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A Background

Spatiotemporal dynamics are at the heart of modern science and engineering, shaping our understand-

ing of complex systems and their behavior over time and space. From climate simulations to the intricate

analysis of turbulent flows and material failure mechanisms, computational simulations and sensing tech-

nologies have become essential tools. These approaches provide invaluable insights into specific scenarios;

however, they face significant challenges when it comes to real-time forecasting. The vast amount of data,

the substantial computational costs, and the inherent uncertainties associated with dynamic systems make

real-time prediction a formidable task.

These limitations are especially pronounced in real-world applications, where it is impractical to per-

fectly model every aspect of a system. Real-world data often exhibits nonlinear and chaotic interactions

among numerous variables, making precise prediction a challenging endeavor. To address these issues, deep

learning has emerged as a game-changing approach. With its capacity to learn complex, nonlinear relation-

ships and process data at multiple scales, deep learning has shown remarkable potential in overcoming many

of the limitations faced by traditional methods.

Over time, the integration of AI and simulation techniques has evolved significantly, as illustrated in

Figure S1. This evolution can be divided into four distinct generations, each building on the strengths of

its predecessors while attempting to address their weaknesses:

• Generation 1 introduced Convolutional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs) for processing spatiotemporal data. While these models were effective for learning
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simpler patterns, they struggled to capture long-term dependencies, which limited their predic-

tive capabilities.

• Generation 2 saw the rise of more sophisticated models, including Physics-informed Neural

Networks (PINNs), ConvLSTM (a combination of CNNs and RNNs), and Transformers.

– PINNs integrated governing physical equations into their training processes, enhancing the

realism of simulations. However, they required a deep understanding of these governing

equations, which limited their flexibility for diverse real-world problems.

– ConvLSTM brought a hybrid approach, combining spatial feature extraction and temporal

sequence modeling to improve spatiotemporal dependency handling. Despite this, it faced

limitations in managing ultra-long term dynamics, constraining its use in more extended

predictive tasks.

– Transformers provided a breakthrough by handling long-term dependencies more effectively

than prior architectures. However, they still encountered issues with spatial information loss,

particularly when processing complex spatiotemporal data due to their reliance on single-

scale processing.

• Generation 3 featured the development of Deep Generative Models, offering unprecedented

capabilities for handling intricate spatiotemporal patterns and uncertainties. Despite their

promise, challenges related to computational expense and the complexity of the models per-

sisted, hindering their application in real-time scenarios.

• Generation 4 emerged to tackle these remaining obstacles. In this context, we introduce

DynamicGPT, a model built upon a Vision Transformer (ViT)-based architecture that preserves

multi-scale spatial features and effectively models long-term temporal dependencies. This design

strikes an optimal balance between high-accuracy predictions and real-time feasibility.

In this supplementary information, we will provide an in-depth look at the mechanisms of Dynam-

icGPT, including its inference process and architectural components. Additionally, we will outline how we

selected and utilized baseline models to benchmark DynamicGPT’s performance in a fair and rigorous man-

ner.
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Figure S1: Evolution of neural network architectures for integrating spatiotemporal dynamic systems,
progressing from basic models (Generation 1) to advanced models like Deep Generative Models and Dynam-
icGPT (Generation 4).

B DynamicGPT

In this section, we provide detailed insights aimed at reinforcing the explanations presented in Dynam-

icGPT Implementation Details and Training Process of the Main Text. We describe the data

preprocessing required for training and inference in DynamicGPT, delve into the architecture’s key mecha-

nisms, and explain its training strategy, including the rationale behind specific design choices. Additionally,

we outline the optimized hyperparameters used for validating DynamicGPT on real-world problem datasets,

adding further depth to understanding its performance and applicability.

B.1 DynamicGPT Data process

As illustrated in Figure S2, DynamicGPT’s training strategy begins with processing spatiotemporal

data using a sliding window approach. The input consists of past dynamic fields with a length T , and the

target is the subsequent frame. This preprocessing method effectively augments the dataset by sliding the

window frame-by-frame, ensuring that the model learns from various temporal contexts across the entire

dataset. Once trained, DynamicGPT iteratively predicts frames, where each predicted frame is fed back into

the model as input for subsequent predictions. This process allows for accurate long-term spatiotemporal

forecasting, providing continuity and consistency over extended periods.
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Figure S2: The process of training and inference in DynamicGPT. The input consists of spatiotemporal
data for 1-L frames, where the target is the data for the next frame L+1. During training, the model learns
to predict the target from the input frames. In the inference phase, the predicted results are used sequentially
as input to forecast subsequent frames, demonstrating the iterative increment by one frame.

B.2 DynamicGPT Architecture

DynamicGPT’s architecture features powerful components that address the limitations of previous gen-

erations 2 and 3.

• First Key Mechanism – Multi-spatial Feature Extraction: As seen in Figure S3, the

first step of DynamicGPT involves extracting comprehensive spatial features from preprocessed

spatiotemporal data pairs using a multi-kernel encoder. The encoder applies multiple kernel

sizes (e.g., 2x2, 4x4, 8x8) to capture both fine local details and broader global patterns. This

multi-scale approach ensures that the model maintains rich spatial information throughout the

feature extraction process. For each input X and kernel Fk , the feature maps Fk are generated

as follows (Eq. 1):

Fk = X ∗Kk ∀k ∈ {2, 4, 8} (1)
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The extracted features F2, F4, F8 are fused through a 1x1 convolutional layer, which combines

them efficiently while reducing learning parameters (Eq. 2):

Ffused = σ (Wfusion · [F2;F4;F8]) (2)

where Wfusion denotes the weights of the 1×1 convolution, σ is a non-linear activation function

(e.g., ReLU), and [·] represents concatenation of feature maps. This convolution operation

not only enhances model performance but also maintains computational efficiency. Next, the

resulting latent patches are then processed with a variational sampling technique, modeling

the inherent uncertainty present in real-world spatiotemporal dynamics, where the mean µ and

variance σ are calculated as follows:

µ = WµFfused + bµ (3)

σ = exp (WσFfused + bσ) (4)

The final latent vector z is sampled using the reparameterization trick:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I) (5)

where ⊙ denotes element-wise multiplication. This probabilistic approach ensures that the

model can generalize effectively, making the method robust in handling unseen scenarios.

• Second Key Mechanism – Temporal Modeling with Latent Patches: Figure S4 illus-

trates how DynamicGPT enhances temporal modeling using the latent patches produced by the

multi-kernel encoder. Unlike Generations 2 and 3, which struggled to preserve spatiotemporal

characteristics, DynamicGPT employs a Vision Transformer (ViT) to strengthen temporal con-

nections between latent patches. To capture varying temporal dependencies (short, medium,

and long-term), a padding technique aligns latent patches of different input lengths T . The

core of this ViT is the Multi-Head Self-Attention (MHSA) mechanism, which allows the model

to focus on different temporal aspects by processing each latent patch independently across

multiple attention heads.
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For each latent patch zi, linear projections are created to form the query (Q), key (K), and

value (V ) matrices:

Qi = WQzi, Ki = WKzi, Vi = WV zi (6)

where WQ, WK , and WV are learned weights. The attention score for each head is computed

as a scaled dot-product between queries and keys, followed by a softmax operation to ensure

probabilities:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (7)

Here, dk is the dimension of the key vectors, used to scale the dot-product for stable gradient

updates. The outputs from each attention head are concatenated and passed through a final

linear layer to integrate the multi-head outputs:

MHSA output = WO · [head1,head2, . . . ,headh] (8)

where WO is the learned weight of the output projection. This MHSA mechanism enables the

model to capture short, medium, and long-term temporal dependencies, effectively maintaining

temporal integrity across varying input lengths T .

Furthermore, to enhance the model’s temporal modeling capability, DynamicGPT incorporates

a ConvGRU module, which is integrated into the multi-scale temporal network. This ConvGRU

helps capture sequential dependencies more effectively within the temporal sequence, reinforcing

the latent patch representations. The ConvGRU operates as follows:

- Update Gate:

zt = σ (Wxz ∗ zt−1 + Uhz ∗ ht−1 + bz) (9)

- Reset Gate:

rt = σ (Wxr ∗ zt−1 + Uhr ∗ ht−1 + br) (10)

- New Memory Content:
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h̃t = tanh
(
Wxh̃ ∗ zt−1 + rt ⊙ (Uhh̃ ∗ ht−1) + bh̃

)
(11)

- Final Output:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (12)

where ht represents the final output of the ConvGRU, reinforcing the temporal dependencies

among latent patches. This combined approach enables DynamicGPT to model complex tem-

poral sequences while preserving spatial integrity and incorporating uncertainty—a significant

advancement over previous approaches.

Figure S3: Architecture of the Multi-Kernel Encoder-Decoder model for spatiotemporal data processing.
The model utilizes various kernel sizes to capture features at different scales: smaller kernels for local features,
mid-scale kernels for intermediate features, and larger kernels for global patterns. The encoding process
analyzes past fields (input) to derive latent representations, while the decoding process predicts future fields.
This architecture enhances the model’s ability to integrate detailed and large-scale information effectively.
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Figure S4: Architecture of the Multi-Kernel Encoder-Decoder model with Transformer integration for
spatiotemporal data processing. The model consists of a multi-kernel encoder that extracts features from
past fields (input) using various kernel sizes, followed by a sampling layer that captures latent representations.
The Transformer encoder processes these features through a linear projection, allowing for effective learning
of relationships. The multi-kernel decoder then generates future fields (predictions) based on the encoded
information, enhancing the model’s ability to predict future dynamics.

B.3 DynamicGPT Training Strategy

As shown in Figure S5, DynamicGPT’s training employs a split network training approach. This

approach separates the training of the multi-kernel encoder and the temporal modeling network, addressing

the challenge of scale differences between components that can complicate convergence and hinder learning

efficiency. By training these components independently, DynamicGPT achieves better convergence rates

and optimizes parameter learning more effectively. This strategy is grounded in the need for stability during

training and the goal of utilizing model parameters more efficiently. In other words, this split training method

is not only practical computaional efficiency but also essential for maximizing model performance.
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Figure S5: Overview of the training stages and inference process in the model architecture. Train Stage
1 involves the Variational Multi-Scale Autoencoder (VMAE), which learns the relationship between past
dynamics (T1, T2, ..., TL) and future dynamics (TL+1) using a multi-kernel encoder and decoder. Train
Stage 2 utilizes the Vision Transformer (ViT) to improve the relationship between high-dimensional past
and future features generated by the trained multi-kernel encoder. The Inference Task illustrates how the
trained model processes past fields to generate predictions, utilizing the ViT and multi-kernel decoder to
output future fields.

B.4 Summary of the optimized DynamicGPT’s archtectures

To provide a comprehensive understanding of how DynamicGPT apply to various real-world problems,

we highlighted the impact of different hyperparameters (e.g. beta-Parameter, Latent dimension, Head layer,

Kernel operation) on model performancein the section Guidelines for Tuning DynamicGPT Across

Diverse Spatiotemporal Dynamics of theMain Text. In this supplementary information, we summarize

the final architecture details, including the layers and feature maps, for each validation scenario (Figure S6).

This overview is essential for demonstrating the adaptability and robustness of the model across different

applications.

In the context of validating DynamicGPT, we investigated the performance across four representative

real-world problems: crack propagation in materials, 3D reaction-diffusion processes, flow past a cylinder,

and climate science predictions. Each scenario presents unique challenges and requires tailored network con-

figurations to achieve optimal performance. By systematically adjusting and analyzing the hyperparameters
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in the multi-spatial embedding network (E), multi-scale temporal network (D), multi-scale spatial decoder

(F ), and the discriminator, we identified the configurations that yielded the most accurate predictions.

The provided supplementary figure serves as a detailed reference, illustrating how each network com-

ponent and feature map size is specifically configured for the scenarios tested. For example, the multi-spatial

embedding network (E) is tailored with varying numbers of encoding layers and feature dimensions de-

pending on the input data structure and problem complexity. Similarly, the multi-scale temporal network

(D) incorporates self-attention mechanisms and position layers to handle different temporal dependencies

effectively.

By presenting this structured summary, we aim to make it clear why these particular architectural

choices were made and how they contribute to the performance of DynamicGPT in diverse spatiotemporal

prediction tasks. This supplementary information underscores the thorough experimentation process and

provides clarity on the adjustments made for each validation dataset

Figure S6: DynamicGPT’s architecture for various validation scenarios. This table summarizes the layers
and dimensions used in the Multi-spatial Embedding Network (E), Multi-scale Temporal Network (D),
Multi-scale Spatial Decoder (F ), and Discriminator across different tasks, including crack propagation in
materials, the 3D reaction-diffusion process, flow past a cylinder, and climate science. Each scenario is
detailed with the input and output dimensions, highlighting the complexity and design of the neural network
components tailored for specific spatiotemporal challenges.
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C Validation Against Baseline Models

To thoroughly assess the performance of DynamicGPT, we conducted a comprehensive comparison

against established baseline models, including Physics-Informed Neural Networks (PINNs)[1], Transform-

ers[2], and Deep Generative Models (DGMs)[3]. Each of these models has been widely utilized in spa-

tiotemporal dynamic prediction tasks, and their selection as baselines allows for a robust evaluation of

DynamicGPT’s advantages.

C.1 Physics-Informed Neural Networks (PINNs)

PINNs integrate physical governing equations directly into the neural network’s loss function (Left in

Figure S7), enabling the model to enforce known physical laws during training. This mechanism allows

PINNs to model spatiotemporal phenomena by embedding partial differential equations (PDEs) that de-

scribe system dynamics. The advantage of PINNs lies in their ability to maintain physical consistency and

provide interpretability. However, their performance is often limited by the need for accurate mathemati-

cal descriptions of complex systems and high computational costs, which can hinder real-time prediction

capabilities.

Why use PINNs as a baseline? PINNs are included as a baseline to highlight DynamicGPT’s ability

to achieve comparable or superior accuracy without the constraints of embedding explicit physical equations.

This comparison underscores DynamicGPT’s flexibility and efficiency when applied to complex systems where

exact physical models are difficult to derive or computationally intensive to implement.

C.2 Transformer

Transformers, known for their self-attention mechanisms, excel at modeling long-range dependencies

within sequential data. In spatiotemporal dynamic predictions, they provide a way to capture relation-

ships across time steps while processing spatial features. A common approach involves using an autoencoder

architecture to effectively reduce the high-dimensional spatiotemporal data into lower-dimensional latent

vectors (Center in Figure S7). The encoder compresses the input data into a compact 1-dimensional vector

representation, preserving essential temporal and spatial features. This dimensionality reduction is critical

for making the subsequent dynamic modeling more computationally efficient. The self-attention mechanism

within the Transformer then processes these 1-dimensional vectors, enabling the model to weigh different

temporal relationships and capture diverse patterns. This allows for sophisticated dynamic modeling over

extended sequences. However, despite these strengths, standard Transformers can suffer from spatial infor-
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mation loss when dealing with high-dimensional spatiotemporal data due to their focus on 1-dimensional

representations and single-scale processing.

Why use Transformers as a baseline? Including Transformers as a baseline allows us to demonstrate

DynamicGPT’s ability to overcome limitations related to spatial information loss. While Transformers excel

at managing long-term temporal dependencies, the comparison highlights how DynamicGPT’s multi-scale

feature extraction and vision-based temporal modeling can lead to more accurate and detailed spatiotemporal

predictions by preserving rich spatial details alongside temporal modeling.

C.3 Deep Generative Models (DGMs)

Deep Generative Models, especially those built upon conditional GANs (cGANs), are well-known for their

capability to learn complex distributions and generate realistic samples. In our DGM baseline, an encoder

maps the input data to a latent space representation, followed by ConvLSTM layers that model temporal

dependencies. The decoder reconstructs the final spatiotemporal output from the latent space (Right in

Figure S7). This mechanism allows for modeling uncertainty and non-linear interactions in data. However,

due to the sequential structure involving encoder-ConvLSTM-decoder modules, errors can propagate through

the model, impacting the stability and accuracy of predictions. In addition, the combined use of cGAN,

ConvLSTM, and multiple ecoding layers leads to significant computational expense. The high complexity

can hinder real-time performance, particularly with large spatiotemporal datasets.

Why use DGMs as a baseline?: DGMs are included to demonstrate DynamicGPT’s advantages

in managing complex spatiotemporal dynamics without the drawbacks of excessive computational cost and

instability associated with generative models. This comparison showcases how DynamicGPT’s structured ap-

proach, which incorporates probabilistic modeling and multi-scale feature extraction, achieves stable training

and effective inference, overcoming DGM limitations.

C.4 Hyperparameter setting

For all baseline models, hyperparameters were selected based on reported optimal configurations in peer-

reviewed studies:

• PINN: https://github.com/stephenbaek/parc

• Transformer: https://github.com/KTH-FlowAI/beta-Variational-autoencoders-and-

transformers-for-reduced-order-modelling-of-fluid-flows
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• DGM: https://github.com/google-deepmind/deepmind-research /tree/master/now-

casting

This ensures that the comparison remains fair and rooted in previous validation studies that have rigorously

tested these architectures. Each model was tuned to achieve its best performance in similar spatiotemporal

tasks, making the comparison with DynamicGPT reflective of real-world applicability.

Figure S7: Baseline model architectures: Physics-informed Neural Networks (PINN), Transformer, and Deep
Generative Model.

D Detailed Methods for Assessing the Physical Consistency and

Computational Efficiency of DynamicGPT

In modern machine learning, evaluating the physical consistency and computational efficiency of predictive

models is crucial, especially in domains that involve complex spatiotemporal dynamics. The Performance

Assessment of DynamicGPT: Physical Consistency and Computational Efficiency section in the

Main Text underscores the importance of these metrics and highlights DynamicGPT’s superior performance

compared to baseline models. This section provides a comprehensive explanation of the methods and code

used for this assessment, supplementing the main text.

D.1 Methodology for Assessing Physical Consistency

Physical consistency ensures that model predictions adhere to the governing physical equations of the

system. For the composite design scenario, we evaluated physical consistency by predicting the stress evo-

lution along different directions and calculating the gradient values (∇) using finite difference methods to

verify convergence to zero, satisfying the equilibrium equations of force.
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To compute directional derivatives and gradients, we utilized Python libraries like Korina and Torch,

which support finite difference-based differentiation. This enabled us to develop a function that calculates de-

viations from the force equilibrium equations for both simulation-based and model-predicted results (Figure

S8). The following code snippet demonstrates how this function is structured:

1 def ForceEquilibriumCalculation(stress_data):
2 # Input data: batch_size * output_steps * stress components * H * W
3 # stress_data is the results of ’stress tensor ’ from a model
4

5 sigma_xx = stress_data [:, :, 0] # xx stress component (shape: B * T * H * W)
6 sigma_yy = stress_data [:, :, 1] # yy stress component (shape: B * T * H * W)
7 sigma_xy = stress_data [:, :, 2] # xy stress component (shape: B * T * H * W)
8 sigma_yx = stress_data [:, :, 3] # yx stress component (shape: B * T * H * W)
9

10 device = torch.device(’cuda’ if torch.cuda.is_available () else ’cpu’)
11

12 # Convert numpy arrays to torch tensors and move to device
13 sigma_xx = torch.from_numpy(sigma_xx).float ().to(device)
14 sigma_yy = torch.from_numpy(sigma_yy).float ().to(device)
15 sigma_xy = torch.from_numpy(sigma_xy).float ().to(device)
16 sigma_yx = torch.from_numpy(sigma_yx).float ().to(device)
17

18 # Add a batch and channel dimension -> (H, W) -> (1, 1, H, W)
19 sigma_xx = sigma_xx.unsqueeze (0).unsqueeze (0)
20 sigma_yy = sigma_yy.unsqueeze (0).unsqueeze (0)
21 sigma_xy = sigma_xy.unsqueeze (0).unsqueeze (0)
22 sigma_yx = sigma_yx.unsqueeze (0).unsqueeze (0)
23

24 # Sobolev -function gradients (Kornia ’s Spatial Gradient)
25 field_grad = kornia.filters.SpatialGradient ()
26

27 # Calculate gradients
28 sigma_xx_grad = field_grad(sigma_xx)
29 sigma_yy_grad = field_grad(sigma_yy)
30 sigma_xy_grad = field_grad(sigma_xy)
31 sigma_yx_grad = field_grad(sigma_yx)
32

33 # Extract x and y components of gradients
34 sigma_xx_x = sigma_xx_grad [:, :, 0] # sigma_xx ’s x-gradient
35 sigma_xy_y = sigma_xy_grad [:, :, 1] # sigma_xy ’s y-gradient
36

37 sigma_yy_y = sigma_yy_grad [:, :, 1] # sigma_yy ’s y-gradient
38 sigma_yx_x = sigma_yx_grad [:, :, 0] # sigma_yx ’s x-gradient
39

40 # Force equilibrium equations
41 rho = 1.0 # Assume density is 1 for simplicity
42 bx , by = 0.0, 0.0 # External forces (e.g., gravity), can be set to non -zero

if needed
43

44 # x-direction force equilibrium
45 force_x_eq = sigma_xx_x + sigma_xy_y + rho * bx
46

47 # y-direction force equilibrium force_y_eq = sigma_yy_y + sigma_yx_x + rho
* by

48

49 # Compute mean absolute value of the violations in force equilibrium
50 force_x_mean = torch.mean(torch.abs(force_x_eq)).item()
51 force_y_mean = torch.mean(torch.abs(force_y_eq)).item()
52 f = force_x_mean + force_y_mean
53 return f
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This method was applied to both simulation results and predictions from DynamicGPT and baseline

models to assess physical consistency. To test DynamicGPT’s robustness and generalizability, we evaluated

its performance on 1,000 composite configurations with strength and toughness averages 1.35 and 1.42

times higher than those in the training set. This strategy addresses a common challenge where conventional

models struggle to predict unseen configurations accurately, especially when trained on limited data. For the

unsteady flow problem, we used a similar approach to assess mass conservation by calculating the divergence

of the predicted flow field and verifying its convergence to zero (Figure S8). DynamicGPT was trained on

a 256 × 256 spatial domain and tested on a larger 1,536 × 256 domain to assess its generalization to unseen,

larger computational domains, a critical factor for real-world applications. The code snippet below outlines

the divergence calculation:

1 def DivergenceCalculation(data):
2 # Input data: batch_size * output_steps * flow length * H * W
3 # The data is the results by ’DynamicGPT and Baseline models ’
4

5 preds_u = data[:, :, 0] # Extract u field (shape: B * T * H * W)
6 preds_v = data[:, :, 1] # Extract v field (shape: B * T * H * W)
7

8 device = torch.device(’cuda’ if torch.cuda.is_available () else ’cpu’)
9

10 # Convert numpy arrays to torch tensors and move to device
11 u = torch.from_numpy(preds_u).float().to(device)
12 v = torch.from_numpy(preds_v).float().to(device)
13

14 # Add a batch and channel dimension -> (H, W) -> (1, 1, H, W)
15 u = u.unsqueeze (0).unsqueeze (0) # Add batch and channel dimensions
16 v = v.unsqueeze (0).unsqueeze (0) # Add batch and channel dimensions
17

18 # Sobolev -function gradients (Kornia ’s Spatial Gradient)
19 # Note: the operation use "Central differential method "!
20 field_grad = kornia.filters.SpatialGradient ()
21

22 # Calculate gradients
23 u_grad = field_grad(u)
24 v_grad = field_grad(v)
25

26 # Extract x and y components of gradients
27 u_x = u_grad[:, :, 0] # u’s x-gradient
28 v_y = v_grad[:, :, 1] # v’s y-gradient
29

30 # Compute divergence (u_x + v_y)
31 div = u_x + v_y
32

33 # Convert back to numpy and compute mean of the absolute divergence
34 div_mean = np.mean(np.abs(div.cpu().data.numpy ()), axis=(0, 2, 3)) # Mean

over H, W
35

36 return div_mean
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Figure S8: (a) Flowchart of physical Consistency evaluation, (b) Flowchart of PDE parameter estimation

D.2 Comprehensive Evaluation of Physical Consistency for Real-world Valida-

tion Sets

Equilibrium of Force

To evaluate the equilibrium of force, we calculated and averaged the stress evolution over 47 time

steps for each model in the test set (Supplementary Table 1). DynamicGPT achieved a score of 0.0083,

closely aligning with the simulation benchmark of 0.0072, highlighting its superior ability to maintain physical

consistency in stress evolution. In comparison, conventional models such as PINN, Transformer, and DGM

showed greater deviation from the simulation with scores of 0.0181, 0.0148, and 0.0125, respectively.

For a more detailed analysis, we focused on the configuration with the highest strength in the test

set—representing the most challenging case and the primary objective of exploring unseen spaces in me-

chanical design. Figure S9 illustrates the results for composite design, showing the equilibrium of forces

over time. DynamicGPT’s predictions closely follow the simulation curve, demonstrating superior physical

consistency even under extreme conditions. In contrast, other models such as PINN, DGM, and Transformer

exhibit more significant deviations, particularly at later time steps, indicating a loss of accuracy when deal-
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ing with high-strength, unseen configurations. The ability to predict the stress evolution in configurations

with unprecedented mechanical properties is crucial for advancing material design and engineering prac-

tices. These results underline the importance of having models capable of accurately extrapolating to such

high-strength designs. By maintaining physical consistency and accurately modeling the long-term stress

evolution, DynamicGPT proves to be not only an effective predictive tool but also a potentially transfor-

mative asset for real-world engineering, where predicting behavior under novel and extreme conditions is

vital for safety and innovation. These findings suggest that while previous models can approximate physical

consistency, DynamicGPT’s architecture, which integrates multi-scale spatial and temporal modeling with

probabilistic components, significantly enhances its ability to capture the fine details necessary for adhering

to the governing force equilibrium equations.

Figure S9: Comparative analysis of physical consistency in predictions made by different models. The
equilibrium of forces over time steps is calculated by baseline models, DynamicGPT, and Simulation. Dy-
namicGPT’s predictions align more closely with the simulation results, showcasing its ability to maintain
physical consistency even in high-strength configurations that were not present in the training data.

Mass Balance

For the mass balance assessment, DynamicGPT also demonstrates superior performance with a de-

viation of 20.8, compared to the benchmark simulation value of 15.5. While this result is not as close to

the simulation as in the case of the force equilibrium, it is notably better than the scores of other models,

such as DGM (27.5), Transformer (42.9), and PINN (36.6). This indicates that DynamicGPT is not only

capable of maintaining force equilibrium but also effectively manages the conservation of mass in unsteady

flow scenarios (Figure S10).

D.3 Comparative Analysis and Implications

The results in Supplementary Table 1 indicate that DynamicGPT consistently outperforms baseline

models in physical law adherence for both force equilibrium and mass balance. This performance is attributed

to its advanced architecture, which integrates multi-scale feature extraction and temporal modeling while
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Figure S10: Comparative analysis of physical consistency in predictions made by different models. The
divergence over time steps is shown for each model, including PINN, DGM, Transformer, and the proposed
DynamicGPT. DynamicGPT demonstrates lower divergence and maintains closer adherence to the simula-
tion benchmark, indicating superior mass conservation in unsteady flow predictions.

incorporating physical constraints. Unlike conventional models that struggle with extrapolating to unseen

scenarios and maintaining physical consistency, DynamicGPT demonstrates a clear advantage.

These results highlight the potential of DynamicGPT to bridge the gap between traditional com-

putational simulations and data-driven models. Achieving near-simulation-level accuracy in long-term spa-

tiotemporal predictions, DynamicGPT showcases its capability for reliable and computationally efficient

predictions, reinforcing its role as a powerful tool in applications where physical consistency is critical.

In conclusion, these findings demonstrate that DynamicGPT has been designed and optimized to over-

come the limitations of previous models, maintaining physical consistency in real-world validation scenarios.

This capability suggests that DynamicGPT could augment or even replace traditional simulation methods

for complex physical systems, paving the way for new applications in science and engineering.

Table S1: Summary of the evaluation of physical conservation laws across different models.
The table compares the performance of various models (PINN, Transformer, DGM, DynamicGPT, and
Simulation) in terms of two key metrics: Equilibrium of force and Mass balance. The DynamicGPT model
is highlighted in blue, showing the best performance in both metrics, with the lowest values for Equilibrium
of force and Mass balance compared to the other models.

Type PINN Transformer DGM DynamicGPT Simulation

Equilibrium of force 0.0181 0.0148 0.0125 0.0083 0.0072

Mass balance 36.6 42.9 27.5 20.8 15.5

D.4 Methodology for PDE Parameter Estimation

To expand on the evaluation of physical conservation laws, we employed a method for estimating PDE

(Partial Differential Equation) parameters based on the results of deep learning predictions. This approach
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is significant because it bridges the gap between data-driven predictions and theoretical physical models by

allowing for the extraction and refinement of unknown PDE parameters, enhancing the interpretability and

reliability of the model.

Process Overview

The process for PDE parameter estimation is depicted in Figure S8(b), which illustrates the workflow

for analyzing the reaction-diffusion system as validation scenario. The detailed process with Python code is

as follow:

1. Simulation Results (Y) and Deep Learning Predictions (X̂): We compare simulation results

with predictions from models like DynamicGPT. These outputs approximate time derivatives and

spatial features used for parameter estimation.

2. Deriving Time Derivatives: The time derivatives of the predicted fields, ∂u
∂t and ∂v

∂t , are calculated

using finite differences based on the simulation results:

1 u_pred = np.load(’Simulation_u.npy’)
2 v_pred = np.load(’Simulation_v.npy’)
3 u_t_pred = (u_pred[:, 1:] - u_pred[:, :-1]) / dt
4 v_t_pred = (v_pred[:, 1:] - v_pred[:, :-1]) / dt

3. Initial Parameter Setup: Initial guesses for PDE parameters are established and refined during

training:

1 ini1 = np.random.uniform(-1, 1)
2 ini2 = np.random.uniform(-1, 1)
3 ini3 = np.random.uniform(-1, 1)
4 ini4 = np.random.uniform(-1, 1)
5

6 D_U = torch.tensor(ini1 , requires_grad=True)
7 D_V = torch.tensor(ini2 , requires_grad=True)
8 F = torch.tensor(ini3 , requires_grad=True)
9 k = torch.tensor(ini4 , requires_grad=True)

4. Optimization Strategy: We use an optimizer, such as LBFGS, for parameter updates:

1 optimizer = torch.optim.LBFGS([D_U , D_V , F, k], lr=1e-4)

5. Laplacian Calculation: The Laplacian operator for 3D spatial data is defined:

1 def laplacian_3d(U):
2 return (
3 -6 * U +
4 torch.roll(U, 1, dims =2) + torch.roll(U, -1, dims =2) +
5 torch.roll(U, 1, dims =3) + torch.roll(U, -1, dims =3) +
6 torch.roll(U, 1, dims =4) + torch.roll(U, -1, dims =4)
7 )
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6. Loss Function Definition: The loss function compares predicted time derivatives (Right side of

equation) with PDE-driven time derivatives (Left side of equation):

1 def gray_scott_loss_multi(U_pred , V_pred , U_t_pred , V_t_pred , D_U , D_V , F, k,
lambda_reg =1e-3):

2 loss_total = 0
3 for i in range(U_pred.shape [0]):
4 lap_U = laplacian_3d(U_pred[i:i+1])
5 lap_V = laplacian_3d(V_pred[i:i+1])
6 lap_U = lap_U[:, :-1]
7 lap_V = lap_V[:, :-1]
8

9 U_eqn = D_U * lap_U - U_pred[i:i+1, :-1] * V_pred[i:i+1, : -1]**2 + F *
(1 - U_pred[i:i+1, :-1])

10 V_eqn = D_V * lap_V + U_pred[i:i+1, :-1] * V_pred[i:i+1, : -1]**2 - (F
+ k) * V_pred[i:i+1, :-1]

11

12 U_t_pred_sliced = U_t_pred[i:i+1, :-1]
13 V_t_pred_sliced = V_t_pred[i:i+1, :-1]
14

15 loss_data = torch.mean(( U_t_pred_sliced - U_eqn)**2) + torch.mean((
V_t_pred_sliced - V_eqn)**2)

16 loss_total += loss_data
17

18 loss_total /= U_pred.shape [0]
19 return loss_total

7. Training Loop: The training loop iteratively updates parameters to minimize the loss. The learning

rate are the number of update are 1e-04 and 1,200, respectively:

1 for epoch in range (1200):
2 optimizer.zero_grad ()
3 loss = gray_scott_loss_multi(u_pred[:, :-1], v_pred[:, :-1], u_t_pred ,

v_t_pred , D_U , D_V , F, k)
4 loss.backward ()
5 optimizer.step()
6

7 if epoch % 2 == 0:
8 print(f’Epoch␣{epoch},␣Loss:␣{loss.item():.6f}’)
9 print(f’Estimated␣D_U:␣{D_U.item():.6f},␣Actual␣D_U:␣{actual_DU}’)

10 print(f’Estimated␣D_V:␣{D_V.item():.6f},␣Actual␣D_V:␣{actual_DV}’)
11 print(f’Estimated␣F:␣{F.item():.6f},␣Actual␣F:␣{actual_F}’)
12 print(f’Estimated␣k:␣{k.item():.6f},␣Actual␣k:␣{actual_k}’)
13 print(’-’*50)

D.5 Detailed Results on PDE Parameter Estimation

Figure S11 illustrates the comparative results of parameter estimation for the reaction-diffusion system

across different models: PINN, DGM, and DynamicGPT. Each subplot represents the estimated values of

the diffusion coefficients Du and Dv, feed rate F, and decay rate k over training epochs.

1. Du Estimation: DynamicGPT (blue line) demonstrates rapid convergence towards the target coef-

ficient (dashed line), achieving stability and accurate estimation earlier than both PINN and DGM.
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While DGM shows significant fluctuations and a slower approach, PINN struggles to align with the

true value, indicating less robust estimation in this parameter.

2. Dv Estimation: For the diffusion coefficient Dv, DynamicGPT again shows a more consistent trajec-

tory towards the target compared to other models. PINN exhibits considerable instability, and DGM,

although it approaches the target value, does so with a more erratic pattern. This highlights Dynam-

icGPT’s ability to estimate this parameter with greater precision and reliability.

3. F Estimation: In the estimation of the feed rate F , DynamicGPT displays smooth convergence

and aligns closely with the actual target value after the initial training phase. DGM reaches a closer

estimate but with higher variance, while PINN diverges away from the target, showing its limitations

in accurately estimating this parameter.

4. k Estimation: The decay rate k further underscores DynamicGPT’s performance advantage. The

model converges effectively and stabilizes near the target coefficient. In contrast, DGM initially oscil-

lates significantly before slowly settling, and PINN demonstrates the least effective estimation, deviat-

ing throughout the training.

These comparative results underscore DynamicGPT’s strength in reliably estimating reaction-diffusion pa-

rameters, maintaining accuracy across long-term spatiotemporal dynamic. The superior performance of Dy-

namicGPT over PINN and DGM emphasizes its robustness and precision, positioning it as a powerful tool

for predictive modeling and parameter discovery in complex spatiotemporal systems.

Figure S11: Comparative analysis of physical consistency in predictions made by different models. The
divergence over time steps is shown for each model, including PINN, DGM, Transformer, and the proposed
DynamicGPT. DynamicGPT demonstrates lower divergence and maintains closer adherence to the simula-
tion benchmark, indicating superior mass conservation in unsteady flow predictions.
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Table S2: Summary of the results of parameter estimation for partial differential equations
(PDEs). The table compares the estimated values of four key components (Du, Dv, F, and k) obtained
using three different models: PINN, DGM, and DynamicGPT. The true values of the unknown parameters
are also included for comparison. Notably, the results obtained with DynamicGPT, highlighted in blue, show
the closest estimates to the actual unknown parameter values.

Component Du Dv F k

PINN 0.237 0.137 -0.54 0.0642

DGM 0.228 0.02 0.0753 0.075

DynamicGPT 0.411 0.14 0.0243 0.071

Unknown Parameters 0.416 0.14 0.025 0.07
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