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Figure 1. (i) Photograph and (ii) Schematic of the mechanical pusher and force sensor system
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Figure 2. Output of conventional TENG using PVVC in conductor-dielectric structure
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Figure 3. Conventional TENG mechanism using PVC
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Figure 4. (a) Conductivity, (b) loss tangent (c) Voltage, and (d) Transferred charge of
transition from AC to DC (PVC to DOA1)
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Figure 5. Description of Electrode Polarization a) capacitance b) Dielectric loss curves c)

distribution of ions in the films d) Distribution of ions in film cross section showing formation

of EDL and electrode interface
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Figure 6. IV Curve of PVC & plasticized PVC (DOADS)
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Figure 7. Transient AC-DC behavior as conductivity increases in different materials (a)(b)
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Figure 8. Using a blocking layer with PVC Gel showing AC output owing to the Insulation

between the two friction layers
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Figure 9. Open-circuit voltage and short-circuit current and transferred charge for plasticized

PVC in metal-dielectric-metal mode- single electrode mode
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Figure 10. PVC and plasticizer chemical structure and properties (a) PVC and plasticizer Gel
structure (b) PVC chemical structure (c) Adipate plasticizer chemical structure correlated with
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Figure 12. Comparing charge transferred and charge leakage from the various films
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Figure 13. Transferred charge and leakage output form in once cycle for all films
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Figure 15. a) Capacitance and b) Dielectric constant plot of various films over frequencies

from 0 hz to 200 khz
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Figure 16. Current output for force from5 N to 60 N
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Figure 19. Output voltage and current of electrode work function dependence
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Figure 20. Transferred charge of the frequency dependence
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Figure 21. Voltage, current and transferred charge of PVC gel-based rotary DC TENG of 12
segments at different speeds
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Figure 22. Variant segmentation of flap-based iDC-RTENG
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Supplementary Notes:

Note 1 Electrode Polarization

Electrode polarization (EP) is a significant challenge in measuring high-conductivity
samples due to the ionic content of conductive ionic films.l: 2 EP, marked by charge
accumulation at the electrode-ionic film interface, distorts real capacitance (and resistance)
measurements, as shown in Figure S5a (Supporting Information). The tano, Dielectric loss
(Figure S5b, Supporting Information) shows the extent of attenuation fueled by the dissipation
of electrical energy by complex processes. EP has formed the basis for applications like
actuation observed in PVC Gel films2. In TENG systems, EP creates a static output influenced
by the electric field, as depicted in Figure S5c and Figure S5d (Supporting Information). At
lower frequencies, EP obstructs the true behavior of the bulk film, leading to inaccuracies in
electrical property measurements.

EP is affected by electrode size, measurement frequency, current density, temperature,
electrode roughness, and electrode separation*. Methods to mitigate EP include using blocking
layers, as demonstrated in Figure S8 (Supporting Information), which disrupt the interface and
minimize EP. Although EP has been overlooked in TENGs due to the poor performance of
conductive materials, recent developments in iDC-TENGs and tribovoltaic systems necessitate
its consideration. Our study shows EP as a baseline phenomenon in producing DC electricity
from ionic materials, with its impact influenced by factors like work function orientation and
frequency. Plasticized PVC's unique electrical behavior, including EP, parallels what we
observe in TENG systems. By controlling EP, we can enhance TENG performance and
application. EP is crucial for accurate electrical measurement in high-conductivity samples.
Proper management of EP through controlled conditions and innovative methods can improve
TENG systems and other applications, underscoring its importance in optimizing electronic

performance.
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Note 2 Non-contact to contact oscillation sweep

The output peak form is the simplest way by which we can analyze the output of the
triboelectric pair behaviour, considering all the various parameters that influence its output. In
this study, the output peaks describe the influence of EP on the behaviour of the TENG. We
performed a simulation by controlling the distance of the TENG pair (Au and the plasticized
PVC) while the pusher was in vertical oscillating motion as shown in Figure S18a (Supporting
Information).

There are two primary points of focus in this oscillation sweep during ongoing
oscillatory motion: 1), i) when the surfaces do not come into contact, and iii) when the surfaces
do come into contact during the vertical oscillating motion. At 0 mm distance is when contact
is made during the oscillation, and as we have described, EP can only take place at contact,
conversely contact electrification leading to electrostatic induction can produce an output even
without contact because the varying electric field increases as the separation distance increases
between the dielectric layer and the electrode. Therefore, in the non-contact mode of all
materials, with or without EP, we expect to observe the characteristic behavior of contact
electrification. This oscillation sweep effectively clarifies the behavior and the transition from
AC to DC upon the introduction of electrode polarization at contact. Initially, there is no
perceived force or contact (Figure S18b, Supporting Information), and the voltage output peaks
show AC behavior in both the conventional TENG (Figure S18c, Supporting Information) and
iDC-TENG (Figure S18d, Supporting Information).

In a conventional TENG with the metal-dielectric-metal mode (such as using PVC),
shown in Figure S18c (Supporting Information), the sinusoidal AC output is continuous, with
only its magnitude changing as the separation distance decreases. However, with introduction
of the EP effect at contact, the output is suppressed during the contact stage and changes in
magnitude only during the separation stage as can be seen in the output of iDC-TENG.

For iDC-TENG (Figure S18d, Supporting Information), when the oscillation has an
extended separation distance of (i) 10mm gradually reduced to contact at (iii) 0 mm, we notice
a change in peak generation. Initially, there is no perceived force or contact (Figure S18b,
Supporting Information), and the voltage output peaks show AC behavior. Right at the point
where contact is made, there is a transition point to the DC output. The electric field sinusoidal
waveform is changed due to the EP effect which nullifies the output at the point of contact.
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Note 3 Modified TENG equation

For mobile ions in a dielectric film, Poisson’s equation® shows that, in steady-state

dE) _ p(x)
dx €

where E(x) is the electric field across the film, p(x) is the ion concentration and ¢ is the
permittivity. This equation indicates that the presence of ions in the film can influence the
electric field. Further,

E =E, <V, xAg

and A = ¢, — ¢,
where V}; is the built-in potential across the film emanating from the difference in the work
function (¢) of the electrodes. Note that the values are stated as scalar quantities for simplicity

but are vectors in principle. The V-Q-x relation for TENG in m-d-m is given by °

V =Ed+Eg,x
The electric field strength in the dielectric d, E = S;Qg , and inside the air gap Eg; = g +
0c1 0
0]
€o
Th V= ¢ (d+ t)+ax(t)
erefore, = "5e \& x(t) %

Due to EP leakage, we can account for the charges on d as So — Q

The Electric field strength is given (for EP Leakage case)
In dielectric 1 (modified)

_ —So—Q
~ Sepe,
Therefore, the modified V-Q—x relationship for the iDC-TENG (EP Leakage case)
—So — — t
V = (O-—Q)d + (_Q+£)x

Seoer Seo &o
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V_—0d+ Q (d >+ax(t)

&&  Seo\&p o

The modified equation now includes the term :’d, which accounts for the EP leakage effect

oér
in the dielectric film. The built-in potential V,,;, proportional to A¢, impacts the effective
charge density (o). Therefore, we can denote this effect as ¢’ = o + fA¢ , where S is a

proportionality constant.

Final Modified equation

Er

_—add N Q (d x) +a’x(t)

V — —
& Se o

Expanded form, V= —(0+pAP) d +£(i—x) + (o +pAP)x (D)

Eo&r Seo \&;r o

Implications for Q¢

_ S(o+ BAP)x(D)
SCT 0 dy + x(0)

At short-circuit conditions, where the voltage V is zero, the transferred charge Q. reflects the
influence of the built-in electric field due to the difference in work functions of the electrodes.
At contact, this built-in electric field contributes to Q. by affecting the charge distribution
and the leakage effect in the dielectric layers. This contribution, which is not captured in
simpler models, is represented by the additional charge density term (o + fA¢). As the
electrodes separate, the built-in electric field continues to affect the transferred charge Qg,
highlighting its role in both initial charge transfer and subsequent separation. This
demonstrates how the built-in electric field significantly impacts the TENG’s performance,

with the leakage and work function differences influencing the output charge.
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Note 4 Crest Factor equation

To describe and compare the uniformity of DC output from electrical systems, the crest factor
is the mathematical parameter used to describe the waveform. A perfect crest factor represents
a constant voltage or current with no outlier peaks from the maximum peak. The crest factor

(CF) equation for the current output is given by:

Ipeak

CF =
Irms

1 n

where Ipys = Ez:i:lliz
In our study, we investigated the output of the iDC-RTENG by examining the waveform as
the number of segments changed. As the number of segments increased, not only did the
magnitude of the output increase, but the CF also improved, achieving a CF of 1.02 with the
12 segmented iDC-RTENG, as shown in Figure 6h. The increased number of segments led to
a cumulative effect due to more collisions and sliding of the friction surface, resulting in
improved uniformity. It is expected that variance in speed would also alter the CF. With

increased speed, the CF is reduced, adhering to the same principle and mechanism.
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