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S1. Deforestation Areas for 20 Commodities

Commodity Area (Km?) Proportion (%)
Iron 1046.01 7.16%
Copper 523.89 3.58%
Lead 116.74 0.80%
Zinc 61.41 0.42%
Gold 3183.65 21.78%
Silver 62.94 0.43%
Chromium 17.45 0.12%
Manganese 135.55 0.93%
Molybdenum 168.43 1.15%
Nickel and Cobalt 616.79 4.22%
Tin 84.34 0.58%
Tungsten 11.48 0.08%
Aluminium (Bauxite) 764.71 5.23%
Ilmenite 58.40 0.40%
Lithium 245.95 1.68%
PGE 113.83 0.78%
Uranium 95.73 0.65%
Other metals 196.41 1.34%
Coal 6044.75 41.35%
Other non-metals 1070.57 7.32%
ALL 14619.05 100%




S2. Global Distribution of Mining Areas for 20 Commodities
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S3. Spatial Variation in Deforestation-to-Mining Area Ratio for 20 Commodities
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Chromium
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Nickel and Cobalt
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Aluminium (Bauxite)
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Coal
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S4. Region-Commodity Combination

Deforestation area of countries

Deforestation area of other

Commodity intersecting the Amazon and countries (% of the total
Southeast Asian rainforests (% of deforestation)
the total deforestation)
Iron 418.69 (2.86%) 627.32 (4.29%)
Gold 2123.16 (14.52%) 1060.49 (7.25%)
Nickel and Cobalt 271.79 (1.86%) 345.00 (2.36%)

Aluminium (Bauxite)

432.76 (2.96%)

331.95 (2.27%)

Coal

4147.95 (28.37%)

1896.80 (12.97%)

Others

776.10 (5.31%)

2187.04 (14.96%)

ALL

8170.45 (55.89%)

6448.60 (44.11%)
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SS5. Spatial Variation in Extinction Risk Index (ERI) for 20 Commodities
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S6. Data Sources and Preparation

This study's commodity classification builds on the delineation of mining areas from
Maus et al.'>. The dataset, consisting of 44,929 polygons covering 101,583 km?,
represents a range of mining activities. However, as the Maus et a/.> dataset lacks detailed
commodity information, we supplemented it with point data from sources such as the
SNL metals & mining dataset’, USGS*, Jasansky et al.’, and Franks et al.’, all of which
provide spatial coordinates and commodity details. A spatial join was performed to
integrate these point datasets with Maus et al’s polygons?, linking point data to polygons
where spatial overlap was detected. In cases where multiple points were associated with
a single polygon, the most frequently represented commodity was assigned, and where
no clear majority existed, a commodity was randomly selected. This process successfully
labelled 1,941 polygons with commodity information into 20 commodity classes (see

Table S6).

Table S6 shows that the 1,941 labelled polygons cover 30,890.83 km?, representing about
4% of the polygons in the Maus et al. dataset? but accounting for nearly 30% of the total
land area. This suggests that larger industrial mines, which are more likely to be
documented, are disproportionately represented, while smaller operations may be
underreported. Gold is the most prevalent commodity by both polygon count and area,
reflecting its economic importance and the availability of reliable data. However, some
larger polygons may include non-mining areas, as noted by Tang and Werner’; for
instance, one gold polygon spans 2,546 km?, nearly covering the entire upstream region
of the Rio Madre De Dios River in Chile. Despite such limitations, the Maus ef al. dataset?

remains valuable for global commodity classification.
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Table S6 - Distribution of Mineral Categories after initial data integration

Commodity Number of Polygons Covered Areas
(% of Polygons) (% of Covered Areas)
Iron 195 (10.046%) 3074.230 (9.95%)
Copper 264 (13.601%) 4564.758 (14.78%)
Lead 26 (1.340%) 155.419 (0.50%)
Zinc 93 (4.791%) 314.733 (1.02%)
Gold 528 (27.202%) 8429.676 (27.29%)
Silver 57 (2.937%) 169.185 (0.55%)
Chromium 12 (0.618%) 51.436 (0.17%)
Manganese 13 (0.670%) 142.978 (0.46%)
Molybdenum 13 (0.670%) 137.116 (0.44%)
Nickel and Cobalt 64 (3.297%) 560.869 (1.82%)
Tin 4 (0.206%) 87.531 (0.28%)
Tungsten 5 (0.258%) 4.470 (0.01%)
Aluminium (Bauxite) 42 (2.164%) 928.334 (3.01%)

Ilmenite

7 (0.361%)

70.116 (0.23%)

Lithium 7 (0.361%) 65.408 (0.21%)
PGE 34 (1.752%) 169.852 (0.55%)
Uranium 26 (1.340%) 227.621 (0.74%)
Other metals 15 (0.773%) 326.109 (1.06%)
Coal 386 (19.887%) 7224.282 (23.39%)
Other non-metals 150 (7.728%) 4186.712 (13.55%)
Total 1941 (100%) 30890.834 (100%)
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S7. Open-pit Identification

Before classifying commodities for polygons without labels, a machine-learning model
was developed using a random forest algorithm to detect open pits within each mining
area polygon. Random forests are widely regarded for classification tasks, particularly for
their robustness in handling high-dimensional datasets and their resistance to overfitting?®.
558 ASTER scenes were used and filtered to remove areas containing snow, clouds, and
water bodies according to criteria established by Hall ez al.’, Werner et al."*, and the JRC
Monthly Water History dataset'!. Vegetative interference was minimised by selecting
scenes with the lowest band values, ensuring more reliable spectral analysis and reducing

environmental noise.

The model was trained using an 80:20 cross-validation approach, splitting the scenes into
training and validation subsets. Table S7.1 details the distribution of land-use types across
these subsets. "Open Pit" and "Vegetation" classes have the most samples, reflecting their
prevalence in real-world mining regions. In contrast, the "Dam" and "Waste Rock Dump
(WRD)" classes contain fewer samples, consistent with their less frequent occurrence.
This distribution reflects the true environmental heterogeneity in mining areas, ensuring
the model is trained to represent realistic conditions, thus improving the generalisability

of its predictions.

The model’s performance is summarised in Table S7.2, which presents the confusion
matrix for open-pit identification along with accuracy metrics. The model achieved an
overall accuracy of 87.76%, with open pits correctly classified in 25 of 27 instances
(92.6% accuracy). In addition, the model successfully identified dams, WRD, and
facilities in 23 of 30 instances (76.7% accuracy). These results validate the model's utility

in identifying critical mining infrastructure across diverse land-use types.
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Table S7.1 — Distribution of Training and Validation Subsets for Open-pit

Identification
Land Use Training Subset Validation Subset
Open Pit 97 27
Dam 35 7
Waste Rock Dump 63 9
Facility 81 14
Vegetation 100 23
Bare Soil 84 18
Table S7.2 — Confusion Matrix for Open-Pit Identification
Land Use Open Dam Waste Rock | Facility | Vegetation Bare User's

Pit Dump Soil accuracy
Open Pit 25 1 0 0 1 0 92.59%
Dam 1 5 0 0 1 0 71.43%
Waste Rock Dump 0 1 6 0 1 1 66.67%
Facility 0 0 2 12 0 0 85.71%
Vegetation 1 0 0 1 20 1 86.96%
Bare Soil 0 0 0 0 0 18 100.00%
Producer's accuracy | 92.59% | 71.43% 75.00% | 92.31% 86.96% | 90.00% 2;67“6‘&
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S8. Commodity Classification

Following identifying open-pit points for each polygon, a commodity classification
model was applied to assign the appropriate commodities to each point corresponding to
its respective polygon. The model was based on 26 band ratio indices derived from the
ASTER Mineral Index Processing Manual'?, as outlined in Table S8.1. The distribution
of training and validation subsets used for the classification process is detailed in Table
S8.2. Confusion matrices summarising the performance of the commodity classification
are shown in Table S8.3, while the overall confusion matrix and user’s and producer’s
accuracies are presented in Tables S8.4 and S8.5. The final classification outcomes are

provided in Table S8.6.

Among the 20 commodities, iron, copper, lead, zinc, nickel-cobalt, and coal were
validated using external mine site datasets, including iron from the Global Iron Ore Mines
Tracker”, coal from the Global Coal Mine Tracker', and copper, lead-zinc, and nickel
datasets from Northey ef al.'*, which provide coordinate points but lack mining boundary
and area information. All external datasets encompass mines with various statuses, such
as operating, mothballed, proposed, or retired. In addition, the two Tracker datasets'>'*
provide location accuracies classified as exact or proximate, while the Global Coal Mine
Tracker'* uniquely includes information on mine type, distinguishing between surface and

underground mines.

In this context, only operating mines were included. Specifically, for iron and coal, only
mines with exact location accuracy were used, and only surface coal mines were
considered. The validation accuracies for these commodities, presented in Table S8.7, are
based on the number of points that intersect with the polygons (Table S8.6) and the areas
of these intersecting polygons. Notably, each polygon in this study is assigned a primary
commodity. As a result, cases such as an iron mine point intersecting with a copper
polygon identified from other sources***¢'>1415 can occur (e.g. Iron Oxide Copper-Gold
deposits). These instances are not deemed incorrect but are recognised as valid due to the
multi-commodity nature of mining areas. Given the limited availability of external
datasets, the validation results are considered reasonable and reflect the inherent

complexity of mining operations.
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Table S8.1 — Band Ratio Indices (Geoscience Australia, 2004)

No. Indices Ratio
1 Ferric iron, Fe3* 2/1

2 Ferrous iron, Fe?" 5/3+1/2

3 Laterite/Silica Alteration 4/5

4 Gossan 4/2

5 Ferrous silicates (biot, chi, amph) 5/4

6 Ferric oxides 4/3

7 Carbonate/chlorite/epidote (7+9)/8

8 Epidote/chlorite/amphibole (6+9)/(7+8)

9 Amphibole/MgOH (6+9)/8

10 Amphibole 6/8

11 Dolomite (6+8)/7

12 Carbonate 13/14

13 Sericite/muscovite/illite/smectite (5+7)/6

14 Alunite/kaolinite/pyrophyllite (4+6)/5

15 Phengitic/Host rock 5/6

16 Muscovite 7/6

17 Kaolinite 7/5

18 Clay (5x7)/6*

19 Quartz rich rocks 14/12

20 Silica (1) (11x11)/10/12
21 Basic degree index (gnt, cpx, epi, chl)/SiO2 12/13

22 SiO2 13/12

23 Siliceous rocks (11x11)/(10x12)
24 Silica (2) 11/10

25 Silica (3) 11/12

26 Silica (4) 13/10

Table S8.2a — Distribution of Training and Validation Subsets for Commodity

Classification (Level 1)

Commodity Training Subset Validation Subset
Non-metals 1248 312
Non-iron metals 1297 325
Iron 1297 325

Table S8.2b — Distribution of Training and Validation Subsets for Commodity

Classification (Level 2-1)

Commodity

Training Subset

Validation Subset

Other non-metals

416

104

Coal

416

104
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Table S8.2¢ — Distribution of Training and Validation Subsets for Commodity

Classification (Level 2-2)

Commodity Training Subset Validation Subset
Chalcophile-related metals 416 104
Aluminium (Bauxite) 416 104
Chromium 416 104
Nickel and Cobalt 416 104
Lithium 416 104
Manganese 416 104
Other metals 416 104
PGE 416 104
Tin 416 104
Ilmenite 416 104
Tungsten 416 104
Uranium 416 104

Table S8.2d — Distribution of Training and Validation Subsets for Commodity

Classification (Level 3-1)

Commodity Training Subset Validation Subset
Copper 416 104
Gold 416 104
Lead 416 104
Molybdenum 416 104
Silver 416 104
Zinc 416 104
Table S8.3a — Confusion Matrix for Commodity Classification (Level 1)
Non-metals Non-iron metals Iron
Non-metals 253 59 10
Non-iron metals 40 230 2
Iron 19 36 313
Table S8.3b — Confusion Matrix for Commodity Classification (Level 2-1)
Other non-metals Coal
Other non-metals 89 25
Coal 15 79
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Table S8.3¢ — Confusion Matrix for Commodity Classification (Level 2-2)

Chalco- Alu- Cobalt
phile- L Chro- Lith- | Manga- Other . 1I- Tung- Ura-
related TnIum mium a}nd ium nese metals PGE Tin menite sten nium
(Bauxite) Nickel
metals
Chalcophile- 67 1 1 1 0 0 0 1 0 0 0 0
related metals
Aluminium 5 103 0 0 0 0 0 0 0 0 0 0
(Bauxite)
Chromium 1 0 101 0 0 1 2 0 0 0 0 0
Nickel  and 9 0 0 98 0 9 0 1 0 0 0 0
Cobalt
Lithium 1 0 0 0 104 1 0 0 0 0 0 0
Manganese 3 0 0 1 0 100 0 1 1 0 0 0
Other metals 6 0 0 1 0 6 102 0 0 0 0 0
PGE 2 0 2 1 0 2 0 101 0 0 0 1
Tin 2 0 1 0 0 0 0 0 103 0 0 0
Ilmenite 2 0 0 1 0 2 0 0 0 104 0 0
Tungsten 2 0 0 1 0 0 0 0 0 0 104 1
Uranium 6 0 0 0 0 0 0 0 0 0 0 101
Table S8.3d — Confusion Matrix for Commodity Classification (Level 3-1)
Copper Gold Lead Molybdenum Silver Zinc
Copper 69 21 1 0 0 3
Gold 19 69 9 1 0 0
Lead 8 5 84 0 4 2
Molybdenum 1 3 0 102 1 0
Silver 3 5 8 0 98 0
Zinc 4 1 2 1 1 99
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Table S8.4 Overall Confusion Matrix
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Table S8.5 User's Accuracy and Producer's Accuracy for 20 Commodities

Commodity User's Cl lower | CI upper Producer's | CIllower | CI upper
accuracy bound bound accuracy bound bound
Iron 85.05% 81.41% 88.70% 96.31% 94.26% 98.36%
Copper 73.40% 64.47% 82.34% 66.35% 57.26% 75.43%
Lead 81.55% 74.06% 89.04% 80.77% 73.19% 88.34%
Zinc 91.67% 86.45% 96.88% 95.19% 91.08% 99.30%
Gold 70.41% 61.37% 79.45% 66.35% 57.26% 75.43%
Silver 85.96% 79.59% 92.34% 94.23% 89.75% 98.71%
Chromium 96.19% 92.53% 99.85% 96.19% 92.53% 99.85%
Manganese 94.34% 89.94% 98.74% 82.64% 75.90% 89.39%
Molybdenum 95.33% 91.33% 99.33% 98.08% 95.44% 100.00%
Nickel and Cobalt 83.76% 77.08% 90.44% 94.23% 89.75% 98.71%
Tin 97.17% 94.01% 100.00% 99.04% 97.16% 100.00%
Tungsten 96.30% 92.73% 99.86% 100.00% 96.52% 100.00%
Aluminium (Bauxite) 95.37% 91.41% 99.33% 99.04% 97.16% 100.00%
Ilmenite 95.41% 91.49% 99.34% 100.00% 96.52% 100.00%
Lithium 98.11% 95.52% 100.00% 100.00% 96.52% 100.00%
PGE 92.66% 87.76% 97.56% 97.12% 93.90% 100.00%
Uranium 94.39% 90.03% 98.75% 98.06% 95.39% 100.00%
Other metals 88.70% 82.91% 94.48% 98.08% 95.44% 100.00%
Coal 84.04% 76.64% 91.45% 75.96% 67.75% 84.17%
Other non-metals 78.07% 70.47% 85.67% 85.58% 78.82% 92.33%
Overall accuracy
Accuracy CI lower bound CI upper bound
87.32% 86.15% 88.50%

Table S8.6a Commodity Classification Result (Polygons)

. Polygons (n)

Commodity Total Trained Predicted Connected Prop (Total)
Iron 5484 195 4946 343 14.29%
Copper 2427 264 1962 201 6.33%
Lead 1182 93 1015 74 3.08%
Zinc 437 13 399 25 1.14%
Gold 5021 528 4219 274 13.09%
Silver 832 57 712 63 2.17%
Chromium 216 12 189 15 0.56%
Manganese 1039 13 963 63 2.71%
Molybdenum 399 26 347 26 1.04%
Nickel and Cobalt 2112 64 1919 129 5.50%
Tin 208 4 183 21 0.54%
Tungsten 187 5 172 10 0.49%
Aluminium (Bauxite) 890 42 810 38 2.32%
Ilmenite 619 7 574 38 1.61%
Lithium 726 7 683 36 1.89%
PGE 766 34 678 54 2.00%
Uranium 925 26 858 41 2.41%
Other metals 721 15 667 39 1.88%
Coal 10553 386 9462 705 27.50%
Other non-metals 3626 150 3303 173 9.45%
ALL 38370 1941 34061 2368 100.00%
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Table S8.6b Commodity Classification Result (Areas)

. Area (Km?)

Commodity Total Trained Predicted Connected Prop (Total)
Iron 10160.24 3074.23 7006.56 79.45 10.21%
Copper 8429.79 4564.76 3799.22 65.81 8.47%
Lead 2651.65 314.73 2326.16 10.75 2.67%
Zinc 989.25 137.12 848.90 3.23 0.99%
Gold 18143.97 8429.68 9600.91 113.38 18.24%
Silver 920.94 169.18 741.31 10.45 0.93%
Chromium 572.06 51.44 519.95 0.67 0.57%
Manganese 1912.96 142.98 1759.93 10.05 1.92%
Molybdenum 740.22 155.42 572.31 12.49 0.74%
Nickel and Cobalt 4102.65 560.87 3507.94 33.84 4.12%
Tin 462.11 87.53 354.76 19.82 0.46%
Tungsten 364.91 4.47 357.72 2.72 0.37%
Aluminium (Bauxite) 2654.42 928.33 1679.19 46.90 2.67%
Ilmenite 840.60 70.12 766.64 3.84 0.84%
Lithium 1687.42 65.41 1610.74 11.27 1.70%
PGE 1250.69 169.85 1074.19 6.65 1.26%
Uranium 2217.32 227.62 1981.81 7.89 2.23%
Other metals 1534.72 326.11 1198.63 9.98 1.54%
Coal 28948.63 7224.28 21315.80 408.55 29.10%
Other non-metals 10908.44 4186.71 6661.93 59.80 10.96%
ALL 99492.95 30890.83 67684.58 917.54 100.00%

Table S8.7 External Validation Results for Selected Commodities

Mine points (n) Areas (km?)
Commodity Consistent | . All . Consistent | . All .
intersecting | Accuracy intersecting | Accuracy
areas . areas
points areas
Iron 175 330 53% 2728 3623 75%
Copper 140 195 72% 3496 3711 94%
Lead—zmc.(compared to 73 13 69% 461 567 R1%
lead and zinc)
Nickel ~(compared 125 160 78% 3485 3671 95%
nickel-cobalt)
423 721 59% 6693 9529 70%
Coal
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