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Note 1.ECE measurement

To overcome the challenges of uneven heat distribution during tests, we employ a method called
electrocaloric calorimetry, featuring in-situ calibration to tailor measurements of the electrocaloric
effect. This approach utilizes a reference electrode, integrated during fabrication via magnetron
sputtering, achieving a resistance near 15 ohms. The schematic shows two wires, labeled A and B,
connected to the lower electrode of the electrocaloric (EC) sample. The sample is situated on a Heat
Flux Sensor (HFS) cushioned by a thermo-conductive gel. A small voltage (Vrer) corresponding to
resistance R, is applied through wires A and B, allowing for the accurate computation of reference
heat using Joule's law.

U2
QRef = f ? dt

Further detailing the setup, a digital voltmeter, part of a combined system with a computer and
oscilloscope, reads the voltage across the reference electrode precisely. The reference heat(RH) thus
generated is detected as an electrical signal by the HFS. By calculating the heat flux signal, the ratio
of the sample's heat emission or absorption to the electrical signal area is determined. Subsequently,
high voltage (HV) is applied to the EC sample through leads B and C, causing the sample to either
release or absorb heat when the HV is toggled on and off. By correlating the EC signal with the
reference heat ratio, we can accurately capture the heat response of the sample under specific thermal
contact conditions with the sensor.
The quantity of heat absorbed by the EC material (AQ) is calculated by integrating the thermal flow
curve area. The adiabatic temperature change (A7) of the material is then computed using the
formula

AQ
Cgp*m

where AQ is the heat absorbed, cg is the material’s specific heat capacity and m is the mass of

the sample.
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Supplementary Figure 1. (a) Schematic of the measurement set-up; (b) The key signal involved to
calibrate the RH and ECE measurement in situ.



Supplementary Figure 2. Results of X-ray Diffraction (XRD) Rietveld structural refinement for BT-
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Supplementary Figure 3. Temperature dependence of dielectric properties of BT-xKN(x=0.015~0.085)
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Supplementary Figure 4. Fitting of data from BT-0.045KN ceramics above the transition temperature

to the modified Curie-Weiss law
-

Supplementary Figure 5. The second phase produced during the weaving process of BT-KN
ceramics due to potassium volatilization
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Supplementary Figure 6. (a) Scanning Electron Microscopy image of BT-0.05KN powder
morphology after pre-sintering; (b) Particle size distribution statistics.
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Supplementary Figure 7. Scanning electron microscope images of (a) B4T3012, (b) (001).-BaTiOs;
(c) B6T17040; (d) (111)c-BaTiOs3; (e) X-ray diffraction patterns of (001)c-BaTiO3 and (111).-BaTiO3

templates; (f) aspect ratio distribution.
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Supplementary Figure 8. Surface morphology and EDS of templates and corresponding precursors:
(a) (001)c-BaTiO3; (b) (111).-BaTiOs.
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Supplementary Figure 9. (a) P-E loops; (b) I-E curves and (c) electrostriction properties of Random,
<001>¢ and <111>¢ BT-KN texture ceramics
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Supplementary Figure S10. Specific heat capacity of BT-45KN ceramics measured during the
heating process.

Supplementary Table S1. XRD Rietveld refinement parameters for BT-xKN (x=0.015~0.085)
ceramics.

Sample  Density Space Phase a(d) bA) cA) a) BCE) v(C) Rw%)
(%) (g cm?) group content (%)

x=1.5 6.00 P4mm(T) 100 3.9971 3.9971 4.0284 90 90 90 6.13

x=2.5 5.99 P4mm(T) 86.4 4.0011 4.0011 4.0123 90 90 90 5.86

Amm2(0) 13.6 39776  5.7099 5.6793 90 90 90
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Supplementary Table S2. Physical parameters for BT-KN ceramics in the ECE testing.

Sample Density Active area Thickness
(g cm™) (mm?) (um)
Random BT-45KN 5.62 12.56 105
<001> Texture BT-45KN 5.58 12.56 98
<111>; Texture BT-45KN 5.64 12.56 112




