Contents

A Background 2
B DynamicGPT 4
B.1 DynamicGPT Data process e 4
B.2 DynamicGPT Architecture e 5
B.3 DynamicGPT Training Strategy e 9
B.4 Summary of the optimized DynamicGPT’s archtectures 10
C Validation Against Baseline Models 12
C.1 Physics-Informed Neural Networks (PINNs) 12
C.2 Transformer L e e 12
C.3 Deep Generative Models (DGMSs) i 13
C.4 Hyperparameter setting L e 13
D Detailed Methods for Assessing the Physical Consistency and Computational Efficiency

of DynamicGPT 14
D.1 Methodology for Assessing Physical Consistency 14
D.2 Comprehensive Evaluation of Physical Consistency for Real-world Validation Sets 17
D.3 Comparative Analysis and Implications 18
D.4 Methodology for PDE Parameter Estimation 19
D.5 Detailed Results on PDE Parameter Estimation 21
References 23

Forecasting Long-term Spatial-temporal Dynamics

with Generative Transformer Networks

Donggeun Park, Hugon Lee, and Seunghwa Ryu*
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

*Corresponding author: ryush@kaist.ac.kr

A Background

Spatiotemporal dynamics are at the heart of modern science and engineering, shaping our understand-
ing of complex systems and their behavior over time and space. From climate simulations to the intricate
analysis of turbulent flows and material failure mechanisms, computational simulations and sensing tech-
nologies have become essential tools. These approaches provide invaluable insights into specific scenarios;
however, they face significant challenges when it comes to real-time forecasting. The vast amount of data,
the substantial computational costs, and the inherent uncertainties associated with dynamic systems make
real-time prediction a formidable task.

These limitations are especially pronounced in real-world applications, where it is impractical to per-
fectly model every aspect of a system. Real-world data often exhibits nonlinear and chaotic interactions
among numerous variables, making precise prediction a challenging endeavor. To address these issues, deep
learning has emerged as a game-changing approach. With its capacity to learn complex, nonlinear relation-
ships and process data at multiple scales, deep learning has shown remarkable potential in overcoming many
of the limitations faced by traditional methods.

Over time, the integration of Al and simulation techniques has evolved significantly, as illustrated in
Figure S1. This evolution can be divided into four distinct generations, each building on the strengths of

its predecessors while attempting to address their weaknesses:

e Generation 1 introduced Convolutional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs) for processing spatiotemporal data. While these models were effective for learning

simpler patterns, they struggled to capture long-term dependencies, which limited their predic-

tive capabilities.

e Generation 2 saw the rise of more sophisticated models, including Physics-informed Neural

Networks (PINNs), ConvLSTM (a combination of CNNs and RNNs), and Transformers.

— PINNSs integrated governing physical equations into their training processes, enhancing the
realism of simulations. However, they required a deep understanding of these governing

equations, which limited their flexibility for diverse real-world problems.

— ConvLSTM brought a hybrid approach, combining spatial feature extraction and temporal
sequence modeling to improve spatiotemporal dependency handling. Despite this, it faced
limitations in managing ultra-long term dynamics, constraining its use in more extended

predictive tasks.

— Transformers provided a breakthrough by handling long-term dependencies more effectively
than prior architectures. However, they still encountered issues with spatial information loss,
particularly when processing complex spatiotemporal data due to their reliance on single-

scale processing.

e Generation 3 featured the development of Deep Generative Models, offering unprecedented
capabilities for handling intricate spatiotemporal patterns and uncertainties. Despite their
promise, challenges related to computational expense and the complexity of the models per-

sisted, hindering their application in real-time scenarios.

e Generation 4 emerged to tackle these remaining obstacles. In this context, we introduce
DynamicGPT, a model built upon a Vision Transformer (ViT)-based architecture that preserves
multi-scale spatial features and effectively models long-term temporal dependencies. This design

strikes an optimal balance between high-accuracy predictions and real-time feasibility.

In this supplementary information, we will provide an in-depth look at the mechanisms of Dynam-
icGPT, including its inference process and architectural components. Additionally, we will outline how we
selected and utilized baseline models to benchmark DynamicGPT’s performance in a fair and rigorous man-

ner.

Generation 1

Convolutional Neural Network
Science advances 7, abd7416
Journal of Flu. Mec. 928, A27

Generation 2 =) Generation 3 =) Generation 4

Physics-informed Neural Network
Science 367, 1026-1030
Nat. Com. 12, 6136

How can Al integrate
spatiotemporal
dynamic systems?
ConvLSTM
Nat. Com.15,1361
Neu. Net. 146, 272-289

Recurrent Neural Network
Nat. Mac. Int. 2, 358-366
Phys. Fluids 33, 025116

Deep Generative Model
Nature 597, 672-677
Mat. Hor. 11, 3048-3065

DynamicG Rl
(@)

Transformer
Nat. Com.15,1361
Neu. Net. 146, 272-289

Figure S1: Evolution of neural network architectures for integrating spatiotemporal dynamic systems,
progressing from basic models (Generation 1) to advanced models like Deep Generative Models and Dynam-
icGPT (Generation 4).

B DynamicGPT

In this section, we provide detailed insights aimed at reinforcing the explanations presented in Dynam-
icGPT Implementation Details and Training Process of the Main Text. We describe the data
preprocessing required for training and inference in DynamicGPT, delve into the architecture’s key mecha-
nisms, and explain its training strategy, including the rationale behind specific design choices. Additionally,
we outline the optimized hyperparameters used for validating DynamicGPT on real-world problem datasets,

adding further depth to understanding its performance and applicability.

B.1 DynamicGPT Data process

As illustrated in Figure S2, DynamicGPT’s training strategy begins with processing spatiotemporal
data using a sliding window approach. The input consists of past dynamic fields with a length T, and the
target is the subsequent frame. This preprocessing method effectively augments the dataset by sliding the
window frame-by-frame, ensuring that the model learns from various temporal contexts across the entire
dataset. Once trained, DynamicGPT iteratively predicts frames, where each predicted frame is fed back into
the model as input for subsequent predictions. This process allows for accurate long-term spatiotemporal

forecasting, providing continuity and consistency over extended periods.

Input:
The spatiotemporal data
for L frames

Training

Inference |

T T

T2 Tt T2
c———— @™

————— ™

The iterative increment Te

——
by one frame. —s

O Input

3 Target

@3 Prediction

0 Prediction—to-Input

Figure S2: The process of training and inference in DynamicGPT. The input consists of spatiotemporal
data for 1-L frames, where the target is the data for the next frame L+1. During training, the model learns
to predict the target from the input frames. In the inference phase, the predicted results are used sequentially

e | € predicted results are used
L‘. as input sequentially.

o | o o | o | s

as input to forecast subsequent frames, demonstrating the iterative increment by one frame.

B.2 DynamicGPT Architecture

DynamicGPT’s architecture features powerful components that address the limitations of previous gen-

erations 2 and 3.

e First Key Mechanism — Multi-spatial Feature Extraction: As seen in Figure S3, the
first step of DynamicGPT involves extracting comprehensive spatial features from preprocessed
spatiotemporal data pairs using a multi-kernel encoder. The encoder applies multiple kernel
sizes (e.g., 2x2, 4x4, 8x8) to capture both fine local details and broader global patterns. This
multi-scale approach ensures that the model maintains rich spatial information throughout the

feature extraction process. For each input X and kernel Fj, , the feature maps Fj are generated

as follows (Eq. 1):

Fk:X*Kk

Vk € {2,4,8}

The extracted features Fs, Fy, Fg are fused through a 1x1 convolutional layer, which combines

them efficiently while reducing learning parameters (Eq. 2):

Ffused =0 (qusion : [F2; F4; FSD (2)

where Whysion denotes the weights of the 1 x 1 convolution, ¢ is a non-linear activation function
(e.g., ReLU), and [] represents concatenation of feature maps. This convolution operation
not only enhances model performance but also maintains computational efficiency. Next, the
resulting latent patches are then processed with a variational sampling technique, modeling
the inherent uncertainty present in real-world spatiotemporal dynamics, where the mean p and

variance o are calculated as follows:

M= WuFfused + bu (3)

0 = exp (WO'Ffused + bo’) (4)

The final latent vector z is sampled using the reparameterization trick:

c=ptooe e~ N(O1) (5)

where ® denotes element-wise multiplication. This probabilistic approach ensures that the

model can generalize effectively, making the method robust in handling unseen scenarios.

Second Key Mechanism — Temporal Modeling with Latent Patches: Figure S4 illus-
trates how DynamicGPT enhances temporal modeling using the latent patches produced by the
multi-kernel encoder. Unlike Generations 2 and 3, which struggled to preserve spatiotemporal
characteristics, DynamicGPT employs a Vision Transformer (ViT) to strengthen temporal con-
nections between latent patches. To capture varying temporal dependencies (short, medium,
and long-term), a padding technique aligns latent patches of different input lengths T'. The
core of this ViT is the Multi-Head Self-Attention (MHSA) mechanism, which allows the model
to focus on different temporal aspects by processing each latent patch independently across

multiple attention heads.

For each latent patch z;, linear projections are created to form the query (Q), key (K), and

value (V') matrices:

Qi =Wqz, K;=Wgkz, Vi=Wyz (6)

where Wg, Wk, and Wy, are learned weights. The attention score for each head is computed
as a scaled dot-product between queries and keys, followed by a softmax operation to ensure

probabilities:

Attention(Q, K, V) = softmax <63/I§>:) v (7)

Here, d is the dimension of the key vectors, used to scale the dot-product for stable gradient
updates. The outputs from each attention head are concatenated and passed through a final

linear layer to integrate the multi-head outputs:

MHSA _output = Wo - [head, heads, .. ., heady] (8)

where Wy is the learned weight of the output projection. This MHSA mechanism enables the
model to capture short, medium, and long-term temporal dependencies, effectively maintaining

temporal integrity across varying input lengths T'.

Furthermore, to enhance the model’s temporal modeling capability, DynamicGPT incorporates
a ConvGRU module, which is integrated into the multi-scale temporal network. This ConvGRU
helps capture sequential dependencies more effectively within the temporal sequence, reinforcing

the latent patch representations. The ConvGRU operates as follows:

- Update Gate:

2t =0 (sz *2i-1 + Upz ¥ hy_1 + bz) (9)

- Reset Gate:

Tt =0 (WZL’T * 2Z¢ 1+ Uhr * htfl + br) (]-0)

- New Memory Content:

h¢ = tanh (Wi, * 2ze-1 + 76 © (Uyj, + hy—1) + b7

- Final Output:

ht:(]-*zt)(aht—l‘i’zt@ilt

(1)

(12)

where h; represents the final output of the ConvGRU, reinforcing the temporal dependencies

among latent patches. This combined approach enables DynamicGPT to model complex tem-

poral sequences while preserving spatial integrity and incorporating uncertainty—a significant

advancement over previous approaches.

—

Multi-kernel Encoder

2x2
kernel

8x8
kernel

4x4
kernel

2x2
kernel

eSS

Sampling layer

—

Maxpooling
Buidwesdn

nley + Ng Y.EN

Multi-kernel Decoder

—

jaulsy

oz
I
3
Q

EIIEN]

/1
LN

Xy
o
oy
C
N €N
Jouiay
X
|

joulay

8X8
N7y +Ng

\
1
1
1
1
1
1
1
1
1
I

T

N
1
1
1
1
1
1

1
1
1
1

EED

XN

Smaller Kernel Sizes: These
are effective at capturing fine
details and small-scale features.
They are useful for analyzing
localized variations

le kernel Mid-scale kernel Large-scale kernel

dynamics

Local features Mid features Global features

~

Larger Kernel Sizes: Larger
kernels are better at identifying
larger-scale patterns and trends.
They can integrate information
over a broader area, providing a
more global view.

Figure S3: Architecture of the Multi-Kernel Encoder-Decoder model for spatiotemporal data processing.
The model utilizes various kernel sizes to capture features at different scales: smaller kernels for local features,
mid-scale kernels for intermediate features, and larger kernels for global patterns. The encoding process
analyzes past fields (input) to derive latent representations, while the decoding process predicts future fields.
This architecture enhances the model’s ability to integrate detailed and large-scale information effectively.

~—— Multi-kernel Encoder ~ —— Samplinglayer _____ Multi-kernel Decoder ~ ——

Future
o @ e Fields
&S5 AN (Pred.)

/N
&

o) c
— — = ° z z
- D A [} g Q = 7] s Py <
E} < (2 < 2 2 <] Q < o B9 <
<13 5PD 3 EPH5Q 2 S a ERY R OA®
~ X % = b4 = z
= = + +
< ? 4
32 R E gel/ |© MEg)
q g N2 2 ® 2 ®
XN
L L J
Past . - Future
Features Linear ! 2| Features
(Input) — Projection — (Target)
= 0 % X z cq - Wi oo z T T
B =t —— - — =1 =
c =t —— - — b= qwe :.: =
©
= : : e g - — :.: Q
bl 1 ——> - 3 I 1IN i 1 g
g ™ =l = /|« o0 wr] .
v I 1 - ok E>. Ly g e
—>T ! —Flaten>| - : . - SOﬂmaX(ﬁ) 4 : [Reshape™>1 1 < 8 i >
3 vt . 1MLP position) P <
c o layer embedding = Sk - N MLP o —
5 L Cvoar WY A layer v S
= m 1 T
3 m j— P — » - m S
= . = o> = 1 =
L =2 - == L I8 B L
HXWxT d xdxPT d? x PT d? x PT d? x PT dxdxPT HXW T

Figure S4: Architecture of the Multi-Kernel Encoder-Decoder model with Transformer integration for
spatiotemporal data processing. The model consists of a multi-kernel encoder that extracts features from
past fields (input) using various kernel sizes, followed by a sampling layer that captures latent representations.
The Transformer encoder processes these features through a linear projection, allowing for effective learning
of relationships. The multi-kernel decoder then generates future fields (predictions) based on the encoded
information, enhancing the model’s ability to predict future dynamics.

B.3 DynamicGPT Training Strategy

As shown in Figure S5, DynamicGPT’s training employs a split network training approach. This
approach separates the training of the multi-kernel encoder and the temporal modeling network, addressing
the challenge of scale differences between components that can complicate convergence and hinder learning
efficiency. By training these components independently, DynamicGPT achieves better convergence rates
and optimizes parameter learning more effectively. This strategy is grounded in the need for stability during
training and the goal of utilizing model parameters more efficiently. In other words, this split training method

is not only practical computaional efficiency but also essential for maximizing model performance.

Train stage 1

Past Future
fields Fields
. IS, .
Multi-kernel gﬁ Multi-kernel
Encoder m Decoder

Variational multi-scale autoencoder (VMAE):
Learning the relationship between past dynamics (1,2,..L) and future dynamics (L+7).

Train stage 2

Multi-kernel Past Future Multi-kernel
Encoder Features ‘ Features Encoder
(trained) ’ Tnput v Target mm < (trained)

Vision Transformer:
Improving the relationship between past and future high-dimensional latent representations
generated by the learned encoder.

Inference task

Future :
Multi-kernel Fasiiires Msg;lgzgel
Encoder m m ——> Decoder
(trained) Pred. Pred. (trained)

Inference process: Encoder (Past fields) > V/iT (generated past feature) > Decoder (Future feature) > Future fields

Figure S5: Overview of the training stages and inference process in the model architecture. Train Stage
1 involves the Variational Multi-Scale Autoencoder (VMAE), which learns the relationship between past
dynamics (T1, Tb, ..., T1,) and future dynamics (T74+1) using a multi-kernel encoder and decoder. Train
Stage 2 utilizes the Vision Transformer (ViT) to improve the relationship between high-dimensional past
and future features generated by the trained multi-kernel encoder. The Inference Task illustrates how the
trained model processes past fields to generate predictions, utilizing the ViT and multi-kernel decoder to
output future fields.

B.4 Summary of the optimized DynamicGPT’s archtectures

To provide a comprehensive understanding of how DynamicGPT apply to various real-world problems,
we highlighted the impact of different hyperparameters (e.g. beta-Parameter, Latent dimension, Head layer,
Kernel operation) on model performancein the section Guidelines for Tuning DynamicGPT Across
Diverse Spatiotemporal Dynamics of the Main Text. In this supplementary information, we summarize
the final architecture details, including the layers and feature maps, for each validation scenario (Figure S6).
This overview is essential for demonstrating the adaptability and robustness of the model across different
applications.

In the context of validating DynamicGPT, we investigated the performance across four representative
real-world problems: crack propagation in materials, 3D reaction-diffusion processes, flow past a cylinder,
and climate science predictions. Each scenario presents unique challenges and requires tailored network con-

figurations to achieve optimal performance. By systematically adjusting and analyzing the hyperparameters

10

in the multi-spatial embedding network (E), multi-scale temporal network (D), multi-scale spatial decoder
(F), and the discriminator, we identified the configurations that yielded the most accurate predictions.

The provided supplementary figure serves as a detailed reference, illustrating how each network com-
ponent and feature map size is specifically configured for the scenarios tested. For example, the multi-spatial
embedding network (FE) is tailored with varying numbers of encoding layers and feature dimensions de-
pending on the input data structure and problem complexity. Similarly, the multi-scale temporal network
(D) incorporates self-attention mechanisms and position layers to handle different temporal dependencies
effectively.

By presenting this structured summary, we aim to make it clear why these particular architectural
choices were made and how they contribute to the performance of DynamicGPT in diverse spatiotemporal
prediction tasks. This supplementary information underscores the thorough experimentation process and

provides clarity on the adjustments made for each validation dataset

Validation Multi-spatial embedding Multi-scale temporal Multi-scale spatial o
: Discriminator
Scenarios network (E) network (D) decoder (F)
Grackipiopagationlinima’eals Input layer (None, 132,132,3) Input (None, 16, 16, 16, 3) Decode layer 1 (None, 16,16, 16) Concatenate ~ (None, 132,132,2)
Encode layer 1 (None, 66, 66, 32) Embed layer (None, 3,2048) Decode layer 2 (None, 33,33,32) Conv2D (None, 66, 66, 64)
Encode layer 2 (None, 33, 33,32) Position layer (None, 3,2048) Decode layer 3 (None, 66, 66, 32) Conv2D (None, 33, 33,128)
Encode layer 3 (None, 16, 16, 16) Self-attention (None, 3,2048) Decode layer 4 (None, 132, 132, 32) Conv2D (None, 16, 16, 256)
Forward layer (None, 3,2048) Output layer (None, 132,132, 1) Conv2D (None, 15, 15,512)
Forward layer (None, 1, 2048) Output layer (None, 14, 14,1)
Reshape layer (None, 16, 16, 16)
Input layer (None, 80, 80, 80, 30) Input (None, 8, 8, 16, 30) Dense + Reshape (None, 8, 8,8, 16) Concatenate (Nane, 80, 80, 80, 2)
Encode layer 1 (None, 40, 40, 40, 64) Embed layer (None, 30, 1024) Upsampling (None, 10, 10, 10, 16) Conv3D (None, 40, 40, 40, 64)
Encode layer 2 (None, 20, 20, 20, 32) Position layer (None, 30, 1024) Decode layer 1 (None, 20, 20, 20,32) Conv3D (None, 20, 20, 20, 128)
Encode layer 3 (Nane, 10, 10, 10, 16) Self-attention (None, 30, 1024) Decode layer 2 (None, 40, 40, 40, 64) Conv3D (None, 10, 10, 10, 256)
Encode layer 4 (None, 8, 8, 8, 16) Forward layer (None, 30, 1024) Decode layer 3 (None, 80, 80, 80, 64) Conv3D (None, 9,9, 9, 512)
Average pooling (Nane, 8, 8, 16) Forward layer (None, 1, 1024) Output layer (None, 80, 80, 80, 1) Output layer (None, 8,8,8,1)
Reshape layer (None, 8, 8, 16)
Input layer (None, 256, 384, 10) Input (None, 4,4, 64,10) Decode layer 1 (None, 8, 12, 64) Concatenate (None, 256, 384, 2)
Encode layer 1 (None, 128, 192, 64) Embed layer (None, 10, 1024) Decode layer 2 (None, 16, 24, 64) Conv2D (None, 128, 192, 64)
Encode layer 2 (None, 64, 96, 64) Position layer (None, 10, 1024) Decode layer 3 (None, 32, 48, 64) Conv2D (None, 64, 96, 128)
Encode layer 3 (None, 32, 48, 64) Self-attention (None, 10, 1024) Decode layer 4 (None, 64, 96, 64) Conv2D (None, 32, 48, 256)
Encode layer 4 (None, 16, 24, 64) Forward layer (None, 10, 1024) Decode layer 5 (None, 128, 192, 64) Conv2D (None, 31, 47, 512)
Encode layer 5 (None, 8, 12, 64) Forward layer (None, 1, 1024) Output layer (None, 256, 384, 1) Output layer (None, 30, 46, 1)
Encode layer 6 (None, 4,4, 64) Reshape layer (None, 4, 4, 64)
Input layer (None, 180, 360, 12) Input (None, 2, 2, 64,12) Decode layer 1 (None, 3, 6, 64) Concatenate (None, 180, 360, 2)
Encode layer 1 (None, 90, 180, 64) Embed layer (None, 10, 256) Decode layer 2 (None, 6, 12, 64) Conv2D (None, 90, 180, 64)
Encode layer 2 (None, 45, 90, 64) Position layer (None, 10, 256) Decode layer 3 (None, 12, 23, 64) Conv2D (None, 45, 90, 128)
Encode layer 3 (None, 23, 45, 64) Self-attention (None, 10, 256) Decode layer 4 (None, 23, 45, 64) Conv2D (None, 23, 45, 256)
Encode layer 4 (None, 12, 23, 64) Forward layer (None, 10, 256) Decode layer 5 (None, 45, 90, 64) Conv2D (None, 22, 44,512)
Encode layer 5 (None, 6, 12, 64) Forward layer (None, 1, 256) Decode layer 6 (None, 90, 180, 64) Output layer (None, 21,43, 1)
Encode layer 6 (None, 3, 6, 64) Reshape layer (None, 2,2, 64) Output layer (None, 180, 360, 1)
Encode layer 7 (None, 2,2, 64)

Figure S6: DynamicGPT’s architecture for various validation scenarios. This table summarizes the layers
and dimensions used in the Multi-spatial Embedding Network (E), Multi-scale Temporal Network (D),
Multi-scale Spatial Decoder (F'), and Discriminator across different tasks, including crack propagation in
materials, the 3D reaction-diffusion process, flow past a cylinder, and climate science. Each scenario is
detailed with the input and output dimensions, highlighting the complexity and design of the neural network
components tailored for specific spatiotemporal challenges.

11

C Validation Against Baseline Models

To thoroughly assess the performance of DynamicGPT, we conducted a comprehensive comparison
against established baseline models, including Physics-Informed Neural Networks (PINNs)[1], Transform-
ers[2], and Deep Generative Models (DGMs)[3]. Each of these models has been widely utilized in spa-
tiotemporal dynamic prediction tasks, and their selection as baselines allows for a robust evaluation of

DynamicGPT’s advantages.

C.1 Physics-Informed Neural Networks (PINNs)

PINNs integrate physical governing equations directly into the neural network’s loss function (Left in
Figure S7), enabling the model to enforce known physical laws during training. This mechanism allows
PINNs to model spatiotemporal phenomena by embedding partial differential equations (PDEs) that de-
scribe system dynamics. The advantage of PINNs lies in their ability to maintain physical consistency and
provide interpretability. However, their performance is often limited by the need for accurate mathemati-
cal descriptions of complex systems and high computational costs, which can hinder real-time prediction
capabilities.

Why use PINNSs as a baseline? PINNs are included as a baseline to highlight DynamicGPT’s ability
to achieve comparable or superior accuracy without the constraints of embedding explicit physical equations.
This comparison underscores DynamicGPT’s flexibility and efficiency when applied to complex systems where

exact physical models are difficult to derive or computationally intensive to implement.

C.2 Transformer

Transformers, known for their self-attention mechanisms, excel at modeling long-range dependencies
within sequential data. In spatiotemporal dynamic predictions, they provide a way to capture relation-
ships across time steps while processing spatial features. A common approach involves using an autoencoder
architecture to effectively reduce the high-dimensional spatiotemporal data into lower-dimensional latent
vectors (Center in Figure S7). The encoder compresses the input data into a compact 1-dimensional vector
representation, preserving essential temporal and spatial features. This dimensionality reduction is critical
for making the subsequent dynamic modeling more computationally efficient. The self-attention mechanism
within the Transformer then processes these 1-dimensional vectors, enabling the model to weigh different
temporal relationships and capture diverse patterns. This allows for sophisticated dynamic modeling over

extended sequences. However, despite these strengths, standard Transformers can suffer from spatial infor-

12

mation loss when dealing with high-dimensional spatiotemporal data due to their focus on 1-dimensional
representations and single-scale processing.

Why use Transformers as a baseline? Including Transformers as a baseline allows us to demonstrate
DynamicGPT’s ability to overcome limitations related to spatial information loss. While Transformers excel
at managing long-term temporal dependencies, the comparison highlights how DynamicGPT’s multi-scale
feature extraction and vision-based temporal modeling can lead to more accurate and detailed spatiotemporal

predictions by preserving rich spatial details alongside temporal modeling.

C.3 Deep Generative Models (DGMs)

Deep Generative Models, especially those built upon conditional GANs (¢cGANSs), are well-known for their
capability to learn complex distributions and generate realistic samples. In our DGM baseline, an encoder
maps the input data to a latent space representation, followed by ConvLSTM layers that model temporal
dependencies. The decoder reconstructs the final spatiotemporal output from the latent space (Right in
Figure S7). This mechanism allows for modeling uncertainty and non-linear interactions in data. However,
due to the sequential structure involving encoder-ConvLSTM-decoder modules, errors can propagate through
the model, impacting the stability and accuracy of predictions. In addition, the combined use of ¢cGAN,
ConvLSTM, and multiple ecoding layers leads to significant computational expense. The high complexity
can hinder real-time performance, particularly with large spatiotemporal datasets.

Why use DGMs as a baseline?: DGMs are included to demonstrate DynamicGPT’s advantages
in managing complex spatiotemporal dynamics without the drawbacks of excessive computational cost and
instability associated with generative models. This comparison showcases how DynamicGPT’s structured ap-
proach, which incorporates probabilistic modeling and multi-scale feature extraction, achieves stable training

and effective inference, overcoming DGM limitations.

C.4 Hyperparameter setting

For all baseline models, hyperparameters were selected based on reported optimal configurations in peer-

reviewed studies:

e PINN: https://github.com/stephenbaek /parc

e Transformer: https://github.com/KTH-FlowAI/beta-Variational-autoencoders-and-

transformers-for-reduced-order-modelling-of-fluid-flows

13

e DGM: https://github.com/google-deepmind /deepmind-research /tree/master/now-

casting

This ensures that the comparison remains fair and rooted in previous validation studies that have rigorously
tested these architectures. Each model was tuned to achieve its best performance in similar spatiotemporal

tasks, making the comparison with DynamicGPT reflective of real-world applicability.

e . A N s
Physics-informed NN Transformer
L2 loss o
4 080,
Physical 0p0."
loss 2 o._'
(¢}
\ J \ dx1 J \

Computational cost
Predictive power T T

Computational cost
Predictive power |

Computational cost
Predictive power T

Figure S7: Baseline model architectures: Physics-informed Neural Networks (PINN), Transformer, and Deep
Generative Model.

D Detailed Methods for Assessing the Physical Consistency and
Computational Efficiency of DynamicGPT

In modern machine learning, evaluating the physical consistency and computational efficiency of predictive
models is crucial, especially in domains that involve complex spatiotemporal dynamics. The Performance
Assessment of DynamicGPT: Physical Consistency and Computational Efficiency section in the
Main Text underscores the importance of these metrics and highlights DynamicGPT’s superior performance
compared to baseline models. This section provides a comprehensive explanation of the methods and code

used for this assessment, supplementing the main text.

D.1 Methodology for Assessing Physical Consistency

Physical consistency ensures that model predictions adhere to the governing physical equations of the
system. For the composite design scenario, we evaluated physical consistency by predicting the stress evo-
lution along different directions and calculating the gradient values (V) using finite difference methods to

verify convergence to zero, satisfying the equilibrium equations of force.

14

To compute directional derivatives and gradients, we utilized Python libraries like Korina and Torch,
which support finite difference-based differentiation. This enabled us to develop a function that calculates de-
viations from the force equilibrium equations for both simulation-based and model-predicted results (Figure

S8). The following code snippet demonstrates how this function is structured:

1 def ForceEquilibriumCalculation(stress_data):

Input data:
stress_data is the results of

from a model

batch_size * output_steps * stress components *x H *x W
’stress temnsor’

sigma_xx = stress_datal:, :, 0] # xx stress component (shape: B *x T *x H x W)
sigma_yy = stress_datal:, :, 1] # yy stress component (shape: B * T *x H * W)

7 sigma_xy = stress_datal:, :, 2] # xy stress component (shape: B * T *x H * W)
sigma_yx = stress_datal:, :, 3] # yx stress component (shape: B * T *x H * W)
device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

43

44

45

46

Convert numpy arrays to torch tensors and move to device

sigma_xx torch.from_numpy(sigma_xx).float().to(device)
sigma_yy = torch.from_numpy(sigma_yy).float().to(device)
sigma_xy = torch.from_numpy(sigma_xy).float().to(device)
sigma_yx = torch.from_numpy(sigma_yx).float().to(device)

Add a batch and channel dimension

-> (H, W) -> (1, 1, H, W)

sigma_xx = sigma_xx.unsqueeze (0).unsqueeze (0)
sigma_yy sigma_yy.unsqueeze (0) .unsqueeze (0)
sigma_xy = sigma_xy.unsqueeze (0).unsqueeze (0)

sigma_yx

Sobolev-function gradients

field_grad

sigma_yx.

Calculate gradients
sigma_xx_grad =
sigma_yy_grad

sigma_xy_grad
sigma_yx_grad

unsqueeze (0) .

unsqueeze (0)

(Kornia’s Spatial Gradient)
= kornia.filters.SpatialGradient ()

field_grad(sigma_xx)
field_grad(sigma_yy)
field_grad(sigma_xy)
field_grad(sigma_yx)

Extract x and y components of gradients

if needed

x-direction force equilibrium

force_x_eq

y-direction force equilibrium

*by

Compute mean absolute value of the violations in force

= sigma_xx_x + sigma_xy_y + rho * bx

sigma_xX_X sigma_xx_grad[:, :, 0] # sigma_xx’s x-gradient
5 sigma_xy_y = sigma_xy_gradl[:, :, 1] # sigma_xy’s y-gradient
sigma_yy_y = sigma_yy_gradl[:, :, 1] # sigma_yy’s y-gradient
sigma_yx_x = sigma_yx_grad[:, :, 0] # sigma_yx’s x-gradient
Force equilibrium equations
rho = 1.0 # Assume density is 1 for simplicity
bx, by = 0.0, 0.0 # External forces (e.g., gravity), can be set to non-zero

force_y_eq = sigma_yy_y + sigma_yx_x + rho

force_x_mean = torch.mean(torch.abs(force_x_eq)).item()
force_y_mean = torch.mean(torch.abs(force_y_eq)).item()
f = force_x_mean + force_y_mean

return f

15

equilibrium

This method was applied to both simulation results and predictions from DynamicGPT and baseline
models to assess physical consistency. To test DynamicGPT’s robustness and generalizability, we evaluated
its performance on 1,000 composite configurations with strength and toughness averages 1.35 and 1.42
times higher than those in the training set. This strategy addresses a common challenge where conventional
models struggle to predict unseen configurations accurately, especially when trained on limited data. For the
unsteady flow problem, we used a similar approach to assess mass conservation by calculating the divergence
of the predicted flow field and verifying its convergence to zero (Figure S8). DynamicGPT was trained on
a 256 x 256 spatial domain and tested on a larger 1,536 x 256 domain to assess its generalization to unseen,
larger computational domains, a critical factor for real-world applications. The code snippet below outlines

the divergence calculation:

1 def DivergenceCalculation(data):
2 # Input data: batch_size * output_steps * flow length * H * W
3 # The data is the results by ’DynamicGPT and Baseline models’

5 preds_u = datal:, :, 0] # Extract u field (shape: B * T * H x W)
6 preds_v = datal:, :, 1] # Extract v field (shape: B * T * H *x W)
8 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
9
Convert numpy arrays to torch tensors and move to device
u = torch.from_numpy(preds_u).float().to(device)
v = torch.from_numpy(preds_v).float().to(device)
Add a batch and channel dimension -> (H, W) -> (1, 1, H, W)
u = u.unsqueeze (0) .unsqueeze (0) # Add batch and channel dimensions
v = v.unsqueeze (0) .unsqueeze (0) # Add batch and channel dimensions
Sobolev-function gradients (Kornia’s Spatial Gradient)
Note: the operation use "Central differential method"!

field_grad = kornia.filters.SpatialGradient ()

#

Calculate gradients

u_grad = field_grad (u)
v_grad = field_grad(v)

Extract x and y components of gradients

u_x = u_grad[:, :, 0] # u’s x-gradient

v_,y = v_grad[:, :, 1] # v’s y-gradient

Compute divergence (u_x + v_y)

div = u_x + v_y

Convert back to numpy and compute mean of the absolute divergence
div_mean = np.mean(np.abs(div.cpu().data.numpy()), axis=(0, 2, 3)) # Mean

over H, W

return div_mean

16

Physical law consistency evaluation Spatiotemporal fields prediction (DL vs Simulation) Mean Divergence
Equilibrium of Forces
0y, 80y, aal] (xk)
= =2 =0 S =0 >
X Yy Tensor Evaluation N ax}
00y, 00y operation unseen data
+—2 =90
d0x ay

Mass Balance
(Incompressible) a ‘ . a “ ‘

1 N
> — + = =0 > — Z Vw(x;, y;
du ov _ @ Tensor ox dy Evaluation N I (v yl)l
x ¥ dy - operation ' S ‘ unseen data k=1
B Discovery of PDE parameters Simulation results (7) Deep learning prediction (¥)
—_—— A
Reaction-Diffusion System
I= DHVZII + (1 —l > _ = [)“VZ — - 1=
=D,V +uv? + (F + k)
I Lt+1 ut at Tt vt ut
v -)
Estimation for unknown parameters (L-BFGS) Identified PDE formulation
¥ 5 = oL (DynamicGPT, Baseline models)
‘ Oy 0y gl:Du‘_Du_Tlﬁ
v a? Vzu V2 9“ V 0 0 u

= F |-0.04 0 oL

E v| 0 Q42| 0::Dp <Dy —ngn 2 = 0.0372u —uv? + 0.001(1 - w)
@ -

& n,l071 |0 - >

0 :0.12 O3:F —F—nop %=0.16V2v+uv2+ (0.001 + 0.0022)v

Z: Unknown parameter sets
arg m1n||Y —EX2+ A 1Elo X: Deep learning results
Y: Target results

oL
94:k<—k—11ﬁ

Figure S8: (a) Flowchart of physical Consistency evaluation, (b) Flowchart of PDE parameter estimation

D.2 Comprehensive Evaluation of Physical Consistency for Real-world Valida-

tion Sets

Equilibrium of Force

To evaluate the equilibrium of force, we calculated and averaged the stress evolution over 47 time
steps for each model in the test set (Supplementary Table 1). DynamicGPT achieved a score of 0.0083,
closely aligning with the simulation benchmark of 0.0072, highlighting its superior ability to maintain physical
consistency in stress evolution. In comparison, conventional models such as PINN, Transformer, and DGM
showed greater deviation from the simulation with scores of 0.0181, 0.0148, and 0.0125, respectively.

For a more detailed analysis, we focused on the configuration with the highest strength in the test
set—representing the most challenging case and the primary objective of exploring unseen spaces in me-
chanical design. Figure S9 illustrates the results for composite design, showing the equilibrium of forces
over time. DynamicGPT’s predictions closely follow the simulation curve, demonstrating superior physical
consistency even under extreme conditions. In contrast, other models such as PINN, DGM, and Transformer

exhibit more significant deviations, particularly at later time steps, indicating a loss of accuracy when deal-

17

ing with high-strength, unseen configurations. The ability to predict the stress evolution in configurations
with unprecedented mechanical properties is crucial for advancing material design and engineering prac-
tices. These results underline the importance of having models capable of accurately extrapolating to such
high-strength designs. By maintaining physical consistency and accurately modeling the long-term stress
evolution, DynamicGPT proves to be not only an effective predictive tool but also a potentially transfor-
mative asset for real-world engineering, where predicting behavior under novel and extreme conditions is
vital for safety and innovation. These findings suggest that while previous models can approximate physical
consistency, DynamicGPT’s architecture, which integrates multi-scale spatial and temporal modeling with
probabilistic components, significantly enhances its ability to capture the fine details necessary for adhering

to the governing force equilibrium equations.

o

=}

a
L

Simulation
PINN

DGM

| —— Transformer
—— DynamicGPT

o

o

=
L

4

o

@
L

g
o
N}

Equilibrium of forces

o o
o o
S =
. L
1
|

0 10 20 30 40 50
Time steps (Prediction)

Figure S9: Comparative analysis of physical consistency in predictions made by different models. The
equilibrium of forces over time steps is calculated by baseline models, DynamicGPT, and Simulation. Dy-
namicGPT’s predictions align more closely with the simulation results, showcasing its ability to maintain
physical consistency even in high-strength configurations that were not present in the training data.

Mass Balance
For the mass balance assessment, DynamicGPT also demonstrates superior performance with a de-
viation of 20.8, compared to the benchmark simulation value of 15.5. While this result is not as close to
the simulation as in the case of the force equilibrium, it is notably better than the scores of other models,
such as DGM (27.5), Transformer (42.9), and PINN (36.6). This indicates that DynamicGPT is not only
capable of maintaining force equilibrium but also effectively manages the conservation of mass in unsteady

flow scenarios (Figure S10).

D.3 Comparative Analysis and Implications

The results in Supplementary Table 1 indicate that DynamicGPT consistently outperforms baseline
models in physical law adherence for both force equilibrium and mass balance. This performance is attributed

to its advanced architecture, which integrates multi-scale feature extraction and temporal modeling while

18

150 1 - -
Simulation

DGM
7 —— PINN
—— Transformer
{ —— DynamicGPT

Unsteady flow

Divergence
>
o

(o2
o

-
_—
<

0 40 80 120 160 200
Time steps (Prediction)

Figure S10: Comparative analysis of physical consistency in predictions made by different models. The
divergence over time steps is shown for each model, including PINN, DGM, Transformer, and the proposed
DynamicGPT. DynamicGPT demonstrates lower divergence and maintains closer adherence to the simula-
tion benchmark, indicating superior mass conservation in unsteady flow predictions.

incorporating physical constraints. Unlike conventional models that struggle with extrapolating to unseen
scenarios and maintaining physical consistency, DynamicGPT demonstrates a clear advantage.

These results highlight the potential of DynamicGPT to bridge the gap between traditional com-
putational simulations and data-driven models. Achieving near-simulation-level accuracy in long-term spa-
tiotemporal predictions, DynamicGPT showcases its capability for reliable and computationally efficient
predictions, reinforcing its role as a powerful tool in applications where physical consistency is critical.

In conclusion, these findings demonstrate that DynamicGPT has been designed and optimized to over-
come the limitations of previous models, maintaining physical consistency in real-world validation scenarios.
This capability suggests that DynamicGPT could augment or even replace traditional simulation methods

for complex physical systems, paving the way for new applications in science and engineering.

Table S1: Summary of the evaluation of physical conservation laws across different models.
The table compares the performance of various models (PINN, Transformer, DGM, DynamicGPT, and
Simulation) in terms of two key metrics: Equilibrium of force and Mass balance. The DynamicGPT model
is highlighted in blue, showing the best performance in both metrics, with the lowest values for Equilibrium
of force and Mass balance compared to the other models.

Type PINN Transformer DGM DynamicGPT Simulation
Equilibrium of force 0.0181 0.0148 0.0125 0.0083 0.0072
Mass balance 36.6 42.9 27.5 20.8 15.5

D.4 Methodology for PDE Parameter Estimation

To expand on the evaluation of physical conservation laws, we employed a method for estimating PDE

(Partial Differential Equation) parameters based on the results of deep learning predictions. This approach

19

is significant because it bridges the gap between data-driven predictions and theoretical physical models by

allowing for the extraction and refinement of unknown PDE parameters, enhancing the interpretability and
reliability of the model.
Process Overview

The process for PDE parameter estimation is depicted in Figure S8(b), which illustrates the workflow

for analyzing the reaction-diffusion system as validation scenario. The detailed process with Python code is

as follow:

1. Simulation Results (Y) and Deep Learning Predictions (X): We compare simulation results
with predictions from models like DynamicGPT. These outputs approximate time derivatives and

spatial features used for parameter estimation.

% and 2¢ are calculated

2. Deriving Time Derivatives: The time derivatives of the predicted fields, % 55

using finite differences based on the simulation results:

i u_pred = np.load()
> v_pred = np.load()
s u_t_pred = (u_pred[:, 1:] - u_pred[:, :-1]1) / dt
+ v_t_pred = (v_pred[:, 1:] - v_pred[:, :-1]) / dt

3. Initial Parameter Setup: Initial guesses for PDE parameters are established and refined during

training:

1 inil = np.random.uniform(-1, 1)

> ini2 = np.random.uniform(-1, 1)

3 ini3 = np.random.uniform (-1, 1)

1 ini4 = np.random.uniform(-1, 1)

¢ D_.U = torch.tensor(inil, requires_grad=True)
7 D_V = torch.tensor(ini2, requires_grad=True)
s F = torch.tensor(ini3, requires_grad=True)

9 k = torch.tensor(ini4, requires_grad=True)

4. Optimization Strategy: We use an optimizer, such as LBFGS, for parameter updates:

optimizer = torch.optim.LBFGS([D_U, D_V, F, k], lr=1e-4)

5. Laplacian Calculation: The Laplacian operator for 3D spatial data is defined:
1 def laplacian_3d(U):

2 return (

3 -6 x U +

1 torch.roll(U, 1, dims=2) + torch.roll(U, -1, dims=2) +
5 torch.ro0ll1(U, 1, dims=3) + torch.roll(U, -1, dims=3) +

6 torch.roll(U, 1, dims=4) + torch.roll(U, -1, dims=4)

20

6. Loss Function Definition: The loss function compares predicted time derivatives (Right side of

16

17

18

19

equation) with PDE-driven time derivatives (Left side of equation):

def gray_scott_loss_multi(U_pred, V_pred, U_t_pred, V_t_pred, D_U, D_V, F, k,

lambda_reg=1e-3):

loss_total = 0

for i in range(U_pred.shape[0]):
lap_U = laplacian_3d(U_pred[i:i+1])
lap_V = laplacian_3d(V_pred[i:i+1])

lap_U = lap_U[:, :-1]
lap_V = lap_V[:, :-1]
U_eqn = D_U #* lap_U - U_pred[i:i+1, :-1] * V_pred[i:i+1, :-1]**2 + F x*
(1 - U_pred[i:i+1, :-11)
V_eqn = D_V * lap_V + U_pred[i:i+1, :-1] * V_pred[i:i+1, :-1]*x2 - (F
+ k) * V_pred[i:i+1, :-1]

U_t_pred_sliced = U_t_pred[i:i+1, :-1]
V_t_pred_sliced = V_t_pred[i:i+1, :-1]

loss_data = torch.mean((U_t_pred_sliced - U_eqn)**2) + torch.mean ((
V_t_pred_sliced - V_eqmn) **2)
loss_total += loss_data

loss_total /= U_pred.shape[0]
return loss_total

. Training Loop: The training loop iteratively updates parameters to minimize the loss. The learning

rate are the number of update are 1e-04 and 1,200, respectively:

for epoch in range (1200):

optimizer.zero_grad()

loss = gray_scott_loss_multi(u_pred([:, :-1], v_pred[:, :-1], u_t_pred,
v_t_pred, D_U, D_V, F, k)

loss.backward ()

optimizer.step ()

if epoch ¥ == 0:
print (f)
print (£)
print (£)
print (f)
print (f)
print (*50)

D.5 Detailed Results on PDE Parameter Estimation

Figure S11 illustrates the comparative results of parameter estimation for the reaction-diffusion system

across different models: PINN, DGM, and DynamicGPT. Each subplot represents the estimated values of

the diffusion coefficients D,, and D,,, feed rate F, and decay rate k over training epochs.

1. D, Estimation: DynamicGPT (blue line) demonstrates rapid convergence towards the target coef-

ficient (dashed line), achieving stability and accurate estimation earlier than both PINN and DGM.

21

While DGM shows significant fluctuations and a slower approach, PINN struggles to align with the

true value, indicating less robust estimation in this parameter.

2. D, Estimation: For the diffusion coefficient D,, DynamicGPT again shows a more consistent trajec-
tory towards the target compared to other models. PINN exhibits considerable instability, and DGM,
although it approaches the target value, does so with a more erratic pattern. This highlights Dynam-

icGPT’s ability to estimate this parameter with greater precision and reliability.

3. F' Estimation: In the estimation of the feed rate F', DynamicGPT displays smooth convergence
and aligns closely with the actual target value after the initial training phase. DGM reaches a closer
estimate but with higher variance, while PINN diverges away from the target, showing its limitations

in accurately estimating this parameter.

4. k Estimation: The decay rate k further underscores DynamicGPT’s performance advantage. The
model converges effectively and stabilizes near the target coefficient. In contrast, DGM initially oscil-
lates significantly before slowly settling, and PINN demonstrates the least effective estimation, deviat-

ing throughout the training.

These comparative results underscore DynamicGPT’s strength in reliably estimating reaction-diffusion pa-
rameters, maintaining accuracy across long-term spatiotemporal dynamic. The superior performance of Dy-
namicGPT over PINN and DGM emphasizes its robustness and precision, positioning it as a powerful tool

for predictive modeling and parameter discovery in complex spatiotemporal systems.

Target coefficient
0.20
0.15 1
0.10
0.05
0.00 1

—0.05 4

T T T T T T T T
0 500 1000 0 500 1000 0 500 1000 0 500 1000

Figure S11: Comparative analysis of physical consistency in predictions made by different models. The
divergence over time steps is shown for each model, including PINN, DGM, Transformer, and the proposed
DynamicGPT. DynamicGPT demonstrates lower divergence and maintains closer adherence to the simula-
tion benchmark, indicating superior mass conservation in unsteady flow predictions.

22

Table S2: Summary of the results of parameter estimation for partial differential equations
(PDEs). The table compares the estimated values of four key components (D,, D,, F, and k) obtained
using three different models: PINN, DGM, and DynamicGPT. The true values of the unknown parameters
are also included for comparison. Notably, the results obtained with DynamicGPT, highlighted in blue, show
the closest estimates to the actual unknown parameter values.

Component D, D, F k
PINN 0.237 0.137 -0.54 0.0642
DGM 0.228 0.02 0.0753 0.075
DynamicGPT 0.411 0.14 0.0243 0.071
Unknown Parameters 0.416 0.14 0.025 0.07

E References

[1] Nguyen, P.C.H. et al. PARC: Physics-aware recurrent convolutional neural networks to assimilate

meso scale reactive mechanics of energetic materials. Sci. Adv. 9, eadd6868 (2023).

[2] Solera-Rico, A. et al. B-Variational autoencoders and transformers for reduced-order modelling of fluid

flows. Nat. Commun. 15, 1361 (2024).

[3] Ravuri, S. et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 597,

672-677 (2021).

23

	Background
	DynamicGPT
	DynamicGPT Data process
	DynamicGPT Architecture
	DynamicGPT Training Strategy
	Summary of the optimized DynamicGPT's archtectures

	Validation Against Baseline Models
	Physics-Informed Neural Networks (PINNs)
	Transformer
	Deep Generative Models (DGMs)
	Hyperparameter setting

	Detailed Methods for Assessing the Physical Consistency and Computational Efficiency of DynamicGPT
	Methodology for Assessing Physical Consistency
	Comprehensive Evaluation of Physical Consistency for Real-world Validation Sets
	Comparative Analysis and Implications
	Methodology for PDE Parameter Estimation
	Detailed Results on PDE Parameter Estimation

	References

