

Supplementary Information

Evaluating the performance of large language & visual-language models in cervical cytology screening

Qi Hong^{1, #}, Shijie Liu^{2, #}, Liying Wu^{3, #}, Qiqi Lu¹, Pinglan Yang³, Dingyu Chen³, Gong Rao², Xinyi Liu¹, Hua Ye¹, Peiqi Zhuang¹, Wenxiu Yang¹, Shaoqun Zeng², Qianjin Feng¹, Xiuli Liu^{2,*}, Jing Cai^{3,*}, Shenghua Cheng^{1,*}

¹School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China

²Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China

³Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

*Correspondence: chengsh2023@smu.edu.cn (S. Cheng), jingcai@hust.edu.cn (J. Cai), xliu@mail.hust.edu.cn (X. Liu)

26 **Supplementary Notes**

27 **Supplementary Note 1 Prompts used for dataset construction**

28 **a. Prompts used for QA dataset construction**

29 As a cytopathology researcher, you need to convert the following input text (mostly
30 declarative sentences) into multiple questions and answers.

31 **First, the question transformation phase:**

32 Objective:

33 Identify sentences describing cytology in the input text to create target statements,
34 typically describing smears, slides, single cells/cell groups, or patients. From these
35 descriptions, generate questions while retaining sentences that imply cytological
36 descriptions. For instance, a sentence like ‘Admixture of superficial and intermediate
37 squamous cells’ is primarily about the whole smear and thus should be retained.
38 Conversely, sentences serving educational purposes (describing certain cells or
39 metaplastic phenomena) should be omitted.

40

41 **(Context-Aware Prompting Criteria)**

42 Instructions:

43

- 44 • Omit descriptions related to histopathology: If text exclusively revolves around
45 histopathology, leave the output template entirely blank.
- 46 • Retain relevant input sentences: Do not use sentences assessing cell types or smear
47 types as question sources but retain them in the input information.
- 48 • Address sentences lacking subjects: Deduce the subject from context and integrate
49 it into the sentence.
- 50 • Resolve ambiguous pronouns: For sentences using pronouns like “these” without
51 clear reference, deduce and replace them with appropriate subjects.
- 52 • Extract main statements: For sentences beginning with “note” or imperative
53 clauses, focus on extracting the primary detail (e.g., about cell morphology).
- 54 • Remove irrelevant follow-up sentences: Omit sentences containing the word
55 “follow-up.”

56

57 **Second, converting target statements into questions:**

58 Initially, convert sentences into general inquiries, e.g., “The inset reveals a
59 characteristic superficial cell at high magnification.” becomes “Does the inset reveal a
60 characteristic superficial cell at high magnification?” Subsequently, convert these into
61 specific types of questions (What/When/How much/many/Whose/Which) based on the
62 components mentioned in the sentences.

63 For example:

64 “What does the inset reveal at high magnification?”

65

66 **(Specific Prompting)**

67 When converting text into questions:

68

- 69 • What-type questions: Extract any data or time entity at the start of the sentence and
use it as the response’s timing information.

70 • How much/many-type questions: Extract any numerical markers and use them as
 71 the quantity information.
 72 • Whose-type questions: Extract possessive pronouns and the subjects they refer to.
 73 • Which-type questions: Focus on phrases starting with prepositions indicating
 74 location.
 75 • What-type questions: Extract phrases or objects and use them as the subjects of the
 76 response.

77

78 (Few-shot Examples)

Type	Original Sentence	Question
What	The end of the long bone is expanded in the region of epiphysis.	What is expanded in the region of epiphysis?
Where	The left ventricle is on the lower right in this apical view.	Where is the left ventricle in this apical view?
When	After 1 year of abstinence, most scars are gone.	When are most scars gone?
How many	Two multi-faceted gallstones are present in the lumen.	How many gallstones are present in the lumen?
Whose	The tumor cells and their nuclei are fairly uniform.	Whose nuclei are fairly uniform?
How	The trabecular bone shows traceable osteoblastic activity.	How does the trabecular bone show traceability?

79

80 **Finally, generate answer and reason.**

81 (Output Format)

82 Generated Sentence Format:

83 Simplified Sentences (English):

84 1.

85 2.

86 ...

87 (Replace with a newline)

88 Questions (English, preferably no more than three pairs of questions/answers per input
 89 text, the generated question types should be yes/no general questions or What-type
 90 questions if possible):

91 1.

92 ...

93 (Replace with a newline)

94 Answers (English):

95 1.

96 ...

97 (Replace with a newline)

98 Issues to Report (Chinese, if any, answer in points):

99 1.

100 ...

101 (Replace with a newline)

102 Reason for Generating Sentences (Explain each question-answer pair, in points,
103 Chinese):

104 1.

105 ...

106 (Replace with a newline)

107

108 Notes:

109 1. If the information is insufficient, do not say anything else. Leave simplified
110 sentences, questions, answers, doubts, and reasons empty. Leave newlines as required;
111 otherwise, the program will read incorrectly.

112 2. There should be a new line between each paragraph and a new line between each
113 number in the paragraphs.

114 3. If there are no issues to report, leave it empty, do not write “None.”

115 4. Since each split/simplified sentence will be used as an independent question for
116 posing, if there are pronouns or transition words like “they,” “these,” “however,” and
117 “while” without context or clear antecedent, abandon that question. If this input text
118 can only pose that question, abandon the sentence.

119 5. Delete the parenthetical instructions in the output format.

120 (Reference Materials)

121 **### knowledge point:** {user input} <EOS>

122

123 **b. Prompts used for VQA dataset**

124 (Role-play Prompting)

125 As a cell pathology research specialist, you are tasked with transforming the text
126 provided (mostly declarative sentences) into several questions and answers. These
127 will be used to test the capabilities of a multimodal model in the field of cell pathology
128 through VQA (Visual Question Answering) assessments. Please adhere strictly to the
129 instructions provided in Section 4 without adding additional elements.

130

131 **Step One:** the question transformation phase

132 Objective

133 Identify sentences describing cytology in the input to create target statements,
134 typically describing smears, slides, single cells/cell types, or patients. From these
135 descriptions, generate questions while retaining sentences that imply cytological
136 descriptions. For instance, a sentence like “A mixture of superficial and intermediate
137 squamous epithelial cells is primarily about the whole smear and thus should be
138 retained.” Conversely, sentences serving educational purposes (describing certain
139 cells or metaphasic phenomena) should not be included.

140

141 Instructions

142 (Context-Aware Prompting Criteria)

143 1. Omit descriptions unrelated to histopathology; those are not relevant to
144 cytopathology. If all text revolves around this, leave the output template entirely
145 blank.

146 2. Do not use sentences assigning cell types or smear types as question sources, but
 147 retain them as input references.

148 3. For sentences lacking a subject, deduce the subject from the context and insert it
 149 into the sentence.

150 4. For sentences using pronouns like “these” without a clear reference, apply the same
 151 rule as above. Deduce and replace the pronoun based on the previous context.

152 5. For sentences beginning with “note” or imperative sentences, extract the main
 153 statement. If it only elaborates on cell morphology without descriptive details,
 154 default to omitting the statement.

155 6. Remove sentences containing the phrase “this explains.”

156

157 **Second:** converting target statements into questions

- 158 • Convert the sentence to a general interrogative sentence.
 159 For example: The inset reveals a characteristic superficial cell at high
 160 magnification. Does the inset reveal a characteristic superficial cell at high
 161 magnification?
- 162 • Then convert based on the components into specific interrogative sentences like
 163 Who/What/How many/Whose/Which, for example:
 164 What does the inset reveal at high magnification?

165

166 (Specific Rules)

- 167 • When-Type Questions: Extract date and time details from the sentence and use
 168 them as the answer’s time information.
- 169 • Where-Type Questions: Extract time periods from phrases like “in/around the point
 170 of” and use them as the answer’s time information.
- 171 • How Many/How-Type Questions: Extract numeric markers and use them as the
 172 answer’s quantity information.
- 173 • Whose-Type Questions: Extract the subject referred to by possessive pronouns and
 174 use them as the answer’s owner information.
- 175 • Which-Type Questions: Extract location information from phrases like “in the
 176 inset/where” and use them as the answer’s location information.
- 177 • What-Type Questions: Extract main objects and use them as the answer’s object or
 178 content information.

179

180 (Few-shot Examples)

Type	Original Sentence	Question
What	The inset reveals a characteristic superficial cell.	What does the inset reveal?
Where	Abnormal cells are present in the apical view.	Where are the abnormal cells located?
When	After staining, abnormal keratinocytes are seen.	When are abnormal keratinocytes observed?
How many	Three non-keratinized spindle cells were identified.	How many spindle cells were identified?
Whose	The spindle cell morphology was noted for its uniformity.	Whose morphology was noted for uniformity?
Which	In the image, the epithelial layers are disrupted.	Which layers are disrupted in the image?

181
182 (Output Format)

183 **Questions:** Write complete questions in English using various types, ideally starting
184 with “what,” “how,” etc.

185 **Answers:** Provide specific responses in English or “Yes/No” where applicable.

186 **Points of Inquiry:** Include any applicable inquiry details from the input.

187 **Rationale for Generated Sentences:** Explain step-by-step how each transformation
188 from text to question occurred.

189
190 Notes:

- 191 1. If required, write “Not for the citations, pieces of inquiry/questions, if there is a
192 need for a simpler template here.”
- 193 2. If the input text allows free-formulation of a question about “then,” “however,”
194 “when,” and other connective discourse sequences, questions to templates must
195 prioritize this. Skip template-valid datasets entirely.
- 196 3. Since I cannot send pictures, the absence of an accompanying image is not a
197 criterion for abandoning the question transformation.
- 198 4. Remove any bracketed text as per the output rules.

199
200 (Reference Materials)

201 **### Fig description:** {user input} <EOS>

202

203 **Supplementary Note 2 The system prompts used at the “request for answer” stage
204 of LLMs and LVLMs evaluation**

205 **a. The system prompt used at the “request for answer” stage of LLMs evaluation**

206 <BOS> You are a cytopathologist currently working with the cytopathologic notion of
207 cervical cancer and need to develop standardized answers to the questions below and
208 explain the reason.

- 209 • **Rule:** {rule}
- 210 • **Example:** {example}
- 211 • **Response Template:** {response-template}
- 212 • **Knowledge:** {knowledge}
- 213 • **Question:** {question}
- 214 • **Response:** {response}<EOS>

215

216 **b. The system prompt used at the “request for answer” stage of LVLMs
217 evaluation**

218 <BOS> You are a cytopathologist currently working with images of cervical cancer
219 cytopathology and need to develop a standard answer to these images and the questions
220 about them.

- 221 • **Rule:** {rule}
- 222 • **Example:** {example}
- 223 • **Response Template:** {response-template}
- 224 • **Knowledge:** {knowledge}

225 • **Image:** {image-token}
226 • **Question:** {question}
227 • **Response:** {response}<EOS>

228
229 **c. Rules**

230 **1) QA task**

231 Please use your common sense to make a judgment. Answer the question with a
232 conclusion that is supported by the knowledge you have, rather than giving a result
233 based on the tendency of the question, e.g., is it impossible for a human to turn into
234 another animal? This question may sound too absolute, but it is correct from the current
235 point of view. Cell location, if not specified, is usually in the cervical portion of the
236 uterus.

237
238 Whether the user input is a question or a statement, it needs to be answered as a question.
239 Although the question is generally in the form of “Does cell A have characteristic B?”
240 it is possible that the error is not only that the cells in the diagram do not have this
241 feature, but also that there are no cells of type A in the diagram at all, so you need to be
242 careful what you look for.

243
244 **2) VQA task**

245 When analyzing images, treat each image (large or small) independently as per the
246 instruction’s emphasis. Ignore letters like A, B, and arrows that are meant for
247 sequencing images and not relevant to cytopathological analysis. Unless otherwise
248 specified, cells are generally located in the cervical area. Whether the user’s input is a
249 question or a statement, it should be treated as a question and answered accordingly.

250 The image may contain arrows or other annotation symbols. Check if there are any
251 instructions regarding these symbols in the question; if not, ignore these symbols and
252 do not mistake them for cellular structures. For questions involving area, length, and
253 other physical dimensions, it is impossible to provide magnification parameters.
254 Therefore, the estimate is based on the normal size fluctuations of the cells or organelles
255 indicated in the question.

256
257 Each question is related to the input image; the answer is based on the image and does
258 not rely on general knowledge about the characteristics of this type of cell. Although
259 the question format is generally “Does cell A have feature B?” the error might not only
260 be that the cell in the image lacks this feature. It is also possible that cell A is not present
261 in the image at all, so careful observation is needed. Terms like “in this image,” “on this
262 (conventional/liquid-based) smear,” “on this cell,” “on this slide,” “in this sample,” “on
263 this background,” or “in this example” are all describing the input image.

264

265

d. Response templates and question-answer examples

	QA	VQA
Close	<p>Response template: {reason: "", answer: ""}</p> <p>Example: reason: The background is white, not black answer: Yes</p>	<p>Response template: {reason: "", answer: ""}</p> <p>Example: reason: The background is white, not black answer: Yes</p>
Open	<p>Response template: {reason: "", answer: ""}</p> <p>Example: reason: Explain your thought process and reason for your judgment. answer: Freely answer the question based on your knowledge of cervical cancer cytopathology images but remember you can explain the details of the reason and keep the answer as simple and short as you can.</p>	<p>Response template: {reason: "", answer: ""}</p> <p>Example: reason: Based on the image, the cytoplasm is close to the nucleus answer: Approximately 1</p>

266

267

e. knowledge

268

Common Guidance

269

270

271

272

If the question involves the subclass or classification of cells, please refer to The Bethesda System for Reporting Cervical Cytology: Definitions, Third Edition, for classification. The class types are Pos and Neg, and the following table is a reference for the common types of subclasses.

Classification	Description
Normal (NILM)	Negative (Neg). Normal cervical cell morphology, no abnormal cells.
Atypical Squamous Cells (ASC)	Positive (Pos). Mild abnormalities in cervical cell morphology, but not definitively diagnosed as LSIL or HSIL.
Atypical Squamous Cells of Uncertain Significance (ASC-US)	Positive (Pos). Mild abnormalities in cervical cell morphology, but LSIL or HSIL cannot be excluded.
Atypical Squamous Cells not excluding high-grade squamous intraepithelial lesions (ASC-H)	Positive (Pos). Moderate abnormalities in cervical cell morphology; possibly HSIL but not definitively diagnostic.
Low-grade squamous intraepithelial lesion (LSIL)	Positive (Pos). Moderate abnormalities in cervical cell morphology, but no involvement of the basement membrane.
High-grade squamous intraepithelial lesion (HSIL)	Positive (Pos). Severe abnormalities in cervical cell morphology and involvement of the basement membrane.
Squamous cell carcinoma (SCC)	Positive (Pos). Malignant cervical cell morphology, invasive.
Adenocarcinoma (AGC)	Positive (Pos). Cervical glandular epithelial cells are cancerous and invasive.

273

274

Fig description: {user input} <EOS> (Role-play Prompting)

275

276

Supplementary Note 3 Performance on private clinical dataset

277

278

To further assess the capability of LVLMs in real-world clinical scenarios and mitigate potential data contamination concerns from the TBS textbook, we constructed a private

279 VQA dataset using clinical pathological smear images collected from hospitals, along
280 with their cytomorphological descriptions and diagnostic interpretations. This private
281 dataset comprised 198 cervical cytology images with an equal distribution across three
282 diagnostic categories: ASCUS, HSIL, and LSIL. We created 99 close-ended and 99
283 open-ended question-answer pairs using the semi-automatic pipeline described earlier
284 (Fig. 1b). For close-ended tasks, we balanced the distribution of "yes" and "no"
285 answers, while for open-ended tasks, we generated cytomorphological feature
286 descriptions and TBS subclass classification questions. All questions and answers were
287 manually reviewed by experienced cytopathologists to ensure clinical accuracy.

288
289 For model testing on this private dataset, we made minimal adjustments to
290 accommodate the deprecation of some previously tested models. We used GPT-4o-
291 2024-05-13 (replacing GPT-4V) and Gemini 1.5 Pro (replacing Gemini pro vision),
292 selecting versions closest to the original models in release timing and performance.
293 ViLT, LLaVA, and Qwen-VL-Max maintained identical configurations to those used in
294 the CCBench evaluation. We disabled the network access of all internet-enabled model
295 APIs during the evaluation and kept the hyperparameters at their default settings to
296 reflect the actual capabilities of each model.

297
298 We evaluated the performance of four commercial LVLMs and one open-source LVLM
299 on this private dataset (Supplementary Fig. 1). For the close-ended questions, Gemini
300 achieved the highest accuracy (0.616), followed closely by GPT-4o (0.606) and Qwen-
301 VL (0.596), while LLaVA (0.485) performed below the random baseline (0.515). For
302 the open-ended questions, we employed the G-Eval methodology described earlier to
303 assess answer quality. Qwen-VL obtained the highest mean G-Eval score (0.579),
304 followed by GPT-4o (0.531) and Gemini (0.443), while LLaVA obtained the lowest
305 score (0.230). These results on the private clinical dataset largely aligned with our
306 findings on the CCbench dataset (Fig. 3c and Fig. 6e), confirming the robustness of our
307 evaluation methodology and the relative capabilities of the tested models in real-world
308 clinical applications.

309

310 **Supplementary Tables**

311 **Supplementary Table 1 The validity of the responses from different models.**

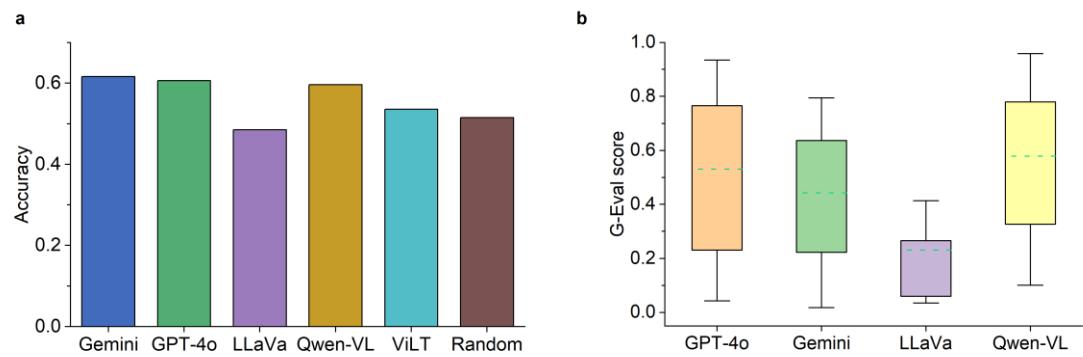
Model	Formatted Answer	Unformatted Answer		
		Blank	Unexpected return	Refuse to answer
LLM	Bard	415	3	
	Claude-2.0	284	134	
	GPT-4	418		
	LLaMa-2	403	4	11
	Qwen-Max	418		
LVLM	ERNIE-Bot-4.0	268	141	9
	Gemini	292	2	13
	GPT-4V	268	33	6
	LLaVA-1.5	260	47	
	ViLT	284	20	3
	Qwen-VL-max	259	47	1

312

313

Supplementary Table 2 Overview of LLMs and LVLMs.

	Model	Max Input Token	Max Output Token	Version
LLM	GPT-4	128k	4096	gpt-4-0125-preview
	Bard	8196	1024	chat-bison@002 ²
	Claude-2.0	100K	100K	claude-2.0
	Qwen-Max	8K	8K	qwen-max-0428
	ERNIE-Bot-4.0	5K	2K	ERNIE-4.0-Turbo-8K
LVLM	LLaMa-2	32K	32K	llama-2-13b-chat
	Gemini	16384	2048	Gemini 1.0 Pro Vision
	GPT-4V	128K	8K	gpt-4-1106-vision-preview
	Qwen-VL	8K	8K	Qwen-VL- Max
	ViLT	40	40	vilt-b32-finetuned-vqa
	LLaVA	4096	4096	llava-v1.5-vicuna-13b


Supplementary Table 3 Open-QA evaluation standard.

Scoring Item	Description	Scoring Details
Accuracy and Information Accuracy	Does the model's response match the standard answer or medical facts, ensuring accuracy?	<ul style="list-style-type: none"> Compared with the answer, the total score is 70 points. If the correct answer can be divided into points, start from a base score of 10 points. All points equally share the remaining 60 points, rounding up. If the answer is short, try to subdivide it into multiple points for scoring.
Completeness, Detail, and Explanation	Does the model provide all relevant information and explain the reasons for the answer?	<ul style="list-style-type: none"> Judged based on personal knowledge, the total score is 6 points. Incorrect explanations do not count. Logical explanations count, merely explaining terms do not count.
Logic Reasoning	Is the reasoning process logical and coherent?	<ul style="list-style-type: none"> Read each model's answer to judge, the total score is 6 points. Each logical discrepancy deducts 2 points.
Precision and Use of Medical Terminology	Does the model's response use precise medical terminology, avoiding ambiguity?	<ul style="list-style-type: none"> Judged based on personal knowledge, the total score is 6 points.
Risk Awareness	Awareness of any potential risks or uncertainties in the provided information.	<ul style="list-style-type: none"> Read each model's answer to judge, and a total score of 6 points.
Conciseness and Efficiency	The brevity of the model's reasons, avoiding unnecessary details while maintaining comprehensiveness.	<ul style="list-style-type: none"> Compare each model's reasons to judge, with a total score of 6 points. Compare the amount of irrelevant content in each model's answer. Compare the length of each sentence; the shorter, the better.

Supplementary Table 4 Open-VQA evaluation standard.

Scoring Item	Description	Scoring Details
Accuracy and Information Accuracy	Does the model's response match the standard answer or medical facts, ensuring accuracy?	<ul style="list-style-type: none"> Compared with the answer, the total score is 70 points. If the correct answer can be divided into points, start from a base score of 10 points. All points equally share the remaining 60 points, rounding up. If the answer is short, try to subdivide it into multiple points for scoring.
Completeness, Detail, and Explanation	Does the model provide all relevant information and explain the reasons for the answer? Does the explanation effectively incorporate the information provided in the image?	<ul style="list-style-type: none"> Judged based on personal knowledge, the total score is 6 points. Incorrect explanations do not count. Logical explanations count, merely explaining terms do not count.
Logic Reasoning	Is the reasoning process logical and coherent?	<ul style="list-style-type: none"> Read each model's answer to judge, the total score is 6 points. Each logical discrepancy deducts 2 points.
Precision and Use of Medical Terminology	Does the model's response use precise medical terminology, avoiding ambiguity?	<ul style="list-style-type: none"> Judged based on personal knowledge, the total score is 6 points.
Risk Awareness	Awareness of any potential risks or uncertainties in the provided information.	<ul style="list-style-type: none"> Read each model's answer to judge, and a total score of 6 points.
Conciseness and Efficiency	The brevity of the model's reasons, avoiding unnecessary details while maintaining comprehensiveness.	<ul style="list-style-type: none"> Compare each model's reasons to judge, with a total score of 6 points. Compare the amount of irrelevant content in each model's answer. Compare the length of each sentence; the shorter, the better.

323 **Supplementary Fig. 1**

324
325 **Supplementary Fig. 1 Performance of different LVLMs on the private clinical**
326 **dataset. a** Accuracy of different LVLMs on close-ended questions. **b** Distribution of
327 G-Eval scores for different LVLMs on open-ended questions. The data are presented as
328 boxplots and whiskers (min to max), with the upper and lower hinges representing the
329 25th and 75th percentiles, respectively. The dashed line denotes the average score.

330
331