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Section S1. Computational Complexity Comparison between ILP-based and Edge 
Betweenness Centrality (EBC)-based Sparsification 
 

In Table S1, we present a detailed comparison between the ILP-based sparsification approach 

and the classical Edge Betweenness Centrality (EBC) method. The ILP approach involves 

multiple computational steps, including neural network training, feature-based edge importance 

prediction, and hyperparameter optimization, leading to a complexity of 𝑂(𝑝 ⋅ 𝑘 ⋅ 𝐸 ⋅ 𝑛𝑓) , 

where 𝑝 is the number of hyperparameter search steps, 𝑘 is the number of training epochs, 𝐸 is 

the number of edges, and 𝑛𝑓 is the number of features. On the other hand, the EBC method 

relies purely on graph structure, calculating edge betweenness with a complexity of 𝑂(𝑛𝑚)and 

then removing high-centrality edges. Although both methods scale with the size of the graph, 

EBC is significantly more efficient for medium to large graphs due to the absence of learning 
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and hyperparameter tuning, making it more suitable for large-scale applications. Furthermore, 

EBC provides a more interpretable sparsification process based on the topological importance 

of edges, while ILP captures additional data-driven patterns at the cost of higher computational 

demand. 

 

Table S1. Comparison of Computational Complexity and Characteristics of ILP and EBC 
Sparsification Methods  

Step ILP  EBC (Edge Betweenness 

Centrality) 

Edge importance 

computation 

Neural Network prediction for all edges Betweenness Centrality computation 

Edge importance 

complexity 
𝑂(𝑛𝑓 ⋅ 𝐸)where 𝑛𝑓 is the number of input 

features, 𝐸 is the number of edges (per 

forward pass) 

𝑂(𝑛 ⋅ 𝑚) using Brandes’ algorithm 

(exact computation) 

Neural network 

training 
𝑂(𝑘 ⋅ 𝐸 ⋅ 𝑛𝑓) where 𝑘 is the number of 

epochs 

Not needed 

Modularity 

computation 

𝑂(𝑚) for each community modularity 

calculation 

Optional (used only if it measures 

quality, not needed for sparsification) 

Hyperparameter 

Search (for best-a) 
Typically, 𝑂(𝑝. (𝑘𝐸𝑛𝑓 + 𝑚) if 𝑝 with 

different 𝑎 values 

Not needed 

Total 𝑂(𝑝. (𝑘𝐸𝑛𝑓 + 𝑚) 𝑂(𝑛 ⋅ 𝑚) 

Edge removal 𝑂(𝐸) 𝑂(𝐸𝑙𝑜 𝑔 𝐸)sorting step for top edges) 

Node removal 

(isolates) 
𝑂(𝑛) 𝑂(𝑛) 

 

Section S2. Inverse Link Prediction (ILP) Sparsification Analysis at Multiple Threshold 
Levels 

Table S2 summarizes the network statistics obtained from applying ILP-based graph 

sparsification across a range of thresholds. The reported metrics include the number of 

remaining nodes and edges, node and edge reduction percentages, average degree, modularity, 

and the number of detected communities. The threshold refers to the cut-off applied to the ILP-

derived edge weights during sparsification. 

In this work, we selected three representative thresholds (0.90, 0.95, and 0.98) to systematically 

analyze the trade-off between network simplification and structural preservation. These 

thresholds represent distinct sparsification regimes, ranging from moderate to highly 

aggressive, allowing us to evaluate the flexibility and robustness of the proposed method. 

• Threshold = 0.90 (Moderate Sparsification): The network experiences a substantial 

edge reduction (~90.75%) and moderate node reduction (~28.36%) while maintaining 

an average degree of ~8.53 and a modularity of 0.85. This level is suitable for scenarios 

where it is essential to retain a considerable portion of the network's connectivity and 

community structure. 

• Threshold = 0.95 (Strong Sparsification): At this threshold, the network undergoes a 

more significant sparsification with ~96.97% edge reduction and ~47.78% node 

reduction. Despite the increased sparsification, modularity improves slightly to ~0.87, 

and the network still preserves a clear community structure. This stage is particularly 

useful for tasks focusing on community separation and reducing redundancy. 
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• Threshold = 0.98 (Aggressive Sparsification): In this highly aggressive setting, the 

network undergoes ~99.54% edge reduction and ~82.86% node reduction. Interestingly, 

the modularity continues to improve (up to ~0.94), emphasizing the contrast between 

communities even under severe sparsification. However, the average degree drops to 

~1.78, leading to a highly simplified network, which may be favorable for visualization, 

pattern extraction, or interpretability tasks. 

The trends associated with modularity improvement, node and edge reduction behavior, and 

average degree decay across all threshold levels are further illustrated in Figure S2, which 

shows how the network progressively evolves through the sparsification process. The figure 

demonstrates that while edge removal is highly effective, the ILP framework carefully 

preserves key nodes and community structures across different sparsification stages. 

Table S2. Network statistics after ILP-based sparsification across multiple thresholds. 

 
Threshold Remaining 

Nodes 

Remaining 

Edges 

Node 

Reduction 

(%) 

Edge 

Reduction 

(%) 

Average 

Degree 

Modularity Communities 

0.5 12016 246057 4.34 40.66 40.95 0.83 769 

0.8 10622 90148 15.44 78.26 16.97 0.84 683 

0.9 8999 38365 28.36 90.75 8.53 0.85 686 

0.91 8719 33245 30.59 91.98 7.63 0.85 685 

0.92 8360 28067 33.44 93.23 6.71 0.85 705 

0.93 7938 22914 36.80 94.47 5.77 0.86 706 

0.94 7414 17819 40.98 95.70 4.81 0.86 725 

0.95 6559 12548 47.78 96.97 3.83 0.87 748 

0.96 5179 7430 58.77 98.21 2.87 0.89 775 

0.97 3400 3780 72.93 99.09 2.22 0.92 726 

0.98 2153 1920 82.86 99.54 1.78 0.94 574 

0.99 1238 885 90.14 99.79 1.43 0.95 410 
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Figure S2. ILP outperforms EBC by preserving higher modularity, retaining more nodes, and achieving 
lower average degrees across all sparsification levels. 

 

 

Section S3. Explanation of Variables Used in the ILP-GCN Sparsification Algorithm 
 

All variables and notations used in the ILP-GCN sparsification algorithm are summarized in 

Table S3, which provides a detailed glossary explaining the meaning, type, and role of each 

variable involved in graph construction, link prediction, and sparsification. This table serves as 

a reference for understanding the pseudo-code and implementation details provided in Section 

2.2. 
 

Table S3. Glossary of Variables Used in the ILP-GCN Algorithm 
Variable Description Data Type Role 

G Input graph with nodes 

(V) and edges (E) 

NetworkX Graph Represents the MOF network before 

sparsification 

V Set of nodes List / Set Nodes correspond to MOFs 

E Set of edges List / Set of 

tuples 

Edges represent similarity links between 

MOFs 
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X Node feature matrix Float32 matrix 

of shape (n, f) 

Contains features of nodes, including 

fingerprints, metal descriptors, and 

geometric features 

ε Stability constant Float Small positive constant to avoid division 

by zero during inverse calculations 

α Normalization factor Float Scales ILP-GCN-derived weights 

γ Balance factor Float (0 ≤ γ ≤ 1) Balances between initial graph weights 

and ILP-GCN-derived weights 

Θ GCN parameters Tensor 

(trainable) 

Includes all learnable parameters of the 

GCN (weight matrices) 

S_GCN(e_ij) GCN-based link 

prediction score 

Float Predicts the existence probability of edge 

(i, j) 

I(e_ij) ILP weight Float Inverse of GCN prediction score to 

identify removable edges 

W_initial(e_ij) Original edge weight Float Derived from similarity scores (linkers 

and metal descriptors) 

W_ILP-

GCN(e_ij) 

ILP-GCN derived edge 

weight 

Float Weight based on inverse link prediction 

W_final(e_ij) Final edge weight Float Combined weight used for modularity 

optimization and sparsification 

T Threshold set List of floats Set of thresholds tested for sparsification 

(e.g., [0.90, 0.95, 0.98]) 

Removed_Edges List of removed edges List of tuples Edges removed during sparsification 

 

 

Section S4. Comparative Evaluation of ILP and EBC Sparsification 
 

In this section, we provide a direct comparison between the proposed Inverse Link Prediction 

(ILP) sparsification and the classical Edge Betweenness Centrality (EBC) method. To ensure a 

fair evaluation, we matched both methods according to similar edge reduction ratios (50%, 

80%, 90%, and 95%). Table S4 summarizes the key structural metrics including node 

reduction, edge reduction, modularity, and average degree. The results clearly demonstrate that 

ILP consistently achieves higher modularity values while preserving more nodes compared to 

EBC, particularly at higher sparsification levels. Moreover, ILP results in a more gradual 

reduction of the average node degree, preserving more of the network's connectivity structure. 

These findings confirm ILP's advantage in maintaining the structural and community integrity 

of MOF networks under different levels of sparsification. 

 

Table S4. Comparison of ILP and EBC Sparsification Results at Similar Edge Reduction Ratios 
Removal 

Ratio 

ILP 

Threshold 

ILP Node 

Reduction 

(%) 

EBC 

Node 

Reduction 

(%) 

ILP Edge 

Reduction 

(%) 

EBC 

Edge 

Reduction 

(%) 

ILP 

Modularity 

EBC 

Modularity 

ILP 

Avg 

Degree 

EBC 

Avg 

Degree 

0.5 0.50 4.34 36.57 40.66 50 0.83 0.75 40.95 52.05 

0.8 0.80 15.44 43.92 78.26 80 0.84 0.79 16.97 23.55 

0.9 0.90 28.36 51.32 90.75 90 0.85 0.81 8.53 13.56 

0.95 0.93 36.80 59.80 94.47 95 0.86 0.81 5.77 8.21 

 

The comparative effects of ILP and EBC sparsification on key network properties, including 

modularity, node reduction, and average degree under varying edge reduction levels, are 

summarized in Figure S4, demonstrating the advantages of ILP in preserving network structure 

while achieving effective sparsification. 
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Figure S4. Comparative evaluation of ILP and EBC sparsification showing that ILP better preserves 
modularity, node count, and average degree across different edge reduction levels. 
 

Section S5. Dataset Composition, Distribution, and Preprocessing 

S5.1 Dataset Overview 
The MOF dataset used in this study is extracted from the CSD MOF subset and includes a total 

of 14,296 experimentally validated MOFs. Each MOF is characterized by its organic linker, 

metal type, and key geometric descriptors, namely the Pore Limiting Diameter (PLD), Largest 

Cavity Diameter (LCD), and Largest Free Sphere (LFS). The dataset exhibits high structural 

diversity, featuring 53 unique metal types and 3,193 distinct linkers, covering a wide range of 

structural motifs relevant to MOF chemistry. The pore-related descriptors span from non-

porous to highly porous structures, with PLD ranging from 0.0 Å to 71.5 Å, LCD from 0.006 

Å to 71.64 Å, and LFS from -0.002 Å to 71.64 Å. 

A summary of the dataset's key statistics and structural characteristics is provided in Table 

S5.1, which serves as the foundation for constructing MOFGalaxyNet. 

 

Table S5.1. Summary of dataset composition and pore descriptor ranges. 
Property Value 

Total MOFs 14,296 

Number of unique metals 53 

Number of unique linkers 3,193 

PLD range 0.0 Å to 71.5 Å 
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LCD range 0.006 Å to 71.64 Å 

LFS range -0.002 Å to 71.64 Å 

 

S5.2 Distribution Characteristics 

The distribution analysis of key structural and compositional properties of the MOF dataset is 

summarized in Figure S5. As shown, the PLD, LCD, and LFS distributions exhibit heavy-tailed 

behavior, reflecting the coexistence of both microporous and mesoporous frameworks. The 

majority of MOFs possess pore-limiting diameters (PLD) below 10 Å, highlighting the 

dominance of small to medium pore structures. Furthermore, the distribution of metal types 

shows a skewed pattern, with transition metals such as Zn, Cu, Co, and Ni being the most 

frequently occurring, which is consistent with typical MOF synthesis trends. This distributional 

information confirms the structural diversity of the dataset, ensuring the generalizability of 

subsequent network analysis and machine learning tasks. 

  
(a) (b) 

  
(c ) (d) 

Figure S5: Distributions of pore sizes and metal occurrence highlighting the structural diversity of the 
MOF dataset.   

 

S5.3 Preprocessing 
To ensure the reliability and consistency of the dataset, we applied a systematic preprocessing 

procedure. First, MOFs with physically invalid pore descriptors (PLD, LCD, or LFS less than 

0 or below 0.01 Å) were treated as outliers and removed. Second, MOFs with missing essential 

information, such as linker SMILES or metal descriptors, were excluded. Finally, all pore-

related descriptors were normalized using Min-Max scaling to map them into the [0,1] range, 

making them suitable for network construction and machine learning tasks. This preprocessing 

step guarantees that the constructed MOFGalaxyNet is free from numerical artifacts and 

extreme values while retaining the structural diversity of the MOF dataset. 
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S5.4 Example of Raw Dataset 
Table S5.2 presents example entries from the MOF dataset used to construct MOFGalaxyNet, 

showcasing the structure of the raw data. Each MOF is identified by its unique CSD reference 

code and includes its linker in SMILES format, the associated metal type, and key geometric 

descriptors: Largest Cavity Diameter (LCD), Pore Limiting Diameter (PLD), and Largest Free 

Sphere (LFS). These examples illustrate the typical information extracted from the CSD MOF 

subset and used during graph construction and analysis. 

 

Table S5.2: Example MOF entries with linkers, metals, and pore descriptors from the CSD dataset. 
refcode linker SMILES metal LCD (Å) PLD (Å) LFS (Å) 

ABAVIJ OC(=O)c1ccncc1 Co 4.44 2.50 3.98 

ABAVOP OC(=O)c1ccncc1 Co 3.53 2.44 3.51 

ABAVUV OC(=O)c1ccncc1 Co 5.00 4.30 4.98 

 

S5.5 Link to Previous Study 

The MOF classes and pore size distributions are consistent with our previous work 1 (Jalali et 

al., Journal of Cheminformatics, 2023), confirming the generalizability of the selected subset. 
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