Methods
Bulk element geochemistry. We combine published x-ray fluorescence (XRF) core-scanner data from ODP Site 967 spanning 0-3 Maref.15 with new XRF core-scanner data for the 3-5 Ma interval. Scanning was performed on archive core-sections at MARUMUniversity of Bremen, on an Avaatech XRF core scanner. Core sections were covered with 4 mm-thick Ultralene film and measured at 50 and 30 kV with 0.55 mA current and with a Cu and Pd-thick filter, respectively, and at 10 kV with 0.035 mA current (no filter); count time for all runs was 7 s. Element ‘counts’ for the entire 0-5 Ma interval were converted into element concentrations by multivariate log-ratio calibration75, using published35,76 and new wavelength dispersive (WD)-XRF reference element concentrations (Supplementary Fig. S7, S8). For these, 42 bulk sediment samples were chosen to cover a range of lithologies based on the XRF scan, then 1 cm3 dried ground sample was mixed with a lithium tetraborate/lithium metaborate flux and fused into 39 mm diameter beads. Major element abundances were analysed by WD-XRF using a Bruker S8 Tiger™ spectrometer at Geoscience Australia. Loss on ignition (LOI) was measured by gravimetry after combustion at 1000°C. One in every ten samples was duplicated along with multiple analyses of 3 international standards (NCS DC70306, MAG-1, ML-2) and an internal basalt standard (WG1). Quantification limits for all major element oxides are <0.2% and reproducibility is within 1%.

ODP967 chronology. Published age-depth tie-points for the 0-3 Ma interval are based on tuning a principal-component derived sapropel proxy to precession15. Here, we extend the age model to 5 Ma by tuning the Ba/Ti record from XRF core-scanning to precession minima with zero phase lag (Supplementary Fig. S1).

Environmental magnetism. ODP967 U-channel samples were sliced at 1-cm intervals into discrete non-magnetic plastic cubes and measured on a 2-G Enterprises cryogenic magnetometer at the Australian National University (ANU). IRM900@120mT was obtained after imparting a 900 mT induction in a direct current field, followed by alternating field (AF) demagnetization in a peak 120 mT field.

Stable oxygen isotopes (18O). Bulk sediment samples were washed through 63 m sieves with RO water and the residue was oven dried at 45C for 24 hours. Globigerinoides ruber (white) specimens were picked from the >300 m size fraction, adhering to ‘sensu stricto’ morphotypes and size range (±25 m). Picked tests (typically 10-20, depending on abundance) were gently crushed and cleaned by briefly ultrasonicating in methanol, then air dried after decanting the fine suspended matter. Samples were analyzed at ANU using a Thermo Fisher Scientific Delta Advantage mass spectrometer coupled to a Kiel IV carbonate device for sample digestion. Isotope data were normalized to the Vienna Peedee Belemnite (VPDB) scale using NBS-19. External reproducibility (1σ) was always better than 0.08‰.

[bookmark: _GoBack]Bernoulli aspiration depth (d). We use values from ref.8 in the equation of ref.77:

where h1 approximates the depth of the open Eastern Mediterranean (~2000 m), h2 is the Sicily Sill depth, u is the mean outflow velocity in the Sicilian Strait (0.2 m s-1), y is the vertical density gradient below the sill depth (0.03 kg m-3 today), o is the density of the outflow layer at the sill (~1027 kg m-3), and g is acceleration due to gravity (9.81 m s-1). For a 200 and 400 m deeper sill (h2 = 600 and 800 m), d is -900 and -1000 m, respectively. Allowing for a reduced density gradient below sill depth (y = 0.02 kg m-3, based on the modern Strait of Gibraltar), d is then -1010 and -1160 m, respectively. Thus, Eastern Mediterranean deep-waters below ~1000 m would be poorly ventilated even if the Sicily Sill was 400 m deeper.
Data analysis
Change-points and moving standard deviations were calculated using MATLAB built-in functions “findchangepts” and “movcorr”.

Data availability
ODP Site 967 data from this study are available at:
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