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[bookmark: _Toc179812122]Supplementary Figure 1. Chord diagrams and radar plots showing abnormal clinical variables of clusters obtained by different unsupervised methods. a, MiniBatchKMeans. b, K-means. c, Hierarchical Agglomerative Clustering (HAC). d, Balanced Iterative Reducing and Clustering using Hierarchies (Birch).
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[bookmark: _Toc179812123]Supplementary Figure 2. Correlation analysis diagram. a, Correlation analysis of arterial blood gas markers. b, Correlation analysis of liver markers. c, Correlation analysis of renal markers. d, Correlation analysis of erythrocyte markers.
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[bookmark: _Toc179812124][bookmark: _Hlk169633065]Supplementary Figure 3. Identification of genes as diagnostic biomarkers. a, Volcano plot generated to display the DEGs between sepsis patients and healthy controls. b, Venn diagram presenting the overlapping genes between CRGs, IRGs, and DEGs. c, The PPI network of intersection genes, applying a filter condition (combined score > 0.4). d, The heat map displaying the 17 DECRGs and DEIRGs. e-h, Pathway enrichment analysis shows the results of KEGG (e), GO biological pathway (f), GO cell (g), and GO molecular function (h) in 17 DECRGs and DEIRGs. P-value < 0.05 and FDR < 0.1 were considered as statistically significant thresholds. i, Identification of 7 DECRGs and DEIRGs using Lasso regression. 
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[bookmark: _Toc179812125]Supplementary Figure 4. Identification of genes as prognostic biomarkers. a, Volcano plot showing DEGs between septic survivors and non-survivors. The threshold for DEGs was set at P value < 0.05 and fold change > 1.2. b, The top ten GSEA enrichment analyses of DEGs and the adjusted P value of < 0.05 and FDR of < 0.25 were considered statistically significant. The blue represents down-regulation in sepsis survivors, while red represents up-regulation. c, Venn diagram illustrating the overlapping genes between DIC-related genes and DEGs. d, The PPI network of intersection genes, applying a filter condition (combined score > 0.4). e, Identification of 12 potential DIC-related DEGs using Lasso regression. f, Forest plot of prognostic-related DEGs based on stepwise multivariate Cox regression analysis (P-value<0.1). g, ROC curves generated to evaluate the predictive value of each biomarker. h, A nomogram to predict the 28-day survival probability of sepsis patients. i, ROC curves (AUC=0.7267) of the nomogram model in sepsis. j, Calibration curve evaluating the predictive ability of the nomogram model. k, DCA curve assessing the clinical value of the nomogram model.
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[bookmark: _Toc179812126]Supplementary Figure 5. Visualization of the bins for the variable purpose as created by the package scorecard. a-h, For non-discrete data within routine laboratory measurements, this study utilized chi-square binning to convert them into discrete data, aiming to enhance the sepsis predictors' capabilities of the model by fully extracting their latent information content. WOE (Weight of Evidence) was employed to describe the relationship between various routine laboratory measurements and patient prognosis, while IV (Information Value) reflected the strength of this relationship. It can be observed that INR and APTT both have IV values greater than 0.1, indicating their strong predictive power. In contrast, Platelet Count, Age, Neutrophils, and WBC have IV values ranging from 0.02 to 0.1, signifying moderate predictive capabilities. On the other hand, Lymphocytes and Monocytes exhibit IV values below 0.02, suggesting weak predictive abilities regarding patient prognosis.
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[bookmark: _Toc179812127][bookmark: _Hlk167718202]Supplementary Figure 6. Potential benefits of heparin in sepsis management. The figure is drawn by Biorender.
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[bookmark: _Hlk146098567]Supplementary Figure 7. Flowchart depicting the cohort selection process. a, Routine measurement cohort acquisition process for sepsis in local hospitals. b, Electronic health record dataset acquisition process for sepsis. c, The process of obtaining mRNA expression profiles for DIC-related genes in the database. d, the process of obtaining the mRNA expression profiling of genes from a local hospital.


[bookmark: _Hlk162600062][image: ]
Supplementary Figure 8. Schematic illustration of the working principle of SMART. When the doctor accesses the sepsis subphenotype and SMART platform, first enter the project address of the system correctly in the browser. Then, the browser will send a page request service to the server, and the server will find the file where the system is located according to the project address passed on by the browser. Subsequently, it can be converted into an HTML data stream and returned to the front-end browser for display to the user. Ultimately, the doctor will fill in the patient's clinical information into the system, and the system will calculate and return the three results to the doctor: score, risk level, and subphenotype.


[bookmark: _Toc179812128][bookmark: _Hlk163639122][bookmark: _Hlk164797201][bookmark: _Hlk164797042][bookmark: _Hlk164797113][bookmark: _Hlk164797018][bookmark: _Hlk164797069][bookmark: _Hlk164193646][bookmark: _Hlk164193579]Supplementary Table 1. Prognostic prediction performance of models based on the sepsis predictors.
	[bookmark: _Hlk163633973]Model
	MIMIC-III
	MIMIC-IV

	
	AUC
	ACC
	Specificity
	Sensitivity
	F1
	AUC
	ACC
	Specificity
	Sensitivity
	F1

	LR
	0.7895
	0.7203
	0.7123
	0.7281
	0.7256
	0.7956
	0.7104
	0.6947
	0.7324
	0.7247

	SGD
	0.7761
	0.7107
	0.7211
	0.7005
	0.7109
	0.7853
	0.7123
	0.6852
	0.7380
	0.7250

	SVM
	0.8408
	0.7666
	0.7666
	0.7504
	0.7656
	0.8539
	0.7791
	0.7846
	0.7738
	0.7826

	DT
	0.8990
	0.8287
	0.8011
	0.8554
	0.8353
	0.8946
	0.8228
	0.7763
	0.8667
	0.8340

	RF
	0.9067
	0.8540
	0.8211
	0.8554
	0.8519
	0.8964
	0.8395
	0.8172
	0.8511
	0.8449

	LSTM
	0.9111
	0.8584
	0.7833
	0.9312
	0.8698
	0.9026
	0.8470
	0.8248
	0.8679
	0.8535

	GRU
	0.9109
	0.8645
	0.8135
	0.9139
	0.8726
	0.9018
	0.8579
	0.8178
	0.8959
	0.8663

	GPT_1
	0.9183
	0.8829
	0.8252
	0.9208
	0.8847
	0.9068
	0.8680
	0.8533
	0.9015
	0.8736

	SepsisFormer
	0.9301
	0.8837
	0.8312
	0.9346
	0.8909
	0.9178
	0.8705
	0.8556
	0.9158
	0.8760
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[bookmark: _Toc179812129]Supplementary Table 2. Optimized Binning of continuous features.
	
	Unit
	Low Range
	Median Range
	High Range
	P value

	Age
	-
	<60 
	60-70 
	>70 
	<0.001

	Arterial Blood Gas

	Anion Gap
	mEq/L
	<8 
	8-16
	>16 
	<0.001

	Bicarbonate
	mEq/L
	<21.4 
	21.4-27.3
	>27.3 
	<0.001

	Calcium
	mg/dL
	<8.5 
	8.5-10.5
	>10.5 
	<0.001

	Chloride
	mEq/L
	<96
	96-108
	>108
	<0.001

	Glucose
	mg/dL
	<70 
	70-100
	>100 
	<0.001

	Potassium
	mEq/L
	<3.5
	3.5-5.5
	>5.5
	<0.001

	Sodium
	mEq/L
	<135
	135-145
	>145
	<0.001

	Hematocrit
	%
	<37
	37-54
	>54
	<0.001

	Hemoglobin
	g/dL
	<11 
	11-16.5
	>16.5 
	<0.001

	Lactate
	mmol/L
	<0.5
	0.5-1.7
	>1.7 
	<0.001

	pH
	-
	<7.35
	7.35-7.45
	>7.45
	<0.001

	Coagulation-inflammation

	INR
	-
	<0.8
	0.8-1.2
	>1.2
	<0.001

	PT
	sec
	<10
	10-12
	>12
	<0.001

	aPTT
	sec
	<24
	24-37
	>37
	<0.001

	Platelet count
	×109/L
	<125
	125-350
	>350
	<0.001

	[bookmark: _Hlk120269332]Lymphocytes
	×109/L
	<1.1
	1.1-3.2
	>3.2
	<0.001

	Monocytes
	×109/L
	<0.1
	0.1-0.6
	>0.6
	<0.001

	[bookmark: _Hlk120269590]Neutrophils
	×109/L
	<1.8
	1.8-6.3
	>6.3
	<0.001

	WBC
	×109/L
	<4
	4-10
	>10
	<0.001

	Basophils
	%
	<0.2
	0.2-0.8
	>0.8
	<0.001

	Eosinophils
	%
	<0.5
	0.5-3
	>3
	<0.001

	Renal

	Creatinine
	mg/dL
	<0.59 
	0.59-1.35
	>1.35 
	<0.001

	Urea Nitrogen
	mg/dL
	<7 
	7-20
	>20 
	<0.001

	Magnesium
	mg/dL
	<1.7 
	1.7-2.8
	>2.8
	<0.001

	Phosphate
	mg/dL
	<0.97 
	0.97-1.6
	>1.6
	<0.001

	[bookmark: _Hlk137811391]Liver

	ALT
	IU/L
	<8
	8-51
	>5
	<0.001

	ALP
	IU/L
	<30 
	30-120
	>120
	<0.001

	AST
	IU/L
	<10 
	10-40 u/L
	>40
	<0.001

	Bilirubin
	mg/dl
	<0.3 
	0.3-1.3
	>1.3
	<0.001

	Albumin
	IU/L
	<3.5
	3.5-5.5
	>5.5
	<0.001

	[bookmark: _Hlk137811397]Erythrocyte

	MCH
	pg
	<27
	27-34
	>34
	0.161

	MCHC
	%
	<32 
	32-36
	>36
	<0.001

	MCV
	fL
	<80
	80-102
	>102
	<0.001

	RDW
	%
	<11.5
	11.5-14.5
	>14.5
	<0.001

	RBC
	
	<3.5
	3.5-5.5
	>5.5
	<0.001


pH: potential Hydrogen, INR: International Normalized Ratio, PT: Prothrombin Time, aPTT: activated Partial Thromboplastin Time, WBC: White Blood Cell, ALT: Alanine Aminotransferase, ALP: Alkaline Phosphatase, AST: Aminotransferase, MCH: Mean Corpuscular Hemoglobin, MCHC: Mean Corpuscular Hemoglobin Concentration, MCV: Mean Corpuscular Volume, RDW: Red Cell Distribution Width, RBC: Red Blood Cell


[bookmark: _Toc179812130][bookmark: _Hlk164197638]Supplementary Table 3. Baseline characteristics of the MIMIC-III/IV.
	MIMIC-III
MIMIC-IV

	

	Non-survivors
(N=480)
(N=1137)
	Survivors
(N=1891)
(N=3054)
	All Data
(N=2371)
(N=4191)
	P value

	Age
	69(61-80)
68(58-78)
	64(54-74)
64(53-75)
	65(55-76)
65(54-76)
	<0.001
<0.001

	Arterial Blood Gas

	Lactate
	2.90(1.80-5.00)
2.20(1.50-3.60)
	2.20(1.50-3.30)
1.70(1.20-2.50)
	2.30(1.50-3.60)
1.80(1.30-2.80)
	<0.001
<0.001

	pH
	7.34(7.25-7.39)
7.35(7.28-7.42)
	7.34(7.32-7.41)
7.38(7.33-7.44)
	7.34(7.30-7.41)
7.38(7.31-7.43)
	<0.001
<0.001

	Anion Gap
	18(15-21)
16(13-19)
	16(14-19)
14(12-17)
	17(14-20)
14(12-17)
	<0.001
<0.001

	Bicarbonate
	22(18-26)
21(18-25)
	23(20-27)
24(21-27)
	23(20-27)
23(20-27)
	<0.001
<0.001

	Calcium
	8.1(7.4-8.8)
8.1(7.6-8.7)
	8.3(7.7-9.0)
8.2(7.7-8.7)
	8.3(7.6-9.0)
8.2(7.7-8.7)
	<0.001
<0.05

	Chloride
	102(97-107.25)
103(98-108)
	101(97-106)
104(99-108)
	101(97-106)
103(99-108)
	0.093
<0.05

	Glucose
	129(98-175)
125(96-163)
	129(103-179)
120(98-153)
	129(101-178)
121(98-156)
	0.077
0.091

	Potassium
	4.50(3.90-5.20)
3.80(2.90-4.90)
	4.30(3.80-4.90)
3.30(2.60-4.00)
	4.30(3.80-4.90)
3.40(2.70-4.20)
	<0.001
<0.001

	Sodium
	138(133-142)
138(134-142)
	138(134-141)
139(135-142)
	138(134-141)
138(135-142)
	0.366
<0.01

	Hematocrit
	32.30(28.88-37.75)
29.30(25.50-34.00)
	33.60(29.90-37.70)
28.60(25.30-32.70)
	33.40(29.60-37.70)
28.70(25.30-33.10)
	<0.05
<0.001

	Hemoglobin
	10.5(9.3-12.3)
9.5(8.3-11.0)
	11.0(9.7-12.6)
9.2(8.1-10.7)
	11.0(9.6-12.6)
9.3(8.2-10.8)
	<0.001
<0.01

	Renal

	Creatinine
	1.90(1.20-3.00)
1.50(0.90-2.60)
	1.40(1.00-2.60)
1.10(0.70-1.80)
	1.50(1.00-2.70)
1.20(0.80-2.00)
	<0.001
<0.001

	Urea Nitrogen
	40.00(26.00-60.25)
34.00(20.00-56.00)
	29.00(19.00-48.00)
24.00(15.00-40.00)
	31.00(20.00-50.00)
26.00(16.00-45.00)
	<0.001
<0.001

	Magnesium
	1.90(1.60-2.30)
2.00(1.80-2.30)
	1.80(1.60-2.10)
2.00(1.80-2.20)
	1.80(1.60-2.10)
2.00(1.80-2.20)
	<0.01
<0.001

	Phosphate
	4.00(3.20-5.30)
4.10(3.70-4.70)
	3.40(2.60-4.30)
4.00(3.60-4.40)
	3.50(2.70-4.50)
4.00(3.70-4.40)
	<0.001
<0.001

	Coagulation-inflammation

	PT
	15.70(13.90-20.82)
16.30(13.60-21.50)
	14.40(13.20-17.05)
14.00(13.00-17.70)
	14.60(13.20-17.75)
15.00(13.10-18.80)
	<0.001
<0.001

	aPTT
	33.80(28.30-42.38)
37.30(30.20-49.30)
	30.60(26.70-36.60)
33.10(28.80-41.78)
	31.10(27.00-37.60)
34.00(29.10-43.90)
	<0.001
<0.001

	INR
	1.50(1.27-2.20)
1.50(1.20-2.00)
	1.30(1.10-1.60)
1.30(1.20-1.60)
	1.30(1.20-1.70)
1.40(1.20-1.70)
	<0.001
<0.001

	Platelet count
	214.5(133.75-330.25)
155.0(86.00-247.00)
	233.0(156-332)
200.5(119-301)
	230(152-331)
189(110-286.5)
	<0.05
<0.001

	Lymphocytes
	0.86(0.44-1.45)
0.83(0.42-1.47)
	0.95(0.53-1.53)
0.86(0.47-1.47)
	0.92(0.52-1.52)
0.85(0.46-1.47)
	<0.05
0.086

	Monocytes
	0.44(0.23-0.76)
0.55(0.27-0.98)
	0.41(0.23-0.67)
0.53(0.29-0.89)
	0.42(0.23-0.69)
0.54(0.28-0.92)
	0.064
0.231

	Neutrophils
	11.18(6.47-17.02)
10.13(5.62-15.77)
	9.30(5.84-14.12)
8.56(5.39-12.73)
	9.64(5.92-14.64)
8.84(5.44-13.58)
	<0.001
<0.001

	WBC
	13.80(8.67-20.23)
12.60(7.70-19.00)
	11.7(7.7-17.0)
10.8(7.2-15.8)
	12.2(7.8-17.6)
11.2(7.3-16.6)
	<0.001
<0.001

	Basophils
	0.0(0.0-0.2)
0.1(0.0-0.3)
	0.1(0.0-0.3)
0.2(0.0-0.4)
	0.1(0.0-0.3)
0.1(0.0-0.3)
	<0.001
<0.001

	Eosinophils
	0.1(0.0-0.7)
0.2(0.0-1.0)
	0.4(0.0-1.3)
0.5(0.0-1.8)
	0.3(0.0-1.0)
0.4(0.0-1.6)
	<0.001
<0.001

	Liver

	ALT
	27(15-54)
29(17-64)
	25(15-52)
27(15-55)
	26(15-52)
27(16-58)
	0.147
<0.001

	ALP
	123(85-190)
109(75-176)
	107(75-152)
101(71-169)
	110(76-159)
104(72-170)
	<0.001
<0.01

	AST
	41.00(24.00-92.75)
52.00(27.00-112.00)
	33.00(21.00-68.00)
36.00(22.00-70.00)
	34.00(21.00-72.50)
39.00(23.00-79.00)
	<0.001
<0.001

	Albumin
	2.7(2.2-3.0)
2.6(2.2-3.1)
	2.9(2.6-3.4)
2.8(2.4-3.2)
	2.9(2.5-3.3)
2.7(2.3-3.2)
	<0.001
<0.001

	Bilirubin
	0.7(0.4-1.5)
0.9(0.5-3.1)
	0.6(0.3-1.1)
0.7(0.4-1.5)
	0.6(0.3-1.2)
0.7(0.4-1.8)
	<0.001
<0.001

	Erythrocyte

	MCH
	30.10(28.10-31.70)
30.30(28.60-32.00)
	30.00(28.50-31.70)
29.85(28.30-31.30)
	30.00(28.40-31.70)
30.00(28.40-31.50)
	0.670
<0.001

	MCHC
	32.60(31.40-33.60)
32.40(31.20-33.50)
	33.10(32.00-34.20)
32.40(31.40-33.50)
	33.00(31.90-34.10)
32.40(31.30-33.50)
	<0.001
0.191

	MCV
	92(86-97)
94(88-99)
	91(86-95)
92(87-96)
	91(86-96)
92(88-97)
	<0.01
<0.001

	RDW
	16.35(14.90-18.02)
16.70(15.10-18.70)
	15.40(14.20-17.00)
15.90(14.50-17.80)
	15.70(14.25-17.30)
16.10(14.60-18.10)
	<0.001
<0.001

	RBC
	3.58(3.10-4.10)
3.17(2.70-3.69)
	3.72(3.26-4.21)
3.14(2.74-3.63)
	3.70(3.23-4.19)
3.14(2.73-3.64)
	<0.001
0.575




[bookmark: _Toc179812131]Supplementary Table 4. Baseline characteristics of the eICU-CRD and Local ICU.
	eICU-CRD
Local ICU

	
	Non-survivors
(N=1101)
(N=117)
	Survivors
(N=4307)
(N=311)
	All Data
(N=5418)
(N=428)
	P value

	aPTT
	37.50(32.00-47.30)
45.30(38.70-53.70)
	34.00(29.60-40.60)
40.50(34.50-48.05)
	34.70(30.00-42.00)
41.65(35.38-49.40)
	<0.001
<0.001

	INR
	1.50(1.27-2.10)
1.41(1.28-1.55)
	1.30(1.11-1.60)
1.29(1.19-1.43)
	1.31(1.20-1.70)
1.31(1.23-1.47)
	<0.001
<0.001

	Platelet count
	170(97-243)
134(88-207)
	182(121-255)
140(89-212)
	178(116-254)
138(88-212)
	<0.001
0.954

	Lymphocytes
	0.76(0.43-1.28)
0.51(0.33-0.68)
	0.89(0.49-1.42)
0.55(0.38-0.73)
	0.86(0.48-1.40)
0.54(0.37-0.72)
	<0.001
0.148

	Monocytes
	0.67(0.32-1.13)
0.32(0.16-0.68)
	0.74(0.40-1.18)
0.49(0.26-0.74)
	0.72(0.38-1.17)
0.46(0.22-0.72)
	<0.001
<0.05

	Neutrophils
	11.56(6.47-17.76)
9.03(5.71-13.58)
	10.92(6.54-16.00)
10.51(6.24-15.48)
	11.00(6.54-16.29)
9.99(6.12-15.05)
	0.056
0.083

	WBC
	14.20(8.60-21.24)
9.80(6.33-15.43)
	13.50(8.60-19.29)
11.68(7.22-16.62)
	13.60(8.60-19.60)
11.02(6.96-16.25)
	<0.05
0.075

	Age
	69(58-78)
67(53-77)
	65(54-76)
67(55-75)
	66(55-76)
67(55-76)
	<0.001
0.664


[bookmark: _Hlk152924527][bookmark: _Hlk143245445][bookmark: _Hlk152250122][bookmark: _Hlk152329798]

[bookmark: _Toc179812132]Supplementary Table 5. To assess the optimal number of clusters for subtype analysis using sepsis predictors.
	Class number
	Silhouette score
	Davies-Bouldin score
	Calinski-Harabasz score

	2
	0.16
	2.38
	292.84

	3
	0.12
	4.06
	207.35

	4
	0.06
	4.28
	155.00

	5
	0.05
	4.16
	152.17

	6
	0.05
	4.24
	180.07

	7
	0.07
	4.56
	161.02

	8
	0.07
	5.52
	139.85

	9
	0.04
	5.02
	128.32


The Silhouette score, which indicates how similar a sample is to its assigned cluster, ranges from -1 to 1, with higher values (closer to 1) being preferred.
The Davies–Bouldin Score, which quantifies the average similarity between each cluster and its most similar cluster, ranges from zero onward, with lower values (closer to zero) being better.
Calinski–Harabasz score, the ratio between the within-cluster dispersion and the between-cluster dispersion, ranged from zero upward—higher values being better for a dataset.




[bookmark: _Toc179812133]Supplementary Table 6. Comparison of prognostic prediction performance: pre-trained SepsisFormer compared with other machine learning and deep learning models employing coagulation-inflammatory markers and age obtained from cohort 1 composed of eICU-CRD and MIMIC-III.
	Model
	AUC
	ACC
	Specificity
	Sensitivity
	F1

	LR
	0.6295
	0.5997
	0.6033
	0.5961
	0.5992

	SGD
	0.6304
	0.5981
	0.6012
	0.5950
	0.5979

	SVM
	0.6513
	0.6005
	0.5302
	0.6705
	0.6270

	DT
	0.7629
	0.6975
	0.6695
	0.7253
	0.7065

	RF
	0.7545
	0.6861
	0.6498
	0.7221
	0.6979

	LSTM
	0.8249
	0.7524
	0.7261
	0.7783
	0.7600

	GRU
	0.8140
	0.7804
	0.7972
	0.8116
	0.7879

	GPT_1
	0.8225
	0.7590
	0.6636
	0.8533
	07807

	SepsisFormer
	0.8558
	0.8337
	0.7398
	0.9264
	0.8487



[bookmark: _Hlk164197509]

[bookmark: _Toc179812134]Supplementary Table 7. Comparison of prognostic prediction performance: fine-tuned and validated SepsisFormer, other machine learning, and deep learning models employing coagulation-inflammatory markers and age obtained from external cohort 2 and cohort 3, collected from MIMIC-IV and Local ICU, respectively.
	Model
	MIMIC-IV
	Local ICU

	
	AUC
	ACC
	Specificity
	Sensitivity
	F1
	AUC
	ACC
	Specificity
	Sensitivity
	F1

	LR
	0.7173
	0.6525
	0.6367
	0.6674
	0.6636
	0.7034
	0.6471
	0.7356
	0.5700
	0.6333

	SGD
	0.7211
	0.6657
	0.6343
	0.6954
	0.6812
	0.7020
	0.6257
	0.7701
	0.5000
	0.5882

	SVM
	0.7147
	0.6611
	0.5254
	0.7895
	0.7053
	0.7444
	0.6952
	0.7011
	0.6900
	0.7077

	DT
	0.7912
	0.7363
	0.7078
	0.7626
	0.7030
	0.7760
	0.7273
	0.7701
	0.6900
	0.7302

	RF
	0.8039
	0.7560
	0.7138
	0.7581
	0.7615
	0.7942
	0.7112
	0.7931
	0.6400
	0.7033

	LSTM
	0.8121
	0.7514
	0.6852
	0.8141
	0.7709
	0.8007
	0.7380
	0.6667
	0.8000
	0.7656

	GRU
	0.8157
	0.7693
	0.7172
	0.8186
	0.7848
	0.8336
	0.7433
	0.7128
	0.7742
	0.7500

	GPT_1
	0.7914
	0.7405
	0.6769
	0.8007
	0.7602
	0.8250
	0.7487
	0.7340
	0.7634
	0.7513

	SepsisFormer
	0.8596
	0.8247
	0.7037
	0.9312
	0.8497
	0.8364
	0.7754
	0.7093
	0.7940
	0.7701





[bookmark: _Toc179812135]Supplementary Table 8. Comparison of prognostic prediction performance: SepsisFormer in septic patients using coagulation-inflammatory markers and age obtained from the Local ICU cohort under different domain adaptation methods.
	Method
	AUC
	ACC
	[bookmark: _Hlk147499255]Specificity
	Sensitivity
	F1

	No-adaptation
	0.8364
	0.7754
	0.7093
	0.8317
	0.8000

	Mean-teacher
	0.8014
	0.7594
	0.8046
	0.7200
	0.7619

	Whitening
	0.8091
	0.7807
	0.8046
	0.7600
	0.7876

	Moment Matching
	0.8374
	0.7540
	0.7558
	0.7525
	0.7677

	MMID
	0.8540
	0.7914
	0.7209
	0.8515
	0.8152




[bookmark: _Toc179812136]Supplementary Table 9. Different roles of the diagnostic genes.
	Genes
	Description
	Function

	CD59
	CD59 Molecule
	Potent inhibitor of the complement membrane attack complex action

	CD59
P2RX1
	CD59 Molecule
Purinergic Receptor P2X 1
	Prevents hemolysis

	
	
	Correlates with the severity of organ damage assessed by SOFA in septic patients

	
	
	Involves c-SRC-related tyrosine phosphorylation of the creatine transporter in skeletal muscle during sepsis

	
	
	Enables extracellularly ATP-gated monoatomic cation channel activity

	P2RX1
CFD
	Purinergic Receptor P2X 1
Complement Factor D
	Promotes neutrophil glycolysis and NETs formation

	
	
	Proteases catalyze the cleavage of factor B, the rate-limiting step of the alternative pathway of complement activation

	CFD
SERPINB2
	Complement Factor D
Serpin Family B Member 2
	Inhibits the activation of complement, neutrophils, and platelets

	
	
	Inhibits urokinase-type plasminogen activator

	SERPINB2
	Serpin Family B Member 2
	Appearance in plasma was associated with non-survival of the septic patient

	
	
	Regulates immune response in renal injury and aging

	
	
	Links to cellular senescence, inflammation, and coagulation

	
	
	




[bookmark: _Toc179812137]Supplementary Table 10. 28-day survival predicted results and actual results Kappa value.
	
	Kappa
	Asymptotic standard error
	z
	P value

	Linear
	0.266
	0.037
	6.841
	<0.001




[bookmark: _Toc179812138]Supplementary Table 11. Different roles of the prognostic genes.
	Genes
	Description
	Function

	STAT5B
	Signal transducer and activator of transcription 5B
	Involves the JAK/STAT signaling pathway

	
	
	Positively regulates hematopoietic differentiation, including B cells, T cells, NK cells, erythroid cells, and megakaryocytic cells

	
	
	Endotoxin attenuates growth hormone-induced hepatic insulin-like growth factor I expression by inhibiting JAK2/STAT5 signal transduction and STAT5b DNA binding

	
	
	Hyperactivation of STAT5B is associated with the development of various blood malignancies, tumors and a syndrome of severe allergic inflammation

	
	
	Mutations in the STAT5B gene are associated with autoimmunity and immunodeficiency

	MTHFR
	Methylenetetrahydrofolate reductase
	Polymorphism of MTHFR is associated with the activation of the coagulation system, disease susceptibility, and sepsis

	
	
	Both low and excessive expression can worsen MTX-induced myelosuppression

	HPSE
	Heparanase
	Acts as procoagulant by increasing the generation of activation factor X in the presence of tissue factor and activation factor VII

	
	
	Compromises the endothelial glycocalyx

	
	
	Affects activities of several types of innate immunocytes

	
	
	Promotes inflammation and virus replication to promote cell and tissue damage

	
	
	Enhances tumor progression, size, metastasis, and angiogenesis

	AAK1
	AP2-associated kinase 1
	Restrains the coagulation response

	
	
	Expresses in mononuclear cells, T lymphocytes, and NK cells, mediating virus endocytosis and promoting inflammatory response

	MX1
	MX dynamin like GTPase 1
	Interferon-induced dynamin-like GTPase with antiviral activity against a wide range of RNA viruses and some DNA viruses


[bookmark: _Hlk150538661][bookmark: _Hlk147947489]

[bookmark: _Toc179812139]Supplementary Table 12. To assess the optimal number of clusters for subphenotype analysis using coagulation-inflammatory markers and age.
	Class number
	[bookmark: _Hlk138669524]Silhouette score
	Davies-Bouldin score
	Calinski-Harabasz score

	2
	0.52
	1.03
	2877.16

	3
	0.48
	2.34
	1672.61

	4
	0.30
	2.03
	1792.53

	5
	0.28
	3.00
	1355.92

	6
	0.27
	2.45
	1141.57

	7
	0.23
	3.49
	992.48

	8
	0.24
	2.77
	979.37

	9
	0.20
	2.62
	952.58


Silhouette score, a measure of how similar a sample is to its cluster, ranged from -1 to 1—values closer to 1 being better.
Davies–Bouldin Score, a measure of the average similarity of each cluster with its most similar cluster, ranged from zero upward—values closer to zero being better. 
Calinski–Harabasz score, the ratio between the within-cluster dispersion and the between-cluster dispersion, ranged from zero upward—higher values being better for a dataset.


[bookmark: _Toc179812140][bookmark: _Hlk170467262]Supplementary Table 13. Comparison of clinical characteristics between subphenotypes of patients with sepsis.
	MIMIC III
MIMIC IV
eICU-CRD
Local ICU

	Cluster (patient number)
	CIS1 (N=1973)
CIS1 (N=3347)
CIS1 (N=4360)
CIS1 (N=366)
	CIS2 (N=398)
CIS2 (N=844)
CIS2 (N=1058)
CIS2 (N=62)
	P value

	aPTT(s)
	30.20(26.60-35.60)
32.20(28.40-38.70)
33.50(29.20-39.00)
40.40(34.50-46.80)
	42.50(31.82-71.60)
56.15(39.00-76.90)
44.45(34.80-64.00)
55.80(46.03-68.72)
	<0.001
<0.001
<0.001
<0.001

	INR
	1.30(1.10-1.60)
1.30(1.20-1.60)
1.30(1.10-1.60)
1.30(1.22-1.45)
	1.70(1.30-2.50)
1.70(1.30-2.40)
1.60(1.30-2.50)
1.43(1.29-1.72)
	<0.001
<0.001
<0.001
<0.001

	Lymphocytes
(×109/L)
	0.92(0.52-1.48)
0.81(0.43-1.38)
0.81(0.46-1.30)
0.53(0.37-0.71)
	0.94(0.50-1.78)
1.09(0.59-1.81)
1.11(0.61-1.89)
0.61(0.39-0.93)
	0.156
<0.001
<0.001
<0.05

	Monocytes
(×109/L)
	0.39(0.22-0.62)
0.50(0.26-0.83)
0.67(0.36-1.07)
0.44(0.22-0.70)
	0.66(0.28-1.51)
0.79(0.39-1.46)
1.04(0.55-1.73)
0.52(0.24-1.02)
	<0.001
<0.001
<0.001
0.193

	Neutrophils
(×109/L)
	9.34(5.82-13.93)
8.52(5.30-12.80)
10.51(6.32-15.44)
10.95(1.15-38.12)
	11.47(6.66-20.08)
10.79(6.30-16.92)
14.05(8.28-21.02)
15.73(1.43-71.53)
	<0.001
<0.001
<0.001
<0.01

	WBC
(×109/L)
	11.70(7.60-16.50)
10.70(6.90-15.50)
12.72(8.20-18.10)
10.69(6.94-15.58)
	16.65(9.60-26.65)
14.40(8.97-21.80)
18.30(11.70-26.16)
14.55(8.11-24.41)
	<0.001
<0.001
<0.001
<0.01

	Platelet count
(×109/L)
	231.00(156.00-331.00)
198.00(119.00-300.00)
178.00(120.00-250.00)
144.00(96.00-218.25)
	215.50(130.00-343.75)
146.00(83.75-234.00)
178.00(101.25-274.00)
108.00(48.25-164.25)
	0.147
<0.001
0.812
<0.001

	Age
	66(58-77)
68(58-78)
68 (59-78)
69(60-77)
	58(43-68)
53(41-64)
51(34-64)
46(33-53)
	<0.001
<0.001
<0.001
<0.001



[bookmark: _Hlk154392851]

[bookmark: _Toc179812141]Supplementary Table 14. SIRI values of the four study cohorts.
	
	MIMIC-III
	MIMIC-III
	eICU-CRD
	Local ICU

	Subphenotype

	CIS1
	3.52(1.58-7.94)
	4.78(1.98-10.37)
	7.81(3.38-16.31)
	8.14(3.31-16.73)

	CIS2
	5.81(2.00-26.05)
	6.95(2.74-16.77)
	11.66(4.60-25.70)
	8.77(2.73-24.54)

	P value
	<0.001
	<0.001
	<0.001
	<0.001

	Risk level

	Mild
	1.85(1.04-2.99)
	2.21(1.22-4.34)
	3.36(1.67-6.48)
	1.78(1.34-6.72)

	Moderate
	3.43(1.74-7.48)
	4.44(2.07-8.77)
	6.61(3.00-12.77)
	5.36(2.69-10.73)

	Severe
	6.63(2.37-16.10)
	7.30(2.91-16.06)
	11.16(4.91-22.67)
	11.31(3.90-22.08)

	Dangerous
	20.93(2.09-59.26)
	26.56(14.65-55.47)
	24.58(12.82-44.46)
	24.94(16.10-39.92)

	P value
	<0.001
	<0.001
	<0.001
	<0.001


SIRI= (Neutrophil count × Monocyte count) / Lymphocyte count


[bookmark: _Toc179812142]Supplementary Table 15. Association of heparin with survival rate and days of survival in patients with subphenotypes combined with risk stratification.
	Subgroup
	Heparin
	Control
	
	
	
	P value

	CIS1_Mild
	90.14%
(64/71)
	93.12%
(176/189)
	-2.98%
	10.76
	8.00
	0.9992

	CIS1_Moderate
	80.05%
(337/421)
	78.66%
(1102/1401)
	1.39%
	11.31
	9.00
	<0.001

	CIS1_Severe
	66.38%
(152/229)
	63.80% (624/978)
	2.58%
	10.92
	8.00
	<0.001

	CIS1_Dangerous
	50.00%
(3/6)
	46.15%
(24/52)
	3.85%
	1.30
	3.00
	0.8267

	CIS2_Mild
	95.65%
(22/23)
	96.08%
(49/51)
	-0.43%
	4.60
	6.00
	0.8523

	CIS2_Moderate
	80.00%
(80/100)
	75.23%
(164/218)
	4.77%
	15.88
	10.50
	<0.05

	CIS2_Severe
	70.33%
(64/91)
	53.46%
(170/318)
	16.87%
	8.28
	9.00
	<0.001

	CIS2_Dangerous
	100.00%
(5/5)
	47.37%
(18/38)
	52.63%
	12.19
	22.50
	<0.05





[bookmark: _Toc179812143]Supplementary Table 16. SepsisFormer parameter setup.
	Input predictor
	36/8

	Dense layer1
	216/66/48

	Dense layer2
	36/8

	Number of attention heads
	8

	Head dimension
	36/8

	Batch size
	200

	Drop ratio
	0.1




[bookmark: _Toc179812144]Supplementary Table 17. Primer sequences for real-time polymerase chain reaction.
	Primer name
	Primer sequence (5ʹ to 3ʹ)

	GAPDH-F
	CAGGGCTGCTTTTAACTCTGGT

	GAPDH-R
	GATTTTGGAGGGATCTCGCT

	SERPINB2-F
	TGATGCGATTTTGCAGGCAC

	SERPINB2-R
	AAGCTCGCAGACTTCTCACC

	P2RX1-F
	TCTACGTCATCGGGTGGGT

	P2RX1-R
	CGTAGTCAGCCACATCCCAG

	CFD-F
	GACAGCTGCAAGGGTGACTC

	CFD-R
	GTAGATCCCGGGCTTCTTGC

	CD59-F
	GCGCCGCCAGGTTCT

	CD59-R
	GACGGCTGTTTTGCAGTCAG




[bookmark: _Toc179812145]Supplementary Method 1. Detailed algorithm derivation of SepsisFormer.







[bookmark: OLE_LINK3]Domain-adaptive Generator. We propose a heterogeneous data domain adaptation method in sepsis predictors' space between the source domain  and the target domain. The sepsis predictors space ( ) and dimension () are consistent, but the sepsis predictors distribution () is inconsistent. To ensure the spatial distribution consistency of sepsis predictors, we determine the origin moments and center moments  in the high-dimensional space of the target domain. Based on these moments, select the sepsis predictors distribution of the target domain (unknown center dataset such as Local ICU), ensuring that the predictors from both domains are in the same sepsis predictors space. By using origin and center moments to lock the sepsis predictors' space of the target domain, map to the source domain (eICU-CRD and MIMIC-III), and eliminate the sample points outside the space, the distance between the source and the target domain can be closer than the original distance. This alignment promotes domain invariant feature learning in the model.





To address the imbalance in the survival-death ratio, we employ the Synthetic Minority Oversampling Technique (SMOTE) as the top-performing generative technique. Pseudo-samples are generated using SMOTE and integrated with the original sepsis predictors space. The original set space  and pseudo-sample  are integrated into. Specifically, where  is the standard deviation and  is the mean of the distribution. In the sepsis predictors of the original sepsis patients, the distribution of indicator values is as follows:

		




Preliminary input. In the SepsisFormer, we utilize the patient's blood test covariates  as input, including the number of Arterial Blood Gas, Coagulation-inflammatory, Erythrocyte, Renal, and Liver indicators under the sepsis predictors. Additionally, patients have a static covariate, age, represented as. The prognosis of the sepsis patient was as follows, and the prognosis outcomes of the patient are denoted as.







In the processing step, we begin by selecting the predictors in the sepsis predictors that satisfy the  criteria. Then, to address the issue of data heteroscedasticity, we use the logarithm transformation, denoted as, to the selected predictors. This transformation does not alter the nature and correlation of the data but enhances stability. Next, to mitigate the differences between sepsis predictors, we normalized the transformed predictors, to a range between 0 and 1 using  to normalize  to (is the minimum, is the maximum). This normalization process helps balance the contribution of each predictor under the sepsis predictors and improves the convergence speed of the model. The formula for normalization is as follows:

		
Encoder for feature extraction. The feature extraction layer of SepsisFormer consists of an integrated network of K (K=8) Transformer encoders. The feature extraction process is divided into five sections, as follows:





Section 1: Embedding. The normalized indicators  are used as input to the feature extraction layer. Let the column vector, the row vector. Let  represent indicator-target pair, and each indicator is encoded   using Linear Layer, as explained in detail below: 

		


Where, is the learnable parameter matrix in the neural network.








Section 2: Indicator dependence. The encode indicators   are then inputted to the first Transformer Encoder layer. The output of the first Transformer Encoder layer is then passed onto the second layer, and so on. Each Transformer Encoder layer consists of two sublayers. In the first sublayer, the self-attention mechanism extracts the long-term dependencies between indicators in the sepsis predictors through linear transformation and inner product calculation between ， , . Specifically, the  of indicator  interacts with the  of other indicators in the patient's sepsis predictors, and the attention weight score  is used to quantify the long-term dependency relationship:

		






Among, ; Where  and  respectively represent the  projection weight matrix corresponding to the input sequence.




The self-attention output  corresponding to the indicator  is obtained by weighted summation of  and:

		




Where,  and  represents the  projected weight matrix corresponding to the input sequence.


Section 3: Enhanced sepsis predictors. This paper utilizes multi-head attention to simultaneously integrate the long-term dependencies of sepsis predictors from different levels and perspectives, thereby enhancing the feature extraction capability of the model. All single-headed outputs are aggregated, and a local dependent featureis extracted. A linear layer is then used to project the dimension back to its original size. The global long-range dependent eigenvector  is obtained, as follows:

		



Where  represents the single-headed attention output,  denotes the number of multiple heads, and  is the learnable projective parameter matrix.



Section 4: Information fusion. These long-range dependent features  are directly added across levels to the current input, and then passed through the Layer Normalization. This process is followed by the final output  of the first sublayer of Transformer Encoder layer.

		

Section 5: Feed-Forward Network. In the Feed-Forward Network sublayer, the output passes through two dense layers. The first dense layer maps the global long-range dependent feature  to a size five times larger, thereby increasing the feature space dimension and improving the model's ability to fuse sepsis predictor information. The second dense layer projects it back to its original size. The final output of the Transformer Encoder layer obtained in this paper is given by:

		



Where, is the learnable parameter matrix in the neural network.  stands for GELU activation function.



Prognostic prediction. In this paper, a Multi-Layer Perceptron (MLP) is used as a prognostic predictor in SepsisFormer. The indicator information  in the sepsis predictors is fused and flattened, resulting in a two-channel feature vector. This future vector,, is then mapped to a higher dimensional hidden state, using a Linear-layer of 64 neurons. To introduce nonlinearity and prevent overfitting, the GELU activation function is applied:

		



Where,  is the learnable parameter matrix,  stands for the GELU activation function.
Subsequently, the context vector is predicted through a fully connected layer for binary classification. Finally, the mortality rate of patients was obtained through Softmax function:

		


Where,  denotes the learnable parameter matrix in the neural network.
Objective function. To optimize model training, we utilize a label-smoothed cross-entropy loss function. This approach addresses the variations in sepsis predictors in the MIMIC dataset. The cross-entropy loss function measures the discrepancy between prognostic predictions and true labels. Additionally, label smoothing penalizes overly confident prognostic predictions, which helps mitigate overfitting. The formula for the label-smoothed cross-entropy loss is as follows:

		
Where q represents the true label, p denotes the prognosis prediction obtained from SepsisFormer, and N represents the number of patients. 
Model evaluation metrics. In this study, the SepsisFormer model developed in this paper is compared with traditional machine learning models including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), Logistic Regression (LR), Stochastic Gradient Descent (SGD), as well as deep learning models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and GPT_1. Prognostic prediction performance is evaluated using metrics such as area under the curve (AUC), accuracy, specificity, sensitivity, and F1-score.


[bookmark: _Toc179812146]Supplementary Method 2. DEGs screening steps and RT-qPCR experimental steps.
DEGs between sepsis (n=760) and healthy control (n=42) blood samples were identified using "limma" R package. Subsequently, the candidate biomarkers were identified through the intersection of CRGs, IRGs, and DEGs. We analyzed the obtained intersection genes based on KEGG, GO, and protein-protein interactions (PPI) to understand the underlying biological mechanisms and establish a significant association.
Four hundred seventy-nine sepsis patients with complete survival data were enrolled and identified DEGs between septic survivors (n=365) and non-survivors (n=114) transcriptomes, which were genetically analyzed using gene set enrichment analysis (GSEA). Subsequently, the candidate biomarkers were identified through the intersection of DIC-related genes and DEGs. Furthermore, an analysis of the PPI of these intersecting genes was conducted.
mRNA was isolated from PBMCs using TrasZol Up (TransGen, China) following the manufacturer's instructions. The RNA concentration was determined using a Nano-400a spectrophotometer (ALLSHENG, Hangzhou Allsheng Instruments Co., Ltd., China). For reverse transcription and cDNA synthesis, 0.5ug RNA was used with the one-step cDNA reverse transcription kit (TransGen, China) following the manufacturer's instructions. The qPCR experiment was conducted on the 7500 Real-Time PCR System (ABI, Thermo Fisher Scientific) using the SYBR-Green mixture (TransGen, China) with the following thermocycling conditions: 40 cycles at 94°C for 5 seconds and 60˚C for 30 seconds. Relative mRNA quantities were normalized by GAPDH expression. The primer sequences used in the RT-qPCR are listed in Supplementary Table 15.


[bookmark: _Toc179812147]Supplementary Method 3. Detailed algorithm derivation of SMART.
In this retrospective study, we advanced risk stratification by refining it through high-risk and low-risk sepsis patients, creating the Sepsis Mortality And Risk Tool (SMART) model and developing a corresponding web-based risk scoring system. The scoring system primarily employs a lasso-based feature selection method driven by medical knowledge. The core code is implemented using scorecardpy Python package (https://github.com/ShichenXie/scorecardpy version 0.1.9.6). The simplified procedure of medical knowledge-driven supervised SMLR can be outlined as follows.
Data preprocessing and splitting. Seven coagulation-inflammatory markers and age are considered risk variables, and survivor/non-survivor is the target variable. Data augmentation was employed on MIMIC-III and IV to address the issue of imbalanced mortality rates, resulting in a total of 9,799 sepsis patients used for supervised modeling. Data are encoded into numerical format and then split into training and testing sets at 7:3.


Medical knowledge-driven variable binning. Ordered continuous variables are discretized using the supervised bottom-up method ChiMerge. However, ChiMerge tends to generate a larger number of bins. In this study, a medical knowledge-driven criterion is proposed for optimizing bins. Firstly, variable binning is performed, and  tests are then conducted on all pairs of initial intervals. Those adjacent bins with  are merged. Secondly, the information value for each binned variable is calculated to predict the power of each variable about the target variable--survivor or non-survivor. When the number of bins ranges from 2 to 8, the inflection point on the curve formed by the corresponding information value is identified as the optimal number of bins. Thirdly, the optimal binning points are identified based on the lower and upper limits of the normal range (as specified in Table 2) for each risk factor. Pseudo codes are provided.
Weight of evidence (WOE) transformation, information value (IV), and lasso-based logistic regression. The WOE transformation and IV are employed to assess and explain the association between risk factors and the predictive event. WOE converts the original markers into a more informative and predictive format, indicating the difference between the "proportion of survivors in the current bin among all survivors" and the "proportion of non-survivors in the current bin among all survivors." IV reflects the ability of the risk factor to distinguish between survival and non-survival under the current binning method, with higher IV values indicating more substantial prognostic capabilities for that factor. The formulas are as follows：

		

		








Wherein,  and  denote the number of survivors and non-survivors in the  bin for the  coagulation-inflammatory marker, while,  and  represent the total number of survivors and non-survivors in the  bin for the entire sample. The represents the total number of bins.


Considering the heterogeneity of the data, logistic regression with LASSO penalty is developed to reduce the impact of abnormal data on the model. Lasso regularization mitigates high variance in logistic regression coefficients with numerous correlated parameters. The parameter  of L1 regularization can be adjusted to control the sparsity of coefficients. A larger  leads to more feature coefficients becoming zero, reducing the variance of coefficients and facilitating feature selection. The lasso-based logistic regression models are expressed as follows:

		





Where  are the responses, is the probability,  are the coefficients, and  is the complexity parameter that controls the strength of regularization. Cross-validation is employed to dynamically choose an optimal  that minimizes the deviance.
Scorecard development and model evaluation
To visualize and interpret this function for clinical application, we mapped its results to a scorecard.

		





Where  is the score when probabilities of non-survival and survival are equal, is a margin while  against,  is a probability of non-survival/survival probability. 






We set a target score, when, the point-to-double odds (pdo) refer to the difference when the  is halved. Here,,  and . These initialization factors were brought back into the following formula.

		

		
Then,

		

		
Based on the setting above, the score function can be deduced as follows.

		
To evaluate the prognostic performance of SMART model, we compared the efficiency of the model to the other five clinical scoring methods, including Sequential Organ Failure Assessment (SOFA), quick sequential organ failure assessment (qSOFA), lactate in patients with sepsis (LIP), acute physiology and chronic health evaluation II (APACHEII), and systemic inflammatory response syndrome (SIRS).
Web-based risk stratification system
A visual web interface was developed using HTML5 and jQuery 3.2.1. An interactive method was employed to compute the risk score and define the risk level of patients. 


[bookmark: _Toc179812148]Supplementary Method 4. Pseudocode of our proposed discretization algorithm based on ChiMerge.
	Algorithm 1: Pseudocode of our proposed discretization algorithm based on ChiMerge.

	Input: A is MIMIC data set. The max num of bin. Merge the critical p-Value of adjacent bins. The minimum percentage of final binning class number over total.
Output: Optimal binning dataframe.

1: procedure Discretization(A, minN)
2:      for A[i] ∈ [A[aPTT],A[INR],…,A[age]] do
3:          sorted(A[i])
4:          A[i] = set(A[i]) // Duplicate removal
5:          while p < 0.05 and numbin>minN and minimum percentage < 0.05 do
6:              numbin = len(A[i])
7:              for j ∈ A[i] do
8:                 chivalue[j] = chi square test(merge(A[i][j], A[i][j+1]))
9:              end for
10:             min(chivalue[j])
11:             merge(A[i][j], A[i][j+1]
12:             numbin = len(A[i])
13:             the number percentage of people in each bin
14:         end while
15:         calculation iv and the optimal number of bins
16:     end for
17:     return Optimal bin
18: end procedure





[bookmark: _Toc179812149]Supplementary Method 5. Adjust bin.
	Algorithm 2: Adjust bin.

	Input: Bin Splitting Points. The mp is the point of entry based on medical knowledge.
Output: Optimized binning by medical knowledge.

1: procedure Adjustment (A, zp, mp)
2:      for A[i] ∈ [A[aPTT],A[INR],…,A[age]] do
3:          sorted(zp,mp)
4:          delete point of entry within the normal range
5:          while the survival curve is not monotonic or inverted 'v' shape do
6:              calculate the survival rate of each bin
7:              if no difference in survival rate between adjacent bin do             
8:                 merge(adjacent bin)
9:              end if
10:         end while
11:     end for
12:     return Adjustment bin
13: end procedure
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