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S1. EQUILIBRATION OF THE LIQUID

As discussed in the main text, our initial configuration before shear deformation starts is obtained by equilibrating
the liquid at a given temperature. Below, we show the mean squared displacement (MSD) and overlap function as
functions of time to demonstrate that the liquid has reached to equilibrium.
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FIG. S1. Plot of mean squared displacement (MSD) with time t for system size N = 5000 at different parent temperatures
(Tp) at densities (A) ρ = 0.681, (B) ρ = 0.750, (C) ρ = 0.855, (D) ρ = 0.943. The solid black line corresponds to the cut-off
parameter a2 = 0.2304.
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Mean squared displacement (considering the B-type particles only) is defined as :

∆r2(t) =
1

NB

NB∑
i=1

|r⃗i(t+ t0)− r⃗i(t0)|2, (S1)

where ri(t) is the position of the i-th particle at time t. The Mean Squared Displacement (MSD) is calculated by
averaging over 12 samples. We have conducted long MD simulation runs (with a duration of approximately 108 ) to
ensure that the MSD reaches the diffusive region for each temperature. The solid black line represents the value of
the cut-off parameter a2 = 0.2304, which we use to compute the overlap function, which is shown next.

Overlap function

The overlap function q(t) (considering the B-type particles only) is defined as :

q(t) =
1

NB

NB∑
i=1

w (|r⃗i(t0)− r⃗i(t+ t0)|) (S2)

where w(x) = 1.0 if x ≤ a and = 0 otherwise. Here a = 0.48 is chosen from the plateau value (a2 = 0.2304) of the
MSD curves. q(t) is calculated by averaging over 12 samples. Again, the decay of q(t) to zero ensures that we have
equilibrated all the liquids at their respective temperatures. The relaxation time (τα) is calculated at the time where
q(t = τα) =

1
e .
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FIG. S2. Plot of overlap function q(t) with time t at wide range of parent temperatures (Tp) at densities (A) ρ = 0.681, (B)
ρ = 0.750, (C) ρ = 0.855, (D) ρ = 0.943. The solid black line corresponds to q(t = τα) = 1

e
. System size N = 5000 for all

panels.

S2. INHERENT STRUCTURE ENERGY

After equilibration, we achieve the amorphous solid state by minimizing the liquid. We employ the Conjugate
Gradient method (CG) to minimize the liquid. These minimized configurations are referred to as inherent structure
configurations. At low temperature region inherent structure energy (EIS) varies with temperature (T) as : EIS =
a − b

T . Although this relation holds well at high density, this nature deviates for the lowest density ρ = 0.681. The
fitted data (along with fitting parameters) are plotted for all densities. EIS is calculated by averaging over 12 samples
at each temperature and density.
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FIG. S3. Plot of inherent structure energy EIS against temperature T for densities (A) ρ = 0.681, (B) ρ = 0.750, (C) ρ = 0.855,
(D) ρ = 0.943. Each curve is fitted at low temperatures via the equation: EIS = a−b/T . Only for the lowest density ρ = 0.681,
EIS shows deviation from 1/T behaviour.

S3. TMCT FOR DIFFERENT DENSITY

As discussed in the main text, we observe a change in shear response behavior around the Mode Coupling tempera-
ture. Here, we show how we compute TMCT for different densities. According to the Mode-Coupling theory, variation
of relaxation time (τα) with temperatures (T) is well described by a power-law form: τα = τ0(T − TMCT )

−γ , where
τα diverges at a critical temperature TMCT . In Fig. S4, we illustrate τα of the liquids as a function of T at different
density ρ along with MCT fits, and the corresponding fitted TMCT is also indicated within the figures.
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FIG. S4. Plots of τα extracted from the overlap function q(t), shown as a function of the temperature T on a semi-logarithmic
scale, for densities (A) ρ = 0.681, (B) ρ = 0.750, (C) ρ = 0.855, (D) ρ = 0.943. Each curve is fitted by equation : τα =
τ0(T − TMCT )

−γ . TMCT is shown for all ρ for system size N = 5000.

S4. STROBOSCOPIC ENERGY WITH CYCLES AT DIFFERENT DENSITIES

Next, we show how the stroboscopic energy E(γ = 0) evolves with the number of oscillatory shear cycles. Two
extreme temperature cases — highest T (represents poorly annealed glass) and lowest T (represents well-annealed
glass)—are considered within the studied temperature range for each ρ. Stroboscopic energy obtained from T = 0.0018
and T = 0.0005 at ρ = 0.681 are plotted for different values of strain amplitude (γmax) in Fig S5. At the lowest
density (ρ = 0.681), stroboscopic energies do not reach a perfect steady state even after thousands of cycles for a few
γmax in the poorly annealed case. Therefore, we fitted the E(γ = 0) vs Ncycle data using the stretched exponential

relation: E(Ncycle) = E0 + b exp

(
−
(

Ncycle

τ

)β
)

to extract the steady-state energies as well as the relaxation time,

τ , representing the number of cycles to reach the steady state. The dashed lines represent the fitted data. From the
fitting, we can extract τ , the relaxation time shown in the main text. Similarly, the variation of stroboscopic energies
with cycles at different γmax for the poorly annealed and well-annealed cases are also shown for ρ = 0.750, 0.8556, 0.943
in Fig. S6, S7, S8 respectively.
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FIG. S5. Plot of stroboscopic energies with cycles at different γmax at density ρ = 0.681 for (A) poorly annealed (T = 0.0018)
and (B) well annealed (T = 0.0005). The data are averaged over 12 samples for the system size N = 5000. Dashed lines through
the data set are fits to stretched exponential form. From fitting, we get the yield point is γy ≈ 0.065 for the poorly annealed
case. The yielding transition of the well-annealed sample is at γy ≈ 0.075.
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FIG. S6. Plot of stroboscopic energies with cycles at different γmax at density ρ = 0.750 for (A) poorly annealed (T = 0.0030)
and (B) well annealed (T = 0.00125). From fitting, we get the yield point of poorly annealed is at γy ≈ 0.065. The yielding is
at γy ≈ 0.08 for the well-annealed case.
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FIG. S7. Plot of stroboscopic energies with cycles at different γmax at density ρ = 0.855 for (A) poorly annealed (T = 0.0040),
(B) well annealed (T = 0.0022). The yield points of the poorly annealed and well-annealed cases are at γy ≈ 0.085 and
γy ≈ 0.115, respectively.
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FIG. S8. Plot of stroboscopic energy vs cycles at different γmax at density ρ = 0.943 for (A) poorly annealed (T = 0.0045),
(B) well annealed (T = 0.0030) and their corresponding yielding is at γy ≈ 0.095 and γy ≈ 0.125 respectively.

S5. TIMESCALE TO REACH THE STEADY STATE

Now, we show the relaxation time, τ , obtained from the fitting described above as a function of γmax. As γmax

approaches the yield point γy, the relaxation time to reach the steady state diverges. Although various mechanisms
have been proposed in the literature to explain how τ increases with γmax, we have observed that τ = a(γy − γmax)

−b

describes our data well. In Fig. S9, we show the relaxation time as a function of γmax for different densities, where
the dashed line represents the fit and the points represent the actual data from the simulation. Similar behaviour is
also observed, as discussed in the main text for the elastoplastic model we studied. The corresponding data is shown
in Fig. S10.
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FIG. S9. Simulation: Relaxation time τ to reach the steady state for different γmax for (A) ρ = 0.750, (B) ρ = 0.855, (C)
ρ = 0.943. Red dots correspond to actual data, and the dashed lines are the fit to the data.
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FIG. S10. Elastoplastic Model: Number of cycles required to reach the steady state for different γmax for (A) strong, (B)
intermediate, (C) fragile case. Red dots correspond to actual data, and the dashed lines are the fit to the data.


