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Prompt and Examples for Polymer Caption Generation

Motivation and Refinement Iterations of the Prompt

Our prompt engineering strategy was driven by three primary objectives: (1)
grounding the LLM in domain-specific knowledge while minimizing hallucinations,
(2) ensuring consistency in both style and content for caption generation to facilitate
downstream property prediction tasks, and (3) balancing the richness of information
with the prevention of data leakage. we performed four iterative refinement cycles in
close collaboration with polymer experts, systematically improving both the design

and performance of the prompts.

Initial Attempts. Our initial prompts were intentionally simple—for example,
“Generate a caption for the following polymer with SMILES...” or “Provide a caption
for the polymer with the given SMILES representation...”. However, the outputs were
often overly simplistic and lacked critical domain-specific details(only in one

sentence), indicating the need for more sophisticated guidance.

Refinement through Role Definition. To address this, we explored more structured
prompt engineering strategies. A key insight during this phase was the importance of
role specification and task definition®. Through several experiments, we modified the
prompt to guide the model to assume the identity of “an expert in polymer science”,
which significantly enhanced the technical rigor and relevance of the outputs.
Additionally, with input from domain experts, we imposed content and stylistic
constraints on the captions, integrating these refinements into our second prompt
version. Additionally, we incorporated content and stylistic constraints, developed in
consultation with domain experts, into our second prompt version. While this
improved the level of detail, it also introduced factual inaccuracies. For instance, even
for well-known polymers like polystyrene, the model occasionally failed to correctly

infer the monomer structure or polymer name from the SMILES input.
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Integration of knowledge-enhanced Inputs. In the third refinement cycle, we
focused on improving factual accuracy using a knowledge-enhanced prompting
strategy inspired by Retrieval-Augmented Generation (RAG). Classical RAG operates
in two sequential stages: retrieving relevant information from the database, followed
by generating text based on the retrieved content. Given that all relevant polymer
information was already available, we bypassed the retrieval step and directly
embedded key contextual information into the prompt.

Through expert consultation and iterative evaluation, we selected essential polymer-
related information while exclude detailed polymer properties to prevent data leakage.
Two alternative input formats were tested for integrating this information: (1)
unstructured text, where polymer details were embedded in a fixed-template
paragraph, and (2) structured data, formatted as JSON. Empirical comparisons
showed no significant difference in output quality, highlighting the LLM’s robust
capability in comprehending structured data. However, he JSON-based format proved
more efficient in terms of token usage and preprocessing, making it the preferred
choice.

This refinement effectively ensured that the generated captions contained accurate
polymer information as provided. However, the generated text often exhibited
excessive verbosity while lacking substantive insights. In some cases, the model
simply reiterated JSON fields verbatim rather than synthesizing them into coherent,
natural-language descriptions, likely due to its tendency to preserve structure

faithfully.

Refining Output Structure through Few-Shot Examples. To address residual
ambiguity in task expectations (e.g., tone, depth, and section structure), we introduced
few-shot examples. We experimented with different quantities, finding that 3-4
examples provided the best balance: a single example led to overly rigid mimicking,
while too many caused the model to overfit to unrelated phrasing. The final prompt
included three manually curated examples (PP, PMMA, and PLA), which effectively

guided the model toward generating factually accurate, stylistically consistent, and
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comprehensive captions. These outputs reliably included four key sections: basic

details, structure, properties, and applications.

Through this multi-stage refinement process, we developed a final prompt
architecture comprising: (i) an explicit expert role specification (ii) a structured JSON
input encoding essential polymer context, and (iii) a carefully curated set of few-shot
examples. This approach enables the generation of high-quality, domain-specific
captions that embed structured polymer knowledge in fluent and informative natural

language.

Composition of the Prompt:
Our final prompt consists of the following three parts.

Role & Task Definition

You are an expert in polymer science, tasked with applying specialized knowledge to
craft brief and insightful caption for polymer. Leveraging the structured data provided,
your goal is to combine structured information with expert analysis to enhance the
understanding of polymer structures and functions. The output caption should:

Basic Details: Include the polymer's name, chemical class, molecular formula, and
synthesis method.

Structural Features: Highlight unique structural aspects, such as specific functional
groups or molecular arrangements.

Key Properties: Emphasize notable properties, such as mechanical strength, thermal
stability, biocompatibility, or transparency.

Applications: Relate the polymer’s properties to practical uses in industries or

technologies.

Polymer structured data

Here is the structured polymer JSON Data:
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"polymer_information": {
"smiles representation": "[*]CC([*])clcccccl”,
"polymer_class": ["Polystyrenes", "Polyvinyls"],
"structure _name": "poly(1-phenylethylene)",
"source_name": "polystyrene",
"other_name": ["poly(vinylbenzene)", "poly(styrene)"],
"abbreviation": "PS",
"chemical formula": "C8H8",

"formula_weight": 104.15,

"synthesis reaction": {
"monomer": "styrene",
"reaction_type": "addition",
"reaction_mechanism": "radical",
"reaction_conditions": "70°C, N2 atmosphere",

Example Captions
Please refer to the following example and use clear, concise, and scientifically

accurate language.

“Poly(1-methylethylene), or polypropylene (PP), is a lightweight, semi-crystalline
polyolefin with the molecular formula C3H6 and a formula weight of 42.08 g/mol.
Synthesized through the addition polymerization of propylene monomers, it features a
unique isotactic arrangement of methyl groups that enhances crystallinity and
strength. Known for its exceptional chemical resistance, thermal stability, and low
density, PP is widely utilized in packaging, automotive parts, textiles, and household
goods. Its durability, affordability, and versatility make it indispensable in

applications requiring long-term performance and cost-effectiveness. ”

“Poly(methyl methacrylate) (PMMA) is a transparent, lightweight polymer belonging
to the polyacrylic and polyvinyl classes, with the molecular formula C5H802 and a
molecular weight of 100.12 g/mol. It is typically synthesized through radical addition

polymerization in solution. PMMA features a rigid backbone structure with methyl
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ester functional groups, contributing to its exceptional optical clarity, mechanical
strength, and resistance to UV radiation and weathering. These properties make it
indispensable for applications such as optical lenses, protective transparent barriers,
signage, and lightweight glass alternatives, particularly in architectural, automotive,

and medical industries.”

“Poly(lactic acid) (PLA), a biodegradable aliphatic polyester with the molecular
formular C3H402 and a molecular weight of 100.12 g/mol, is synthesized through the
ring-opening polymerization of L-lactide. Distinguished by its renewable origin and
biocompatibility, PLA features ester linkages that enable controlled biodegradation. It
exhibits notable thermal processability and mechanical properties suitable for diverse
applications. Widely utilized in biomedical fields for sutures, drug delivery systems,
and tissue scaffolds, PLA's eco-friendly and thermoplastic nature also makes it an

ideal material for sustainable packaging, disposable goods, and 3D printing.”

Sample Output
Based on the aforementioned prompts, we used the GPT-4 API (gpt-40-2024-08-06)
to generate the corresponding polymer captions. Here we provide five examples of

generated caption as reference:

“Poly(1-phenylethylene), commonly known as Polystyrene (PS), is a versatile
thermoplastic with the molecular formula C8H8 and a formula weight of 104.15
g/mol. Synthesized via radical addition polymerization of styrene monomers at 70C
under a nitrogen atmosphere, PS boasts a distinctive aromatic structure with phenyl
groups. This unique arrangement imparts rigidity, excellent electrical insulation, and
optical clarity to the polymer. Its key properties include low cost, ease of processing,
transparency, and good thermal stability, making PS indispensable in consumer goods
like packaging, disposable cutlery, insulation materials, and as a substrate for optical
applications. The polymer's affordability and versatility underscore its extensive use

across industries, from packaging to electronics, where its ability to be molded into
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complex shapes and its resistance to chemicals are highly valued.”

“Poly(ethylene terephthalate) (PET), a high-performance polyester, is composed of
repeating ethylene glycol and terephthalic acid units, with the molecular formula
C10H80O4 and a formula weight of 192.17 g/mol. Synthesized through
polycondensation of terephthalic acid and ethylene glycol, PET features ester linkages
that contribute to its excellent mechanical strength, chemical resistance, and thermal
stability. Its semi-crystalline structure enhances durability while maintaining
transparency. Widely used in packaging, textiles, and engineering applications, PET
is the material of choice for beverage bottles, food containers, synthetic fibers, and
high-strength films due to its recyclability, lightweight nature, and resistance to

moisture and wear.”’

“Poly(1-chloroethylene), or Polyvinyl Chloride (PVC), is a widely used polyvinyl
polymer with the molecular formula C2H3CI and a formula weight of 62.5 g/mol. It is
synthesized through the addition polymerization of vinyl chloride, PVC's structure
includes chlorine atoms along the polymer backbone, contributing to its unique
properties. Known for its high chemical resistance, excellent insulation capabilities,
and durability, PVC is extensively used in construction for pipes and fittings, in
electrical insulation, packaging, and as a key component in medical devices due to its
biocompatibility and cost-effectiveness. Its ability to be plasticized enhances its
flexibility, making it suitable for a wide range of applications from rigid structural

elements to flexible tubing.”

“Poly(oxyethylene), commonly known as polyethylene oxide (PEQO) or polyethylene
glycol (PEG), is a versatile polymer within the polyoxides class, with the molecular
formula C2H40 and a formula weight of 44.05 g/mol. Synthesized through the ring-
opening polymerization of ethylene oxide, PEO features a linear chain with repeating
ether units that impart exceptional solubility in water, flexibility, and biocompatibility.

Its notable properties include high thermal stability, low toxicity, and the ability to
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form hydrogen bonds, making it an excellent choice for applications requiring non-
ionic surfactants, lubricants, and as a matrix for drug delivery systems. PEQO's
widespread use spans from pharmaceuticals, where it enhances drug solubility, to
industrial applications like coatings, adhesives, and textiles, where its hydrophilic

nature and low melting point are particularly beneficial.”

“Poly(bisphenol A carbonate) (PC) is a high-performance polycarbonate with the
molecular formula C16H1403 and a formula weight of 254.28 g/mol. Typically
synthesized through the reaction of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A)
with phosgene, PC features a robust backbone with carbonate linkages, providing
exceptional impact resistance, thermal stability, and optical clarity. Known for its
unique combination of toughness, transparency, and heat resistance, PC is extensively
used in safety equipment, optical discs, electronic components, and automotive parts.
Its ability to withstand extreme conditions while maintaining transparency and
strength makes it invaluable in applications where both durability and visibility are

crucial.”

Pre-trained weights for encoders

Considering the limited amount of polymer-specific data, we utilized pre-trained
weights from chemistry-related tasks for each encoder rather than training them from
scratch. The weight files can be found in the following repositories:

SMILES: https://github.com/seyonechithrananda/bert-loves-chemistry

Graph: https://github.com/junxia97/Mole-BERT

Geometry: https://github.com/atomistic-machine-learning/schnetpack

Text Encoder: https://github.com/GT4SD/multitask text and chemistry t5

Hyperparameters Settings of the model

We summarize the hyperparameters as follows, with their corresponding symbols, as

shown in Table S1.
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Component Hyperparameter Symbol Value
Embedding Dimension dg 768
SMILES Encoder Number of Attention Heads Ng 12
Number of Attention Layers Lg 6
Node Embedding Dimension dg 300
Edge Embedding Dimension dg 300
Graph Encoder Number of GNN Layers Lg 5
Node Attributes Xg Atom type, chirality
Edge Attributes E Bond type, direction
Atom Features X Atomic number
Atom Embedding Dimension dg 128
Geometry Number of Gaussian Functions NGauss 50
Encoder Number of Interaction Layers Lg 6
Cutoff Radius / 10 A
Number of Neighbors per Atom Nyeigh 32
Embedding Dimension dc 768
Text Encoder Number of Attention Layers L¢ 12
Number of Attention Heads ne 12
Fingerprint Fingerprint Dimension dp 1024
Representation Fingerprint radius 1024
[*, 256]
Projection Layer Projection Layer Architecture p (“*’ represents encoder output
dimension)
Number of Multi-Head Attention
Npeaq 8
Fusion Blocks Heads
Uni-poly Embedding Dimension d 256
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Temperature T 0.07
Batch Size / 32
Pre-training
Epoch / 10
Learning Rate / le-5
MLP Architecture MLP [256, 128, 64, 1]
Batch Size / 32
Fine-tuning
Epoch / 100
Learning Rate / le-4

Supplementary Table S1. Summary of the hyperparameters used in the model

architecture and training process.

The training was conducted on an NVIDIA RTX A6000 GPU, with each batch taking

approximately 1.34 seconds.

Training process

Pre-train loss

We use the InfoNCE as the pre-train loss. Formally, for a batch of N samples, given
representations H, and H,. for modalities r and ' (H, € R%,H, €R?), the

similarity is defined using similarity:

i.gl
sim(H, H) = |HT‘|TZ|
r T"

The multimodal contrastive learning loss £ is computed across all modality pairs,

expressed as:
sim(H;', Hri,)>

. . L | exp( -
= — — log —
|3”|(|3’|—1)Z ,Z ,NZ sim(HL, HY,

TEP r'EPTET i=1 Z?Izl exp <#>

Here, T is the temperature parameter that adjusts the dynamic range of similarity

S10




Scores.

Pretraining Loss Curve
0al ‘ . : . —

26 .

2.2 a

Contrastive Loss

20 1

1.8F )

2 s 6 8 10
Epoch
Supplementary Figure S1. Pretraining Loss Curve of Cross-Modal Contrastive

Learning. The figure shows the contrastive loss (INfoNCE) over 10 epochs during the

pretraining phase of the Uni-Poly model.

The loss curve, shown in Figure S1, illustrates a consistent decline over 10 epochs,
decreasing from an initial value of 2.80 to a final value of 1.68. This steady reduction
indicates effective learning of shared multimodal representations, providing a robust

foundation for downstream tasks.

S11



Predict results
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Supplementary Figure S2. Predicted properties by the model versus
experimental values. Scatter plots comparing predicted values to actual values for
the test set across five properties: density, electrical resistivity, decomposition

temperature, glass transition temperature, and melting temperature.

Figure S2 presents the predictive performance of the model on the test set for one of
the five-fold cross-validation. Each scatter plot shows the relationship between the
predicted and actual values for a specific property. The plots demonstrate varying
levels of predictive accuracy, as indicated by R2, MAE, and RMSE metrics. The
model shows strong predictive performance for glass transition temperature, whereas

the performance for melting temperature and electrical resistivity is relatively lower.
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t-SNE visualization of embeddings by task
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Supplementary Figure S3. t-SNE Visualization of Uni-Poly Embeddings
Clustered by Prediction Tasks. This figure presents a t-SNE scatter plot of the Uni-
Poly embeddings, colored according to the prediction tasks corresponding to five
polymer properties. Each point represents a polymer sample, and the clustering

reflects the model's learned representation with respect to task-specific features.

Figure S3 provides a t-SNE visualization of embeddings obtained from five distinct
models, each trained for predicting a specific polymer property. The embeddings for
each property form well-defined clusters, indicating that each model effectively
captures the unique feature space required for its corresponding task. This result
highlights the specialization of individual models in learning property-specific
representations and their ability to create task-differentiated embeddings. The distinct
separations between clusters underscore the models' capability to focus on unique

characteristics relevant to each polymer property.
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