6. References:
1.Murray J, Ikuta S, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 399:629–55. https://doi.org/10.1016/S0140-6736(21)02724-0
2.McEwen SA, Collignon PJ (2018). Antimicrobial resistance: a one health perspective. Antimicrobial resistance in bacteria from livestock and companion animals. 521 – 47. https://doi.org/10.1128/9781555819804.ch25.
3.Cardoso O, Alves AF, Leitao R (2007). Surveillance of antimicrobial susceptibility of Pseudomonas aeruginosa clinical isolates from a central hospital in Portugal. J Antimicro Chemother 60:2–452. https://doi.org/10.1093/jac/dkm214.
4.Sharma, A., Gupta, V. K., & Pathania, R. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Ind J Med Res 149: 129–145.
5.Bhagwat SS, Nandanwar M, Kansagara A, Patel A, Takalkar S, Chavan R, … Patel M (2019) Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: review of current evidence. Drug Des Develop Thera 4351–4365.
6.Zasowski EJ, Rybak JM, Rybak MJ (2015). The β-lactams strike back: Ceftazidime‐avibactam. Pharmacotherapy: The J Hum Pharmacol Drug Thera 35: 755–770.
7.Tillotson, S (2016). Trojan horse antibiotics–a novel way to circumvent Gram-negative bacterial resistance?. Infectious Diseases: Research and Treatment, 9, IDRT-S31567.
8.Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254 – 67. https://doi.org/10.1016/j.bbrc.2014.05.090.
9.Housseini BI, K, Phan G, Broutin I (2018) Functional mechanism of the efflux pumps transcription regulators from Pseudomonas aeruginosa based on 3D structures. Front Mole Biosci 5: 57.
10.Chandal N, Tambat R, Kalia R, Kumar G, Mahey N, Jachak S, Nandanwarm H (2023) Efflux pump inhibitory potential of indole derivatives as an arsenal against norA over-expressing Staphylococcus aureus. Microbiol Spect 11: e04876-22.
11.Roy SK, Kumari N, Pahwa S, Agrahari UC, Bhutani KK, Jachak SM, Nandanwar H (2013) NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia. 90:140–50. doi: 10.1016/j.fitote.2013.07.015.
12.Theuretzbacher U, Paul M (2015) Revival of old antibiotics: structuring the re-development process to optimize usage. Clin Microbiol Infect 21: 78–80. https://doi.org/10.1016/j.cmi.2015.06.019.
13.Muller AE, Theuretzbacher U, Mouton JW (2015) Use of old antibiotics now and in the future from a pharmacokinetic/pharmacodynamic perspective. Clin Microbiol Infect 21: 881–885. https://doi.org/10.1016/j.cmi.2015.06.007.
14.Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M (2020) Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharmaceu Anal 10: 277–290.
15.Lee MD, Galazzo JL, Staley AL, Lee J, Warren MS, Fuernkranz H, … Miller GH (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. IL Pharmaco, 56: 81–85.
16.Martins M, McCusker MP, Viveiros M, Couto I, Fanning S, Pagès JM, Amaral L (2013). A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol J 7:72. 10.2174/1874285801307010072.
17.Andrews, JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48, Suppl. S1, 5–16.
18.Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–9. https://doi.org/10.1111/j.1472-765X.2008.02510.x
19.Araújo IM, Pereira RLS, de Araújo ACJ, Gonçalves SA, Tintino SR, Oliveira-Tintino CDD M, … Coutinho HDM (2024). Meldrum's acid derivates are MepA efflux pump inhibitors: In vitro and in silico essays. J Basic Microbiol. 64:2300558.
20.Kalia NP, Mahajan P, Mehra R, Nargotra A, Sharma JP, Koul S, Khan IA (2012). Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother.67 :2401–8. https://doi.org/10.1093/jac/dks232
21.Christena LR, Mangalagowri V, Pradheeba P, Ahmed KB, Shalini BIS, Vidyalakshmi M, Anbazhagan V (2015). Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Adv 51: 2899–12909
22.Saha, B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, Karmakar P (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2: 614–622.
23.Nikam PB, Salunkhe J D, Marathe K R, Alghuthaymi M, Abd-Elsalam KA, Patil SV (2022) Rhizobium pusense-Mediated Selenium Nanoparticles–Antibiotics Combinations against Acanthamoeba sp. Microorg 10: 2502.
24.Wahab S, Ali HM, Khan M, Khan T, Krishnaraj C, Yun SI (2024). Green synthesis and antibacterial assessment of chitosan/silver nanocomposite conjugated with tobramycin against antibiotic resistant Pseudomonas aeruginosa. Arab J Chem 17: 105458. https://doi.org/10.1016/j.arabjc.2023.105458.