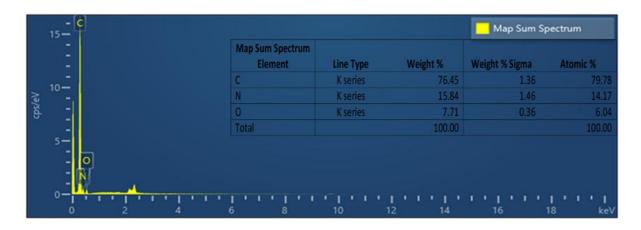
Electronic Supporting Information

Nano ordered polyacrylonitrile-grafted chitosan as a robust bio-based catalyst for efficient synthesis of highly substituted pyrrole derivatives

Mahsa Zohrevand, Mohammad G. Dekamin, Miloufar Nashibi, Mahsa Kashin Sarvary Mahsa Zohrevand, Mohammad G. Dekamin, Mahsa Zohrevand, Mahsa Zohr


^bDepartment of Chemistry, Babol Noshirvani University of Technology, Babol 4714873113, Iran. Email: <u>asarvary61@gmail.com.</u>

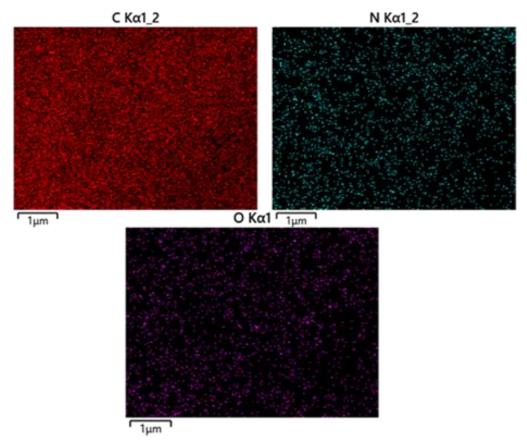

content	Title
Title page	
Figure S1 The chemical structure of selected examples of pharmacologically-active pyrrole	S2
derivatives.	
Figure S2 One-pot three-component reaction of acetyl acetone, phenacyl bromide and amine	S2
derivatives catalyzed by the CS-g-PAN for synthesis of pyrrole derivatives	
Figure S3 Schematic representation for the preparation of CS-g-PAN nanomaterial (1).	S2
Figure S4 (a) Eenergy-dispersive X-ray spectrum and (b) EDS elemental mapping of CS-g-	S3
PAN nanomaterial (1) for the distribution of C, N, and O atoms.	
Figure S5 FTIR spectra of the CS-g-PAN (1), CS, AN and PAN	S4
Figure S6 FESEM images of CS-g-PAN nanomaterial (1) (scale bars: 1 μm, and 200 and 100	S4
nm)	
Figure S7 (a) TGA and (b) DTA curves of the CS-g-PAN nanomaterial (1).	S5
Figure S8 XRD analysis of the CS-g-PAN nanomaterial (1)	S6
Figure S9 BET analysis of the CS-g-PAN nanomaterial (1)	S6
Figure S10 Proposed mechanism for the synthesis of pyrrole derivatives 5a-o catalyzed by	S7
the CS-g-PAN (1)	
Figure S11 Reusability of the recycled CS-g-PAN catalyst (1) for the synthesis of pyrrole	S8
derivative 5a.	
Figure S12 XRD analysis of the recycled CS-g-PAN (1) catalyst after first, third and fifth	S8
runs.	
Figure S13 ¹ H NMR spectra of 1-(4-(4-chlorophenyl)-2-methyl-1-phenyl-/H-pyrrol-3-yl)	S9
ethenone	
Figure S14 ¹ H NMR spectra of 1-(4-(4-chlorophenyl)-2-methyl-1-phenyl-/H-pyrrol-3-yl)	S10
ethenone	

Fig. S1. The chemic al structure of selected examples of pharmacologically-active pyrrole derivatives.

Fig. S2. One-pot three-component reaction of acetyl acetone, phenacyl bromide and amine derivatives catalyzed by the CS-g-PAN for synthesis of pyrrole derivatives.

Fig. S3. Schematic representation for the preparation of CS-g-PAN nanomaterial (1).

Fig. S4. (a) Eenergy-dispersive X-ray spectrum and (b) EDS elemental mapping of CS-g-PAN nanomaterial (1) for the distribution of C, N, and O atoms, respectively.

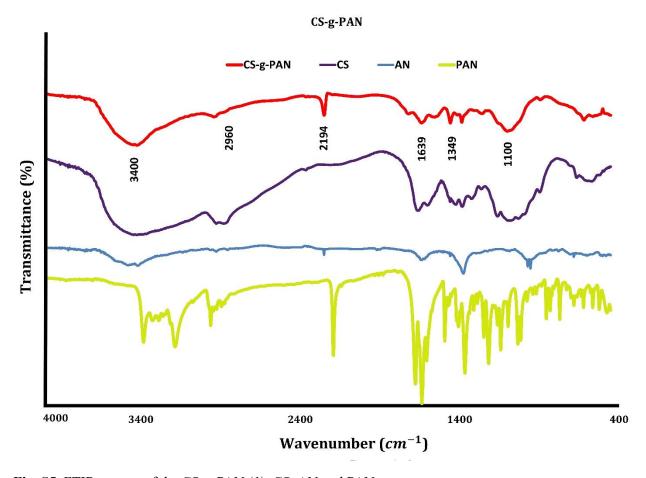
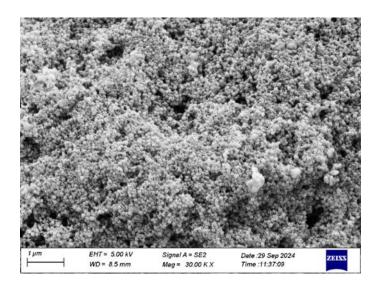



Fig. S5. FTIR spectra of the CS-g-PAN (1), CS, AN and PAN.

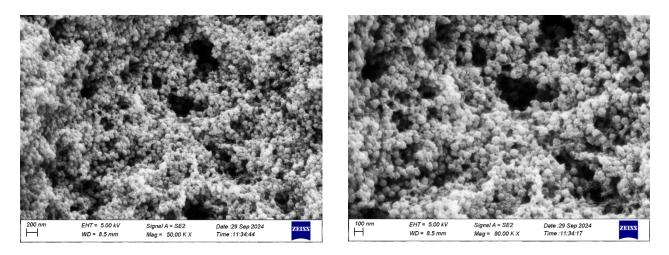


Fig. S6. FESEM images of CS-g-PAN nanomaterial (1) (scale bars: 1 μm, and 200 and 100 nm).

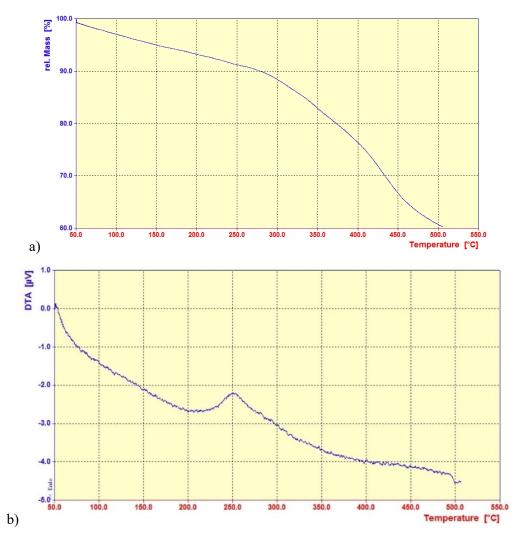


Fig. S7. (a) TGA and (b) DTA curves of the CS-g-PAN nanomaterial (1).

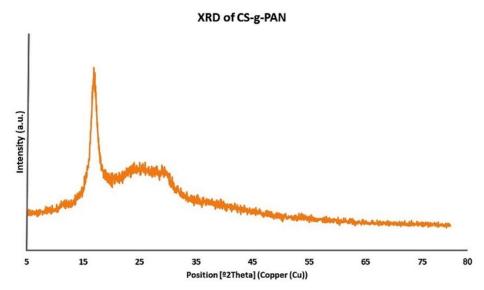


Fig. S8. XRD analysis of the CS-g-PAN nanomaterial (1).

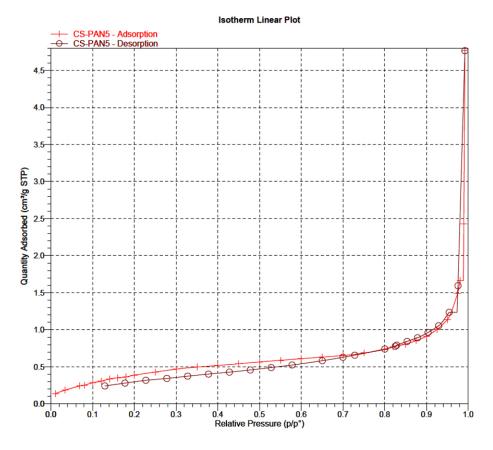


Fig. S9. BET analysis of the CS-g-PAN nanomaterial (1).

Fig. S10. Proposed mechanism for the synthesis of pyrrole derivatives **5a-o** catalyzed by the CS-g-PAN (1).

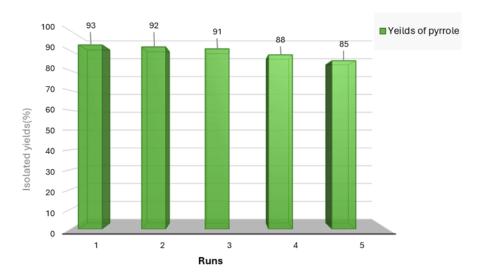


Fig. S11. Reusability of the recycled CS-g-PAN catalyst (1) for the synthesis of pyrrole derivative 5a.

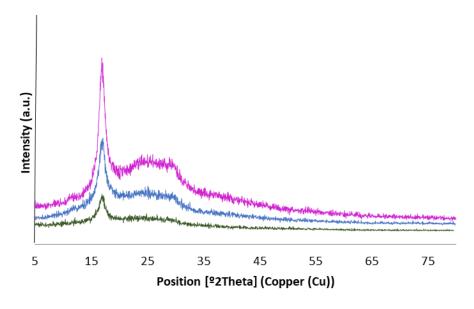
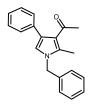
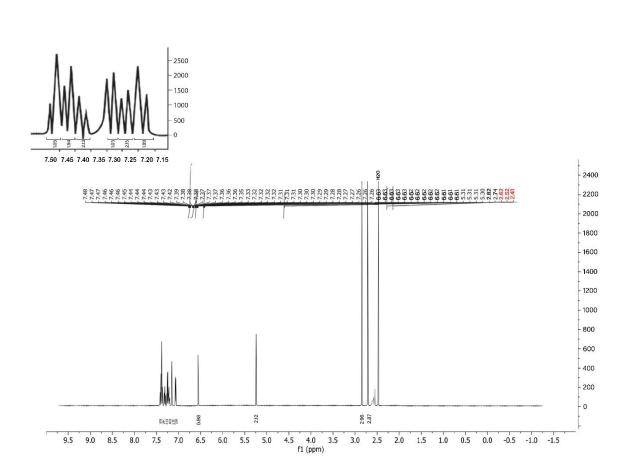
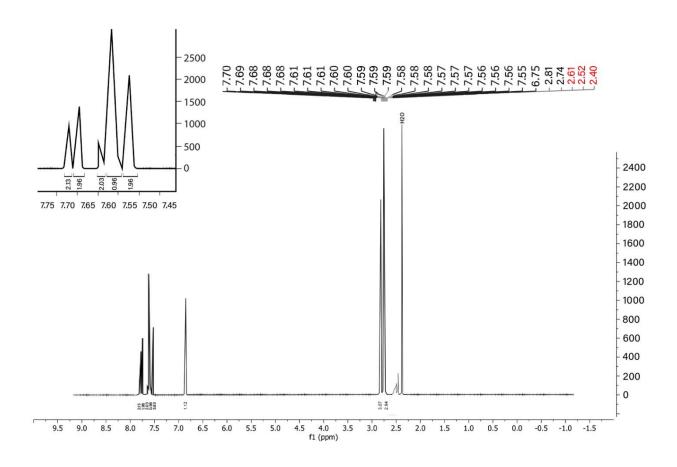




Fig. S12. XRD analysis of the recycled CS-g-PAN (1) catalyst after first, third and fifth runs (from top to down).

Selected Spectral Data:


1-(1-benzyl-2-methyl-4-phenyl-*IH***-pyrrol-3-yl) ethenone:** Brown solid; M.P = 48 - 50 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ (ppm): 2.74 (s, 3H, CH₃), 2.82 (s, 3H, CH₃), 5.31 (s, 2H, CH₂), 6.62 (s, 1H, CH), 7.26–7.48 (m, 10H).

1-(4-(4-chlorophenyl)-2-methyl-1-phenyl-*I***H-pyrrol-3-yl) ethenone:** Light brown solid; M.P = 148 - 149 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ (ppm): 2.74 (s, 3H, CH₃), 2.81 (s, 3H, CH₃), 6.75 (s, 1, CH), 7.55-7.70 (m, 9H).

