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Prompt and Examples for Polymer Caption Generation 

Motivation and Refinement Iterations of the Prompt 

Our prompt engineering strategy was driven by three primary objectives: (1) 

grounding the LLM in domain-specific knowledge while minimizing hallucinations, 

(2) ensuring consistency in both style and content for caption generation to facilitate 

downstream property prediction tasks, and (3) balancing the richness of information 

with the prevention of data leakage. we performed four iterative refinement cycles in 

close collaboration with polymer experts, systematically improving both the design 

and performance of the prompts. 

 

Initial Attempts. Our initial prompts were intentionally simple—for example, 

“Generate a caption for the following polymer with SMILES…” or “Provide a caption 

for the polymer with the given SMILES representation...”. However, the outputs were 

often overly simplistic and lacked critical domain-specific details(only in one 

sentence), indicating the need for more sophisticated guidance. 

 

Refinement through Role Definition. To address this, we explored more structured 

prompt engineering strategies. A key insight during this phase was the importance of 

role specification and task definition1. Through several experiments, we modified the 

prompt to guide the model to assume the identity of “an expert in polymer science”, 

which significantly enhanced the technical rigor and relevance of the outputs. 

Additionally, with input from domain experts, we imposed content and stylistic 

constraints on the captions, integrating these refinements into our second prompt 

version. Additionally, we incorporated content and stylistic constraints, developed in 

consultation with domain experts, into our second prompt version. While this 

improved the level of detail, it also introduced factual inaccuracies. For instance, even 

for well-known polymers like polystyrene, the model occasionally failed to correctly 

infer the monomer structure or polymer name from the SMILES input. 
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Integration of knowledge-enhanced Inputs. In the third refinement cycle, we 

focused on improving factual accuracy using a knowledge-enhanced prompting 

strategy inspired by Retrieval-Augmented Generation (RAG). Classical RAG operates 

in two sequential stages: retrieving relevant information from the database, followed 

by generating text based on the retrieved content. Given that all relevant polymer 

information was already available, we bypassed the retrieval step and directly 

embedded key contextual information into the prompt.  

Through expert consultation and iterative evaluation, we selected essential polymer-

related information while exclude detailed polymer properties to prevent data leakage. 

Two alternative input formats were tested for integrating this information: (1) 

unstructured text, where polymer details were embedded in a fixed-template 

paragraph, and (2) structured data, formatted as JSON. Empirical comparisons 

showed no significant difference in output quality, highlighting the LLM’s robust 

capability in comprehending structured data. However, he JSON-based format proved 

more efficient in terms of token usage and preprocessing, making it the preferred 

choice.  

This refinement effectively ensured that the generated captions contained accurate 

polymer information as provided. However, the generated text often exhibited 

excessive verbosity while lacking substantive insights. In some cases, the model 

simply reiterated JSON fields verbatim rather than synthesizing them into coherent, 

natural-language descriptions, likely due to its tendency to preserve structure 

faithfully. 

 

Refining Output Structure through Few-Shot Examples. To address residual 

ambiguity in task expectations (e.g., tone, depth, and section structure), we introduced 

few-shot examples. We experimented with different quantities, finding that 3–4 

examples provided the best balance: a single example led to overly rigid mimicking, 

while too many caused the model to overfit to unrelated phrasing. The final prompt 

included three manually curated examples (PP, PMMA, and PLA), which effectively 

guided the model toward generating factually accurate, stylistically consistent, and 
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comprehensive captions. These outputs reliably included four key sections: basic 

details, structure, properties, and applications.  

 

Through this multi-stage refinement process, we developed a final prompt 

architecture comprising: (i) an explicit expert role specification (ii) a structured JSON 

input encoding essential polymer context, and (iii) a carefully curated set of few-shot 

examples. This approach enables the generation of high-quality, domain-specific 

captions that embed structured polymer knowledge in fluent and informative natural 

language. 

 

 

Composition of the Prompt: 

Our final prompt consists of the following three parts. 

 

Role & Task Definition 

You are an expert in polymer science, tasked with applying specialized knowledge to 

craft brief and insightful caption for polymer. Leveraging the structured data provided, 

your goal is to combine structured information with expert analysis to enhance the 

understanding of polymer structures and functions. The output caption should: 

Basic Details: Include the polymer's name, chemical class, molecular formula, and 

synthesis method. 

Structural Features: Highlight unique structural aspects, such as specific functional 

groups or molecular arrangements. 

Key Properties: Emphasize notable properties, such as mechanical strength, thermal 

stability, biocompatibility, or transparency. 

Applications: Relate the polymer’s properties to practical uses in industries or 

technologies. 

 

 

Polymer structured data 

Here is the structured polymer JSON Data:  
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{ 

    "polymer_information": { 

        "smiles_representation": "[*]CC([*])c1ccccc1", 

        "polymer_class": ["Polystyrenes", "Polyvinyls"], 

        "structure_name": "poly(1-phenylethylene)", 

        "source_name": "polystyrene", 

        "other_name": ["poly(vinylbenzene)", "poly(styrene)"], 

        "abbreviation": "PS", 

        "chemical_formula": "C8H8", 

        "formula_weight": 104.15, 

        "synthesis_reaction": { 

            "monomer": "styrene", 

            "reaction_type": "addition", 

            "reaction_mechanism": "radical", 

            "reaction_conditions": "70°C, N2 atmosphere", 

        } 

    } 

} 

 

Example Captions 

Please refer to the following example and use clear, concise, and scientifically 

accurate language. 

 

“Poly(1-methylethylene), or polypropylene (PP), is a lightweight, semi-crystalline 

polyolefin with the molecular formula C3H6 and a formula weight of 42.08 g/mol. 

Synthesized through the addition polymerization of propylene monomers, it features a 

unique isotactic arrangement of methyl groups that enhances crystallinity and 

strength. Known for its exceptional chemical resistance, thermal stability, and low 

density, PP is widely utilized in packaging, automotive parts, textiles, and household 

goods. Its durability, affordability, and versatility make it indispensable in 

applications requiring long-term performance and cost-effectiveness.” 

 

“Poly(methyl methacrylate) (PMMA) is a transparent, lightweight polymer belonging 

to the polyacrylic and polyvinyl classes, with the molecular formula C5H8O2 and a 

molecular weight of 100.12 g/mol. It is typically synthesized through radical addition 

polymerization in solution. PMMA features a rigid backbone structure with methyl 
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ester functional groups, contributing to its exceptional optical clarity, mechanical 

strength, and resistance to UV radiation and weathering. These properties make it 

indispensable for applications such as optical lenses, protective transparent barriers, 

signage, and lightweight glass alternatives, particularly in architectural, automotive, 

and medical industries.” 

 

“Poly(lactic acid) (PLA), a biodegradable aliphatic polyester with the molecular 

formular C3H4O2 and a molecular weight of 100.12 g/mol, is synthesized through the 

ring-opening polymerization of L-lactide. Distinguished by its renewable origin and 

biocompatibility, PLA features ester linkages that enable controlled biodegradation. It 

exhibits notable thermal processability and mechanical properties suitable for diverse 

applications. Widely utilized in biomedical fields for sutures, drug delivery systems, 

and tissue scaffolds, PLA's eco-friendly and thermoplastic nature also makes it an 

ideal material for sustainable packaging, disposable goods, and 3D printing.” 

 

Sample Output 

Based on the aforementioned prompts, we used the GPT-4 API (gpt-4o-2024-08-06) 

to generate the corresponding polymer captions. Here we provide five examples of 

generated caption as reference: 

 

“Poly(1-phenylethylene), commonly known as Polystyrene (PS), is a versatile 

thermoplastic with the molecular formula C8H8 and a formula weight of 104.15 

g/mol. Synthesized via radical addition polymerization of styrene monomers at 70°C 

under a nitrogen atmosphere, PS boasts a distinctive aromatic structure with phenyl 

groups. This unique arrangement imparts rigidity, excellent electrical insulation, and 

optical clarity to the polymer. Its key properties include low cost, ease of processing, 

transparency, and good thermal stability, making PS indispensable in consumer goods 

like packaging, disposable cutlery, insulation materials, and as a substrate for optical 

applications. The polymer's affordability and versatility underscore its extensive use 

across industries, from packaging to electronics, where its ability to be molded into 
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complex shapes and its resistance to chemicals are highly valued.” 

 

“Poly(ethylene terephthalate) (PET), a high-performance polyester, is composed of 

repeating ethylene glycol and terephthalic acid units, with the molecular formula 

C10H8O4 and a formula weight of 192.17 g/mol. Synthesized through 

polycondensation of terephthalic acid and ethylene glycol, PET features ester linkages 

that contribute to its excellent mechanical strength, chemical resistance, and thermal 

stability. Its semi-crystalline structure enhances durability while maintaining 

transparency. Widely used in packaging, textiles, and engineering applications, PET 

is the material of choice for beverage bottles, food containers, synthetic fibers, and 

high-strength films due to its recyclability, lightweight nature, and resistance to 

moisture and wear.” 

 

“Poly(1-chloroethylene), or Polyvinyl Chloride (PVC), is a widely used polyvinyl 

polymer with the molecular formula C2H3Cl and a formula weight of 62.5 g/mol. It is 

synthesized through the addition polymerization of vinyl chloride, PVC's structure 

includes chlorine atoms along the polymer backbone, contributing to its unique 

properties. Known for its high chemical resistance, excellent insulation capabilities, 

and durability, PVC is extensively used in construction for pipes and fittings, in 

electrical insulation, packaging, and as a key component in medical devices due to its 

biocompatibility and cost-effectiveness. Its ability to be plasticized enhances its 

flexibility, making it suitable for a wide range of applications from rigid structural 

elements to flexible tubing.” 

 

“Poly(oxyethylene), commonly known as polyethylene oxide (PEO) or polyethylene 

glycol (PEG), is a versatile polymer within the polyoxides class, with the molecular 

formula C2H4O and a formula weight of 44.05 g/mol. Synthesized through the ring-

opening polymerization of ethylene oxide, PEO features a linear chain with repeating 

ether units that impart exceptional solubility in water, flexibility, and biocompatibility. 

Its notable properties include high thermal stability, low toxicity, and the ability to 
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form hydrogen bonds, making it an excellent choice for applications requiring non-

ionic surfactants, lubricants, and as a matrix for drug delivery systems. PEO's 

widespread use spans from pharmaceuticals, where it enhances drug solubility, to 

industrial applications like coatings, adhesives, and textiles, where its hydrophilic 

nature and low melting point are particularly beneficial.” 

 

“Poly(bisphenol A carbonate) (PC) is a high-performance polycarbonate with the 

molecular formula C16H14O3 and a formula weight of 254.28 g/mol. Typically 

synthesized through the reaction of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) 

with phosgene, PC features a robust backbone with carbonate linkages, providing 

exceptional impact resistance, thermal stability, and optical clarity. Known for its 

unique combination of toughness, transparency, and heat resistance, PC is extensively 

used in safety equipment, optical discs, electronic components, and automotive parts. 

Its ability to withstand extreme conditions while maintaining transparency and 

strength makes it invaluable in applications where both durability and visibility are 

crucial.” 

 

Pre-trained weights for encoders 

Considering the limited amount of polymer-specific data, we utilized pre-trained 

weights from chemistry-related tasks for each encoder rather than training them from 

scratch. The weight files can be found in the following repositories: 

SMILES: https://github.com/seyonechithrananda/bert-loves-chemistry 

Graph: https://github.com/junxia97/Mole-BERT 

Geometry: https://github.com/atomistic-machine-learning/schnetpack 

Text Encoder: https://github.com/GT4SD/multitask_text_and_chemistry_t5 

 

Hyperparameters Settings of the model 

We summarize the hyperparameters as follows, with their corresponding symbols, as 

shown in Table S1.  

https://github.com/seyonechithrananda/bert-loves-chemistry
https://github.com/junxia97/Mole-BERT
https://github.com/atomistic-machine-learning/schnetpack
https://github.com/GT4SD/multitask_text_and_chemistry_t5
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Component Hyperparameter Symbol Value 

SMILES Encoder 

Embedding Dimension  𝑑𝑆 768 

Number of Attention Heads  𝑛𝑆 12 

Number of Attention Layers  𝐿𝑆 6 

Graph Encoder 

Node Embedding Dimension  𝑑𝐺 300 

Edge Embedding Dimension  𝑑𝐸 300 

Number of GNN Layers  𝐿𝐺 5 

Node Attributes  𝑋𝐺 Atom type, chirality 

Edge Attributes  𝐸 Bond type, direction 

Geometry 

Encoder 

Atom Features  𝑋𝒢 Atomic number 

Atom Embedding Dimension  𝑑𝒢 128 

Number of Gaussian Functions  𝑁Gauss 50 

Number of Interaction Layers  𝐿𝒢 6 

Cutoff Radius / 10 Å 

Number of Neighbors per Atom  𝑁neigh 32 

Text Encoder 

Embedding Dimension  𝑑𝐶 768 

Number of Attention Layers  𝐿𝐶 12 

Number of Attention Heads  𝑛𝐶 12 

Fingerprint 

Representation 

Fingerprint Dimension  𝑑𝐹 1024 

Fingerprint radius  1024 

Projection Layer Projection Layer Architecture 𝜌 

[*, 256] 

(‘*’ represents encoder output 

dimension) 

Fusion Blocks 

Number of Multi-Head Attention 

Heads 
  𝑁head 8 

Uni-poly Embedding Dimension  𝑑 256 
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Pre-training 

Temperature  𝜏 0.07 

Batch Size / 32 

Epoch / 10 

Learning Rate / 1e-5 

Fine-tuning 

MLP Architecture MLP [256, 128, 64, 1] 

Batch Size / 32 

Epoch / 100 

Learning Rate / 1e-4 

Supplementary Table S1. Summary of the hyperparameters used in the model 

architecture and training process. 

 

The training was conducted on an NVIDIA RTX A6000 GPU, with each batch taking 

approximately 1.34 seconds. 

 

Training process 

Pre-train loss 

We use the InfoNCE as the pre-train loss. Formally, for a batch of 𝑁  samples, given 

representations 𝐻𝑟 and 𝐻𝑟′  for modalities  𝑟  and 𝑟 ′  (𝐻𝑟 ∈ ℝ𝑑, 𝐻𝑟′ ∈ ℝ𝑑) , the 

similarity is defined using similarity:  

sim(𝐻𝑟
𝑖 , 𝐻

𝑟′

𝑗
) =

𝐻𝑟
𝑖 ⋅ 𝐻

𝑟′

𝑗

|𝐻𝑟
𝑖 ||𝐻

𝑟′

𝑗
|

.  

The multimodal contrastive learning loss ℒ  is computed across all modality pairs, 

expressed as: 

ℒ =
1

|𝒫|(|𝒫| − 1)
∑  

𝑟∈𝒫

∑  

𝑟′∈𝒫,𝑟≠𝑟′

1

𝑁
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𝑁

𝑖=1

− log

exp (
sim(𝐻𝑟

𝑖 , 𝐻𝑟′
𝑖 )

𝜏 )

∑  𝑁
𝑗=1 exp (

sim(𝐻𝑟
𝑖 , 𝐻

𝑟′
𝑗

)

𝜏 )

.  

Here, 𝜏  is the temperature parameter that adjusts the dynamic range of similarity 
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scores. 

 

 

Supplementary Figure S1. Pretraining Loss Curve of Cross-Modal Contrastive 

Learning. The figure shows the contrastive loss (InfoNCE) over 10 epochs during the 

pretraining phase of the Uni-Poly model. 

 

The loss curve, shown in Figure S1, illustrates a consistent decline over 10 epochs, 

decreasing from an initial value of 2.80 to a final value of 1.68. This steady reduction 

indicates effective learning of shared multimodal representations, providing a robust 

foundation for downstream tasks. 
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Predict results 

 

Supplementary Figure S2. Predicted properties by the model versus 

experimental values. Scatter plots comparing predicted values to actual values for 

the test set across five properties: density, electrical resistivity, decomposition 

temperature, glass transition temperature, and melting temperature. 

 

Figure S2 presents the predictive performance of the model on the test set for one of 

the five-fold cross-validation. Each scatter plot shows the relationship between the 

predicted and actual values for a specific property. The plots demonstrate varying 

levels of predictive accuracy, as indicated by R2, MAE, and RMSE metrics. The 

model shows strong predictive performance for glass transition temperature, whereas 

the performance for melting temperature and electrical resistivity is relatively lower. 
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Supplementary Figure S3. t-SNE Visualization of Uni-Poly Embeddings 

Clustered by Prediction Tasks. This figure presents a t-SNE scatter plot of the Uni-

Poly embeddings, colored according to the prediction tasks corresponding to five 

polymer properties. Each point represents a polymer sample, and the clustering 

reflects the model's learned representation with respect to task-specific features. 

 

Figure S3 provides a t-SNE visualization of embeddings obtained from five distinct 

models, each trained for predicting a specific polymer property. The embeddings for 

each property form well-defined clusters, indicating that each model effectively 

captures the unique feature space required for its corresponding task. This result 

highlights the specialization of individual models in learning property-specific 

representations and their ability to create task-differentiated embeddings. The distinct 

separations between clusters underscore the models' capability to focus on unique 

characteristics relevant to each polymer property. 
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