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SI Figure 1 - MDS Plots from Edge R analysis 
The multidimensional scaling (MDS) plots from Edge R analysis for A) 5’pN enriched and B) RppH-treated libraries used to explore differences in samples for comparisons of parasitic and free-living females, iL3s, ‘activated’ iL3s and eggs.  
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B.

sRNAs upregulated in each life cycle stage in pairwise comparisons in A) 5’pN enriched libraries and B) RppH-treated libraries. The free-living adult female (blue triangle), parasitic adult females (red triangle), eggs (green circles), free-living iL3s (purple pentagons), ‘activated’ iL3s (orange diamonds) on axis showing the fold change (FC) in expression vs counts per million (CPM). Reads considered significantly upregulated were coloured if the FDR adjusted p value ≤ 0.001. Each data point is a unique sRNA sequence. 
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SI Figure 3 - Analysing sRNA families for Dicer-processing signature using stepRNA. 
A) Unique 27Gs in parasitic and free-living females, B) 25Gs in parasitic and free-living females and C) 26-29Cs in parasitic females were used as a reference for passenger strand analysis from total trimmed, mapped sRNA reads expressed in either parasitic or parasitic and free-living females. Bar charts represent the percentage of reads with an overhang. The 5’ overhangs are coloured in blue and the 3’ overhangs in purple. 
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SI Figure 4 - Base distribution of 18-30 nt in free-living and parasitic 5’pN-enriched library 
A) small RNAs derived from tRNAs, rRNAs, intergenic regions, genes, TE, 3’UTR and 5’UTR and their starting base in colour. B) nucleotide composition of parasitic and free-living 26-29Cs
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SI Figure 5. The proportion of TEs in S. venezuelensis 
Proportion of TE families and sub-families predicted in S. venezuelensis genome
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SI Figure 6 - differential expression of miRNAs in five life cycle stages
A) miRNAs upregulated at each life cycle stage in a pairwise comparison free-living females (blue triangle), parasitic females (red triangle), eggs (green circles), iL3s (purple pentagons) and ‘activated’ iL3s (orange diamonds) on axis showing the log fold change (FC) in expression vs counts per million (CPM). Common seed regions (expressed 3 times or more) highlighted. sRNAs identified using the edgeR package in R. Reads considered significantly upregulated if the FDR adjusted p value ≤ 0.001.  Each point is a single miRNA. B) miRNA differential expression in each life cycle stage comparison. Non differentially expressed miRNAs are shown in grey. C) The top 7 seed sequences found in S. venezuelensis showing the number times the seed sequence is present and the life cycle stage they are expressed in.




SI Table 1 – sRNA classes excluding miRNAs identified in parasitic nematodes and C. elegans
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