image Y and the GT image Y, respectively. oy, denotes the cross-covariance
between the SR image ¥ and GT image Y. The constants c¢; and c, used in this
paper are 0.01% and 0.032, respectively.
b) Ablation study of SRFormer
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As is discussed in the Methods section of the main text and Supplementary Note 4,
there are three key advancements in SRFormer over existing transformer-based image
SR neural network models such as SwinIR? and DAT'?. First, instead of using 2D
convolutional layers and 2D shifted window (Swin) transformer blocks'®, we used 3D
convolutional layers and Swin transformer blocks designed for 3D data'' in SRFormer
for volumetric feature extraction. Second, we designed a U-shaped architecture for the
cascading DATB groups to enable hierarchical feature manipulation within the network.

1213 we endowed SRFormer with an

Third, by incorporating Fourier space learning
extended receptive field across the whole image, further strengthening the
representation capability of the model.

To demonstrate the effectiveness of above modifications, we conducted ablation
experiments for SRFormer using LLSM and rDL LA-SIM image pairs of three different
biological specimens including outer mitochondrial membrane (Mito), microtubules
(MTs), and F-actin. In detail, we trained several image SR models including the original
DAT models with 2D feature extraction modules (i.e., 2D convolution and 2D Swin
transformer blocks), denoted as 2D DAT, modified DAT models with 3D feature
extraction modules (i.e., 3D convolution and 3D Swin transformer blocks), denoted as
3D DAT, modified SRFormer model without SFFB blocks (denoted as SRFormer w/o
SFFB), modified SRFormer model without U-shaped architecture (denoted as
SRFormer w/o U-shape), in which four DATB groups are connected sequentially, and
the proposed SRFormer model with all reinforcements mentioned above.

Typical results of these models and quantitative comparisons in terms of PSNR and
SSIM are shown in Supplementary Fig. 7, from which we draw such conclusions: (1)
By comparing 2D DAT to other four models with 3D adaptation, we found that the 3D
feature extraction modules substantially enhance axial resolution in the inferred
volumetric SR results. (2) By comparing 3D DAT with SRFormer w/o SFFB and
SRFormer w/o U-shape, we found that the incorporation of either SFFB or one-stage
U-shaped architecture is able to slightly improve the SR resolvability both qualitatively
and quantitatively. However, these two models struggle with reconstructing the hollow

reconstruction of the outer mitochondrial membrane (Supplementary Fig. 7a) and are
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prone to generating unnatural structure in MTs and F-actin images (Supplementary Fig.
7b, ¢). (3) Benefiting from volumetric and hierarchical feature extraction capability
provided by 3D adaptation, SFFB, and U-shaped architecture, SRFormer can
distinguish the hollow structure of outer mitochondrial membrane in both lateral and
axial (Supplementary Fig. 7a), and reconstruct tubular structure with similar
morphology and comparable resolution with rDL LA-SIM, i.e., the GT used in training.
Meanwhile, SRFormer achieves the highest reconstruction PSNR and SSIM compared
to other models.

¢) Comparison of SRFormer with 3D RCAN and SwinIR

To further validate the superior performance of SRFormer in volumetric image super-
resolution tasks, we compared it with two state-of-the-art deep learning algorithms:
three-dimensional residual channel attention networks (3D RCAN)’, a commonly
adopted neural network model for 3D biological data denoising and super-resolution,
and SwinIR’, a well-recognized neural network for image restoration which is
constructed based on the Swin Transformer. We first independently trained three 3D
RCAN models using three datasets of Mito, MTs and F-actin, respectively, referred to
as 3D RCAN specific models. Next, we trained 3D RCAN, SwinlR (following its
original configuration’ with 2D feature extraction modules), and SRFormer models
using a mixed dataset of all three biological structures, referred to as general models.
As such, the “3D RCAN Specific” models were trained for processing data of a single
type of specimen, and “3D RCAN General”, “SwinlR General”, and “SRFormer
General” models each was trained to process data of various types of biological
structures. Extended Data Fig. 6 presents representative SR images reconstructed using
these models, which indicate several conclusions, including: (1) Although built based
on conventional convolutional architecture, the 3D RCAN general model outperformed
the transformer-based SwinlR model due to its volumetric feature extraction and
aggregation capability; (2) the 3D RCAN specific model trained for a certain type of
specimen achieved relatively better accuracy compared to the 3D RCAN general model
trained with all relative datasets. This result is consistent with findings in other

literature'? that independent image SR neural network models should be trained for
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each biological specimen to achieve optimal SR performance; (3) Consistent with the
scaling law'>, with over 60 million trainable parameters and sufficient training data,
SRFormer trained with datasets of all types of specimens achieved better performance
than the 3D RCAN general model and even the three 3D RCAN specific models. It
successfully reconstructed the hollow outer membrane of mitochondria in three
dimensions (Supplementary Fig. 7a), as well as tubular structures of MTs and F-actin
(Supplementary Fig. 7b, c). Additionally, the quantitative comparison between
SRFormer and other models, shown in Supplementary Fig. 7d-f, also demonstrates the
superior reconstruction fidelity and robustness to variations in signal-to-noise ratio

and structural differences among various cell types.
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Supplementary Fig. 2 | Hardware control schematic of LA-SIM system.

FPGA: field-programmable gate array; DIO: digital input and output; AO: analog output; Al: analog
input; SLM: spatial light modulator; Galvo: galvanometer; PZT: piezoelectric transducer; AOTF:
acousto-optic tunable filter. FPGA provides the analog and digital outputs to control the essential
electronics for image acquisition. The AO ports connect and control devices requiring analog voltage
modulation, including Galvo, PZT and AOTF (for controlling power output). The DO ports connect and
control devices requiring highly synchronized operation, including Camera, SLM and AOTF (for
controlling switch state). The Al and DI ports receive feedback signals from Galvo and PZT. The camera
acquisition card in the computer receives data from the camera. Different acquisition timing is designed
based on imaging mode requirements. Refer to the Methods section and Supplementary Figs. 3-5 for

additional details.
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Supplementary Fig. 5 | Timing diagrams for hardware control, volume acquisition for two scanning
modes. Sample scanning mode is the volumetric acquisition mode in which the specimen is translated
with a high-precision piezo stage through the stationary light sheet. Objective with light-sheet scanning

mode is achieved by moving the light sheet and detection objective together through the specimen.
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Supplementary Fig. 6 | Network architecture of SRFormer. a, The schematic of the inference phase
of SRFormer. b, The architecture of dual aggregation transformer block (DATB) group. ¢, The
architecture of 3D dual spatial transformer block (3D DSTB). d, The architecture of 3D dual channel
transformer block (3D DCTB). e, The architecture of spatial-frequency fusion block (SFFB). f, The
architecture of adaptive spatial self-attention (AS-SA). g, The architecture of adaptive channel self-
attention (AC-SA). h, The architecture of channel-interaction (C-I). i, The architecture of spatial-

interaction (S-I).
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Supplementary Fig. 7 | Ablation study of SRFormer. a-c, Representative maximum intensity
projections (MIP, xy-plane) and yz-slices of LLSM image stacks (first column) and SR images of Mito
(a), MTs (b), and F-actin (c) reconstructed by 2D DAT (second column), 3D DAT (third column),
SRFormer w/o U-shape (fourth column), SRFormer w/o SFFB (fifth column), and SRFormer LA-SIM
(sixth column). Super-resolution rDL LA-SIM MIP images are provided for reference in the seventh
column. Arrows indicate the x position for the yz-slices shown below. Scale bar, 2 pm. d, Statistical
comparison of PSNR and SSIM values for the output SR images produced by 2D DAT, 3D DAT,
SRFormer w/o U-shape, SRFormer w/o SFFB, and SRFormer on test datasets of Mito (d), MTs (e), and

F-actin (f) (n=1000).



Supplementary Tables

Supplementary Table 1 | Imaging parameters of LA-SIM

Exposure time for one phase one orientation

Volume size of (ms) NA
Sample raw data Time
Data Imaging mode o Label ) ) )
(situation) (WidthxHeight axial Excita | points
) activation 0-phase | pi-phase | Activation
xZ-slice) thinning tion

Fig. le-g, k, 1 0.35

] LA-LSIM-z COS-7 (fixed) | Skylan-NS-Ensconsin | 640x640x445 5 25 15 15 1.0 /
Supplementary Video 3 0.14
Fig. 2a-e, g . . 0.35

] LA-LSIM Hela (live) Skylan-NS-Lifeact 512x512x91 1 / 5 5 1.0 150
Supplementary Video 5 0.14
Fig. 2i-1 0.35
] LA-LSIM-z COS-7 (live) Skylan-NS-Tomm20 448x672x401 2 5 5 5 1.0 45

Supplementary Video 7 0.14
Fig. 3a-c 0.35

] LA-NLSIM-z | COS-7 (fixed) | Skylan-NS-Ensconsin | 800x800x491 5 25 20 10 1.0 /
Supplementary Video 9 0.14
Extended Data Fig. 3a 0.35

] LA-LSIM-z COS-7 (fixed) Skylan-NS-Tomm20 512x512x242 7 20 15 15 1.0 /
Supplementary Video 4 0.14
Extended Data Fig. 3b . 0.35

LA-LSIM COS-7 (live) Skylan-NS-Tomm20 512x512%65 2 / 10 10 1.0 /
Supplementary Video 6 0.14
0.35

LA-LSIM-z Hela (fixed) Skylan-NS-Lifeact 512x512%221 3 15 15 15 1.0 /
Extended Data Fig. 4b-e 0.14

3D-SIM Hela (fixed) Skylan-NS-Lifeact 512x512%101 5 / 20 (excitation) / 1.0 /




Supplementary Table 2 | Imaging parameters of SRFormer LA-SIM

Exposure Volume size of Cycle time T
ime
Imaging method Excitation | Excitation | time per raw data (Acquisition )
Data . Sample Label ) ) ) ) Points
(Acquisition mode) NA A (nm) raw image (WidthxHeight + resting (Video)
ideo
(ms) xZ-slicexChannel) time) (s)
Ensconsin-mStayGold 488 10
Fig. 4c-f LLSM
) COS-7 SKL-mCherry 0.35,0.14 560 10 320%x832x191x3 6.42 690
Supplementary Video 10 (sheet-scan mode)
LAMP1-Halo 642 10
Fig. 5a-c LLSM G3BP1-mStayGold 488 10
) COS-7 0.35,0.14 352x768x181x2 4.11 500
Supplementary Video 12 (sheet-scan mode) LAMPI1-Halo 560 10
Fig. 5d LLSM G3BP1-mStayGold 488 10
) COsS-7 0.35,0.14 512x512x101x2 2.44 55
Supplementary Video 14 (sheet-scan mode) LAMPI1-Halo 560 10
Fig. 5e
LLSM Mouse
Extended Data Fig. 8 ) LAMP1-mStayGold 0.07 488 10 1024x1024x401x1 30 300
) (slit-scan mode) embryo
Supplementary Video 15
Extended Data Fig. 7 LLSM Ensconsin-3xmStaygold 488 10
COS-7 0.35,0.14 288x768x151x2 3.33 400
Supplementary Video 11 (sheet-scan mode) Tomm20-mCherry 560 10
LLSM Mouse
) LAMP1-mStayGold 0.07 488 10 1024x1024x301x1 30 /
Extended Data Fig. 9 (slit-scan mode) embryo
Mouse
3D-SIM LAMP1-mStayGold 1.49 488 30 512x512%x37x%1 32.69 /

embryo




Captions for Supplementary Videos

Supplementary Video 1 | Animation of LA-LSIM illumination and acquisition steps without (part

I) and with (part II) sandwiched axial thinning.



Supplementary Video 2 | Animation of LA-NLSIM illumination and acquisition steps without (part

I) and with (part II) sandwiched axial thinning.



rDL LA-LSIM-z

Supplementary Video 3 | Volume rendering of LA-LSIM-z image acquired from fixed COS-7 cell
expressing Ensconsin-Skylan-NS, showing the progressive resolution enhancement from LLSM,
LLSM with axial thinning, to LA-LSIM-z and LA-LSIM-z with rDL denoising. See also Fig. 1.



rDL LA-LSIM-z

XZ Slice =273

Supplementary Video 4 | Volume rendering and 3D projection of LLSM (left) and rDL LA-LSIM-
z images from fixed COS-7 cell expressing Tomm20-Skylan-NS. The x-z scrolling views present
resolution improvements in both lateral and axial dimensions via rDL LA-LSIM-z. See also
Extended Data Fig. 2.
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Supplementary Video 5 | 3D projections of LLSM (left) and rDL LA-LSIM (right) imaging of a
live Hela cell expressing Lifeact-Skylan-NS, showing the F-actin cytoskeleton dynamics over the
whole cell volume for 150 time points lasting ~37 mins. See also Fig 2.



tDL LA-LSIM a Time = 6.49 min

Stack =18

Supplementary Video 6 | 3D projections of rDL LA-LSIM imaging of live COS-7 cell expressing
Tomm?20-Skylan-NS, showing the mitochondrial fission and fusion membrane dynamics over the
whole cell volume for 50 time points lasting ~18 mins. See also Extended Data Fig. 2.



rDL LA-LSIM-z

Supplementary Video 7 | 3D projections and surface rendering of rDL LA-LSIM-z imaging of live
COS-7 cell expressing Tomm?20-Skylan-NS for 45 time points lasting ~84 mins. See also Fig.2.



Step 2: 0-phase patterned excitation fluorophores remained in on-state

Patterned 488 nm light (SF=2.0)
ON molecules N\

(-phase fluorescence data
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Supplementary Video 8 | Illustration of the sequential steps of LLS activation, 0-phase patterned
excitation, and pi-phase patterned excitation in the illumination procedure of LA-NLSIM.



rDL LA-NLSIM-z

Supplementary Video 9 | 3-D projection of tDL LA-NLSIM-z image acquired from fixed COS-7
cell expressing Ensconsin-Skylan-NS. The magnified views show the resolution and SNR
comparison of LLSM (top), LA-NLSIM-z (middle), and rDL LA-NLSIM-z (bottom). See also Fig.
3.



SRFormer LA-SIM

Lysosomes

Microtubules

Supplementary Video 10 | Long-term three-color SRFormer LA-SIM imaging of COS-7 cell
expressing Ensconsin-mStayGold (gray), SKL-mCherry (red) and LAMP1-HaloTag (blue),
revealing the dynamic interactions among lysosomes, peroxisomes and microtubules over the whole

cell volume for 690 time points lasting ~74 mins. See also Fig. 4.



Time = 0.00 min
Stack =0

Microtubules

Supplementary Video 11 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell
expressing Ensconsin-3xmStayGold and Tomm20-mCherry, showing the mitochondrial membrane
dynamics and their translocation along microtubule tracks. See also Extended Data Fig. 7.
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Stack = 255
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Supplementary Video 12 | Long-term two-color SRFormer LA-SIM imaging of COS-7 cell
expressing G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 uM NaAsO; for 30
min, showing the common dynamic interactions between lysosomes and stress granules over the

whole cell volume for 500 time points lasting ~34 mins. See also Fig. 5.
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SRFormer LA-SIM

Stress Granule
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Supplementary Video 13 | Two additional examples showing the lysosome movements mediate
the fission of stress granule condensates.
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Supplementary Video 14 | Two-color SRFormer LA-SIM imaging of COS-7 cell expressing
G3BP1-mStayGold and LAMP1-Halo after being exposed to 500 pM NaAsO; for 30 min, showing
that a moving lysosome mediates the fission of large stress granule condensates. See also Fig. 5.



Time = 75.00 min
Stack = 150

SRFormer LA-SIM

Lysosome

Supplementary Video 15 | Long-term SRFormer LA-SIM imaging of mouse early embryo labeled
with LAMP1-mStayGold, revealing the dynamics of each individual lysosome over the whole
embryo range for 300 time points lasting 2.5 hours. See also Fig. 5, extended Data Fig. 8.
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