Supplementary Materials

Supplement to: J. Terstappen et al., 2025. Intranasal monoclonal antibodies do not prevent respiratory infection in a randomized, controlled experimental infection trial. *Npj Drug Discovery*.

This appendix has been provided by the authors to give readers additional information about the work.

Table of Contents

Section S1: Intranasal antibodies to prevent respiratory infections	3
Section S2: Methods	7
Sample size selection	Fout! Bladwijzer niet gedefinieerd
Study design	Fout! Bladwijzer niet gedefinieerd
Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)	Fout! Bladwijzer niet gedefinieerd
Tissue Culture Half Infectious Dose (TCID50) Assay	Fout! Bladwijzer niet gedefinieerd
Symptom scores	Fout! Bladwijzer niet gedefinieerd
Safety reporting	Fout! Bladwijzer niet gedefinieerd
Lung function quality scores	Fout! Bladwijzer niet gedefinieerd
Section S3: Supplementary Tables and Figures	
References	13

Section S1: Intranasal antibodies to prevent respiratory infections

Candidate	Description	Latest development	Studies					
			Study design	Dose	Administration	Results	Trial registration	
F61	mAb (IgG1) neutralizing SARS- CoV-2	Phase 1 and real-world study	Mice model: placebo- controlled challenge study	Single dose of 5-20 mg/kg two hours before challenge	Drops; 50 μL	Prophylactic effect observed for range of SAR-CoV-2 variants at 20 mg/kg dose ¹	N.A.	
		, and the second	Randomized, double-blind, placebo-controlled trial; n=2008 healthy adults; 7 day follow-up	Single or daily dose of 24 mg	Spray; 0·8mL/dose	Laboratory confirmed efficacy at day 7 was 3·8% in the one-dose cohort and 72·2% in the multiple dose cohort ²	3,4	
Palivizumab	mAb (IgG1) neutralizing RSV	Phase 1/2b	Mice model: challenge study	Single dose of 0.005- 0.5 mg/kg one to seven days before challenge	Drops; 50 μL	Intranasal palivizumab protected mice against RSV infection in a dose-dependent manner and this protection lasted at least 1 week ⁵	N.A.	
			Randomized, double-blind, placebo-controlled trial; n=268 healthy late-preterm infants; 1 year follow-up	Daily dose of 50 μg palivizumab (1 mg/mL) per nostril	Drops; 50 μL/dose	Any RSV infection in infants in palivizumab arm (18/47 (38·3%) was similar to placebo arm (11/47 (23·4%); aOR 2·2, 95% CI 0·7–6·5) ⁶	7,8	
BI-767551 DZIF-10c	mAb (IgG1) neutralizing SARS- CoV-2	Phase 1/2a	Mice model: isotype- controlled challenge study	Single dose of 40 mg/kg one day before challenge	Drops; max 30 μL into the lungs	No infection in the prophylactically treated arm versus high infectious titers in the isotype-controlled arm ⁹	N.A.	
			Open-label dose escalation trial rolled-over into randomized placebo-		Inhalation		10	

			controlled expansion cohort; n=45 healthy adults				
35B5	mAb (IgG1) neutralizing SARS- CoV-2	Phase 1	Pharmacokinetic study; n=30 healthy adults	Single dose of 1 mg/mL	Spray; volume unknown.	Single dose of 35B5 conveys exvivo neutralization of SARS-CoV-2 variants at least 24 hours after administration ¹¹ .	Clinical trial registration missing.
IGM-6268 IgM-14	mAb (IgM) neutralizing SARS- CoV-2	Phase 1	Mice model: Isotype- controlled challenge study	Single dose of 0·044-3·5 mg/kg six hours before challenge	Drops; 40-50 μL	Enhanced potency of IgM over IgG confirmation. Lung viral load after challenge reduced at least 5-fold compared to isotype arm ^{12,13}	N.A.
			Two randomized, double- blind, placebo-controlled trials; n=54 and 26; 60 day follow-up	1-7·5 mg once or twice per day for 5 days	Atomizer	Both trials were terminated by sponsor decision	14,15
RBD IgY	Chicken-derived IgY binding SARS-CoV-2	Phase 1	Mice and hamster model: placebo-controlled challenge study; 3-4 day follow-up	Mice: Single dose of 2 mg (100 mg/kg) 30 minutes before challenge. Hamsters: 1.7 mg (0·017 mg/kg) one day before challenge and twice daily for five days after challenge Syrian golden hamsters: 100 μL of 1 mg/50 mL of the 20 mg/mL solution per nare four hours before challenge.	Mice: 0·1 mL Hamsters: volume unknown. Syrian golden hamsters: 100 μL	Mice: >100-fold reduction in viral RNA in lungs and trachea compared with placebo ¹⁶ . Hamsters: RBD IgY treatment protected against significant weight loss and reduced viral load ¹⁷ . Syrian golden hamsters: No <i>in vivo</i> efficacy ¹⁸	N.A.

							T
			Randomized, double-blind,	2-8 mg once, twice or	Drops; 100	Similar safety events between RBD	19
			placebo-controlled trial;	three times daily (total	μL/drop	IgY and placebo groups 18	
			n=48; 21 day follow up	daily dose 2-24 mg)			
HH-120	IgM-like ACE2	Clinical trial	Single arm clinical trial;	5-8 doses of 2 mg/dose	Spray; 0·2 mL	Well tolerated and reduced the risk	21,22
	fusion protein	of unknown	n=14. Randomized, single-	per day for three		of SARS-CoV-2 infection in	
	neutralizing SARS-	phase	blinded, placebo-controlled	consecutive days post-		individuals with varying levels of	
	CoV-2		trial; n=268	exposure		exposure to the virus ²⁰ .	
IgG1	Human mAb	Clinical trial	Randomized, double-blind,	2 doses per nostril,	Spray; volume		23
Antibody	cocktail (IgG1)	of unknown	placebo-controlled trial;	three times daily for 7	unknown		
cocktail	against SARS-	phase	n=36; 14 day follow up	days			
	CoV-2						
MY-586	SARS-CoV-2 nAb	Clinical trial	Randomized, double-blind,	5 mg/mL; different	Spray; volume		24
		of unknown	placebo-controlled trial;	doses and intervals	unknown		
		phase	n=72; 1 year follow up				
CR9114	Pan-influenza mAb	Mice model	Mice model: placebo	Single dose of 0·2-5	100 μL	Complete reduction of weight loss	N.A.
PanFlu	targeting H5		controlled challenge study in	mg/kg 24 hours before		and mortality in both dose groups	
	hemagglutinin		naïve and immunized mice;	challenge		compared with placebo ²⁵ .	
			21 days follow-up				
			Randomized, placebo-				Trial
			controlled dose escalation				announced ²
			trial; n=75				
TriSb92	Trimeric antibody-	Mice model	Open-label untreated-	Single dose of 5-50 μg	Drops; 50 μL	Reduction in viral RNA in lung	N.A.
Covidin	mimetic		controlled challenge study;	(0·250-2·50 mg/kg) 1-8		tissue compared with untreated	
	sherpabody against		n=22; 2 day follow-up	hours before challenge.		controls ²⁷ .	
	SARS-CoV-2						
WKS13	mAb (IgG1)	Hamster	Mock-controlled challenge	Single dose of 500 μg	Drops; 100 μL	Significantly lower infectious viral	N.A.
	neutralizing SARS-	model	study; n=44; 4 day follow-up	(5 mg/kg) one day		titers in lung and nasal wash	
	CoV-2			before challenge			

						samples compared with control group ²⁸ .	
Anti-RSV Ig	Hyper-enriched anti-RSV IgG	Mice model	Isotype-controlled challenge study; n=8; 4-day follow-up.	Single dose of 0·1 or 1 mg/kg one day before challenge	50 μL	Full protection against RSV replication in the lungs with high dose and some protection at low dose ²⁹	N.A.
EU126-M2 Invisimask	SARS-CoV-2	Mice model	Untreated-controlled challenge study; 7-day follow-up.	Single dose of 25-200 µg (1·25-10 mg/kg) 10 hours before challenge*	40 mL*	Significant reductions in virus detection in both nose and lung areas 7 days after virus dosing ^{30*}	N.A.
M336	mAb (IgG1) neutralizing MERS-CoV	Rabbit model	Ig-controlled challenge study; 1-3-day follow-up.	Single dose of 1-10 mg/kg one day before challenge	0·2-2 mL	> 1000-9000 fold reduction in viral RNA titers compared with controls	N.A.
6F12	mAbs neutralizing influenza HA	Mice model	Ig-controlled challenge study; 14-day follow-up.	Single dose of 0·3-3 mg/kg 2-120 hours before challenge	Droplets or aerosol; volume unknown	Local administration is superior to systemic administration in a prophylaxis regimen ³² .	N.A.
Mab 62	mAb (IgG1) neutralizing influenza H7 strains	Mice model	Mock-controlled challenge study; n=20; 14-day follow- up.	Single dose of 2·5-10 mg/kg one day before challenge.	100 μL	Immunization with 2.5 mg/kg was sufficient for full protection against weight loss and mortality ³³ .	N.A.
DPJY01	mAb (IgA) neutralizing influenza H5 strains	Mice model	Isotype- and mock-controlled challenge study, 14-day follow-up.	Single dose of 10-50 mg/kg 24-72 hours before challenge	Drops; 50 μL	Full protection against mortality with 50 mg/kg 24-72 hours before challenge ³⁴ .	N.A.

Table S1. Intranasal mAbs in development to prevent respiratory infections.

Summary of mAbs in development for mucosal administration in the last 15 years to prevent respiratory infections. mAbs are ordered by development stage and then by publication year. If antibody dosing in animal models was not expressed as mg/kg, we calculated it assuming a mouse weighs 20 grams and a hamster weighs 100 grams. *study was not peer-reviewed as it was only published on bioRxiv. Abbreviations: aOR, adjusted odds ratio; Ig; immunoglobuline; mAb, monoclonal antibody; MERS-CoV, Middle-Eastern respiratory syndrome coronavirus; N.A., not applicable; nAb, neutralizing antibody; RBD, receptor binding domain; RNA, ribonucleic acid; RSV; respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ..., not available.

Section S2: Supplementary Tables and Figures

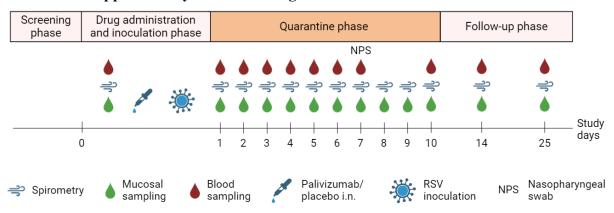


Fig. S1. Study Design.

After screening, participants were randomized 1:1 to palivizumab or placebo group (n=14 per group). Predose sampling included nasal and blood sampling as well as spirometry. One hour after drug administration, participants were challenged with 10⁴ PFU of RSV-A Memphis 37b and released for home-quarantine. During home-quarantine, participants logged their symptoms and temperature daily in symptom diaries. Research personnel performed daily home-visits for sample collection and spirometry. On day 7, participants were released from quarantine if their nasal pharyngeal swab tested negative on RSV. (Serious) adverse events were monitored throughout the entire study duration. i.n., intranasal; NPS, nasopharyngeal swab; PFU, plaque-forming unit; RSV, respiratory syncytial virus. Figure was created using Biorender.com.

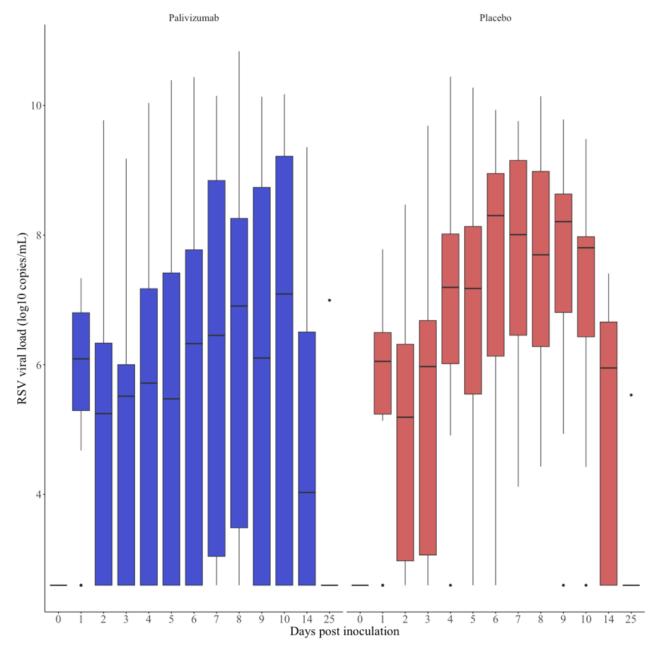


Fig S2. Boxplot of RSV viral copies/mL over time per treatment group.

The boxes in the plots represent the interquartile range (IQR), with the median marked by a line inside the box. The whiskers extend from the box to the minimum and maximum values. Outliers are depicted as individual points beyond the whiskers.

RSV status	n	Median AUC	1st quartile	3 rd quartile
Positive	24	9.57	7.99	10.22
Negative	4	4.30	3.68	4.78

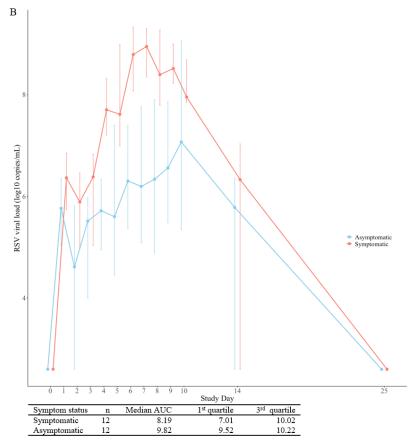


Fig. S3. Viral load per RSV and symptom status

Viral load per RSV and symptom status. Descriptive statistics of RSV copies/mL (log10) area under the curve from day 2-14 per treatment group are provided in the table. **A.** Viral load (median + IQR) over time for RSV positive and negative participants. **B.** Viral load (median + IQR) over time of symptomatic and asymptomatic RSV positive participants.

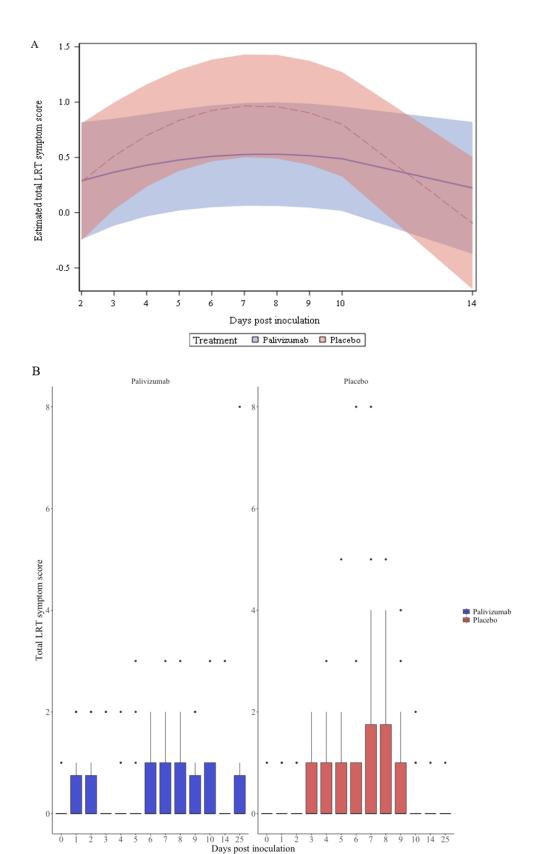
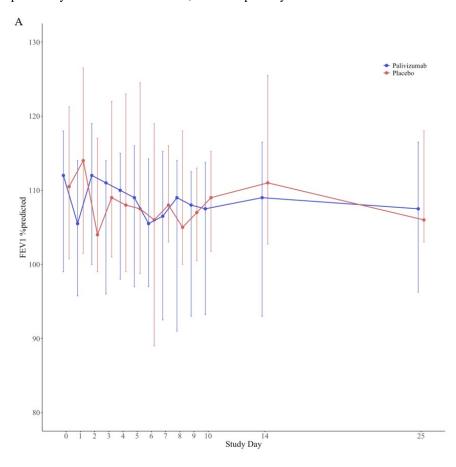
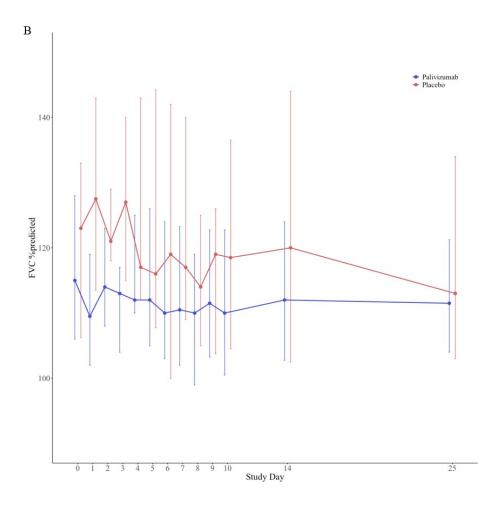




Fig. S4. Lower respiratory tract symptoms after RSV challenge

A. Mean estimates of regression model for lower respiratory tract symptom score on days 2-14 per treatment group (line with 95%CI in shaded area). No significant interaction was observed (p=0·07). Linear mixed model using treatment group, time of recording the symptoms, quadratic effect of the time of recording, interaction between treatment group, and time and interaction between treatment group and time squared as fixed effects, and intercept as random effect. B. Boxplot of daily lower respiratory tract symptom score over time per treatment group. The LRT total symptom score is the sum of the scores for all 5 LRT symptoms that were listed in the symptom diary and self-reported by participants once daily (see Supplementary material section S3). The score for each symptom ranged from 0 (absent) to 3 (severe). The boxes in the plots represent the interquartile range (IQR), with the median marked by a

line inside the box. The whiskers extend from the box to the minimum and maximum values. Outliers are depicted as individual points beyond the whiskers. LRT, lower respiratory tract.

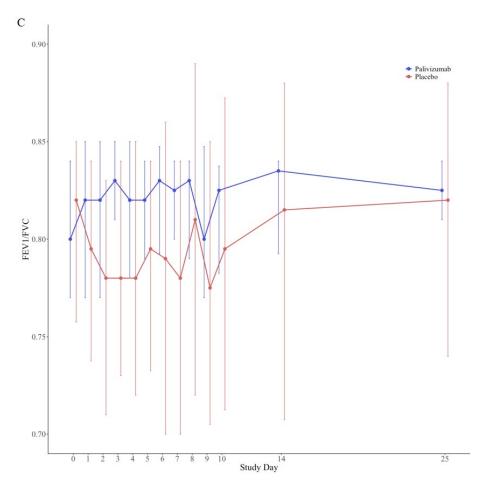


Fig. S5. Lung function over time per treatment group

A. FEV1 %predicted (median + IQR). FEV1 is the volume that has been exhaled at the end of the first second of forced expiration. FEV1 %predicted is the FEV1 value expressed as a percentage of the predicted value for participants age, sex, and height. **B.** FVC %predicted (median + IQR). FVC is the amount of air that can be forcibly exhaled from your lungs after taking the deepest breath possible. FVC %predicted is the FVC value expressed as a percentage of the predicted value for participants age, sex, and height. **C.** FEV1/FVC (median + IQR). Abbreviations: FEV1, forced expiratory volume; FVC, forced vital capacity.

References

- Lu, J. *et al.* Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. *Virol Sin* **37**, 238-247 (2022). https://doi.org/10.1016/j.virs.2022.02.005
- Liu, Y. *et al.* Human monoclonal antibody F61 nasal spray effectively protected high-risk populations from SARS-CoV-2 variants during the COVID-19 pandemic from late 2022 to early 2023 in China. *Emerg Microbes Infect* **13**, 2284297 (2024). https://doi.org/10.1080/22221751.2023.2284297
- 3 ChiCTR. ChiCTR2200066391. A randomized, double-blind, placebo-controlled clinical study initiated by researchers to evaluate the effectiveness and safety of F61 nasal spray in preventing SARS CoV-2 infection in the population closely contacted by SARS CoV-2 infected people. (2022).
- 4 ChiCTR. ChiCTR2200066841. Phase I clinical study to evaluate the safety, tolerance and pharmacokinetics of nasal spray of recombinant human anti COVID-19 monoclonal antibody (F61 nasal spray) in Chinese healthy subjects with different doses of single and multiple nasal sprays. (2022).
- Jacobino, S. R. *et al.* Human amniotic fluid antibodies protect the neonate against respiratory syncytial virus infection. *J Allergy Clin Immunol* **138**, 1477-1480 e1475 (2016). https://doi.org/10.1016/j.jaci.2016.06.001
- Mazur, N. I. *et al.* Daily intranasal palivizumab to prevent respiratory syncytial virus infection in healthy preterm infants: a phase 1/2b randomized placebo-controlled trial. *EClinicalMedicine* **66**, 102324 (2023). https://doi.org/10.1016/j.eclinm.2023.102324
- 7 DutchTrialRegister. NTR7378. Safety of intranasal palivizumab in healthy adult volunteers. (2018).
- 8 DutchTrialRegister. NTR7403. Nasal administration of palivizumab to prevent RSV infection. (2018).
- 9 Halwe, S. *et al.* Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. *Viruses* **13** (2021). https://doi.org/10.3390/v13081498
- 10 Clinicaltrials.gov. NCT04631705. SARS-CoV-2-Neutralizing Monoclonal COVID-19 Antibody DZIF-10c by Inhalation. (2020).
- Lin, Y. *et al.* Nasal Spray of Neutralizing Monoclonal Antibody 35B5 Confers Potential Prophylaxis Against Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern: A Small-Scale Clinical Trial. *Clin Infect Dis* **76**, e336-e341 (2023). https://doi.org/10.1093/cid/ciac448
- 12 Ku, Z. *et al.* Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. *Nature* **595**, 718-723 (2021). https://doi.org/10.1038/s41586-021-03673-2
- Yerabham, A. & Ho, M. A novel IgM intranasal intervention against SARS-CoV-2. *Antib Ther* **4**, 171-174 (2021). https://doi.org/10.1093/abt/tbab019
- 14 Clinicaltrials.gov. NCT05184218. Evaluation of IGM-6268 in Healthy Adults and Patients With Mild to Moderate COVID-19. (2022).
- 15 Clinicaltrials.gov. NCT05160402. Evaluation of IGM-6268 in Healthy Volunteers. (2021).
- Fan, W. *et al.* Nasal delivery of thermostable and broadly neutralizing antibodies protects mice against SARS-CoV-2 infection. *Signal Transduct Target Ther* 7, 55 (2022). https://doi.org/10.1038/s41392-022-00911-5
- Zhao, B. *et al.* Rapid development and mass production of SARS-CoV-2 neutralizing chicken egg yolk antibodies with protective efficacy in hamsters. *Biol Res* **57**, 24 (2024). https://doi.org/10.1186/s40659-024-00508-y
- Frumkin, L. R. *et al.* Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. *Front Immunol* **13**, 899617 (2022). https://doi.org/10.3389/fimmu.2022.899617
- 19 Clinicaltrials.gov. NCT04567810. Safety, Tolerability, and Pharmacokinetics of Anti-Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Chicken Egg Antibody (IgY) (COVID-19). (2020).
- Song, R. *et al.* Nasal spray of an IgM-like ACE2 fusion protein HH-120 prevents SARS-CoV-2 infection: Two investigator-initiated postexposure prophylaxis trials. *J Med Virol* **95**, e29275 (2023). https://doi.org/10.1002/jmv.29275
- 21 Clinicaltrials.gov. NCT05747677. A Study of HH-120 Nasal Spray in Close Contacts of Those Diagnosed With COVID-19. (2022).
- Clinicaltrials.gov. NCT05765279. A Study to Assess the Efficacy of HH-120 Nasal Spray for Prevention of SARS-CoV-2 Infection in Adult Close Contacts of Individuals Infected With SARS-CoV-2. (2022).
- Clinicaltrials.gov. NCT05358873. Efficacy and Safety of Nasal Spray Solution Containing Human IgG1 Anti-COVID-19 Antibody Cocktail. (2022).
- Clinicaltrials.gov. NCT05977101. The Safety and Tolerability of MY-586 COVID-19 Neutralizing Antibody Nasal Spray in Healthy Subjects. (2021).
- Beukenhorst, A. L. *et al.* A pan-influenza monoclonal antibody neutralizes H5 strains and prophylactically protects through intranasal administration. *Sci Rep* **14**, 3818 (2024). https://doi.org/10.1038/s41598-024-53049-5

- Labs, L. Leyden Labs' Intranasal PanFlu Antibody Enters the Clinic, < https://leydenlabs.com/20231904-news-item-intranasal-panflu-antibody-enters-the-clinic (2023).
- Makela, A. R. *et al.* Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants. *Nat Commun* **14**, 1637 (2023). https://doi.org/10.1038/s41467-023-37290-6
- Seow, H. C. *et al.* Neutralisation of SARS-CoV-2 by monoclonal antibody through dual targeting powder formulation. *J Control Release* **358**, 128-141 (2023). https://doi.org/10.1016/j.jconrel.2023.04.029
- Jacque, E. *et al.* Hyper-Enriched Anti-RSV Immunoglobulins Nasally Administered: A Promising Approach for Respiratory Syncytial Virus Prophylaxis. *Front Immunol* **12**, 683902 (2021). https://doi.org/10.3389/fimmu.2021.683902
- Zhang, H. *et al.* Intranasal administration of SARS-CoV-2 neutralizing human antibody prevents infection in mice. *bioRxiv* **2020.2012.2008.416677** (2020).
- Houser, K. V. *et al.* Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection. *J Infect Dis* **213**, 1557-1561 (2016). https://doi.org/10.1093/infdis/jiw080
- Leyva-Grado, V. H., Tan, G. S., Leon, P. E., Yondola, M. & Palese, P. Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. *Antimicrob Agents Chemother* **59**, 4162-4172 (2015). https://doi.org/10.1128/AAC.00290-15
- He, F. *et al.* Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. *Antiviral Res* **100**, 207-214 (2013). https://doi.org/10.1016/j.antiviral.2013.08.003
- Ye, J. *et al.* Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice. *Clin Vaccine Immunol* **17**, 1363-1370 (2010). https://doi.org/10.1128/CVI.00002-10