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Abstract

The destructive impacts of Wildland-Urban Interface (WUI) fires on people, property and the
environment have dramatically increased, especially in California. Critical factors influencing
structure protection during wildfires, including home hardening (e.g., vents, siding, roof, eaves,
window, construction year), defensible space (vegetation and surrounding features), exposure to
flames and embers, and structure separation are well known but their interrelated impacts are not
quantified. Here, we find that structure separation and exposure significantly influence the
probability of loss, underscoring the role of large conflagrations in driving widespread
destruction. Machine learning models combined with previously unavailable exposure data
enhance the predictive accuracy of structure loss up to 82%. Home hardening and defensible
space, especially closest to the home, are still vital and effective mitigation measures, cutting
hypothetical structures losses by 52%. Our results offer data-driven actionable insights for
prioritizing mitigation strategies to protect vulnerable communities and structures in the WUI.

Main

Globally, the frequency, severity, and size of wildland fires has been increasing, resulting in
extreme events that have led to dramatic losses in terms of people, property and the environment
(Moritz et al., 2014; Stephens et al., 2013). A majority of these impacts on people occur where
houses and other urban development intermingle with undeveloped wildland vegetation, an area
termed the WUI. This area has grown dramatically in recent years (Alexandre, Stewart, Mockrin,
et al., 2016; Schug et al., 2023), with one-third of all new homes in the US built in the WUI
(Schoennagel et al., 2017). The western United States has witnessed a 246% increase in
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structures lost to wildfires from 2010-2020 compared to the previous decade (Higuera et al.,
2023). California, despite its long fire history, has experienced recent increases in the number of
very large fires (over 100,000 ha) resulting in massive losses of lives and property (Keeley &
Syphard, 2021). Between 2013 and 2018, approximately 47,000 structures have been damaged
or destroyed and 189 fatalities have been attributed to wildfires in California (Kramer et al.,
2019). This increasing risk has significant consequences that jeopardize the economic stability,
well-being of local residents, and the environment in affected communities (Kearns et al., 2022).

Central to preventing future destruction has been the development of mitigation measures aimed
at reducing the likelihood of ignition and spread in the WUI (Calkin et al., 2014). Both building
materials (hardening) and surrounding vegetation (defensible space) play important roles
facilitating fire spread into the WUI (Cary et al., 2009; Cohen, Jack D, 2000; Maranghides &
Mell, 2013; Quarles et al., 2010) but differ in their characteristics because structures and
vegetation have different heat release rates, durations of burning, and responses to external
exposure including direct flame contact, radiation, and firebrands (Caton et al., 2017). While
effective mitigation strategies have been developed based on past testing and investigations
(Maranghides et al., 2022), their combined effectiveness under different exposure conditions is
not yet known (Schoennagel et al., 2017). Previous geospatial studies have demonstrated the
critical influence of spatial arrangement and biophysical factors (Syphard et al., 2012, 2017;
Alexandre et al., 2016), with defensible space around structures playing a significant, albeit
secondary, role (Syphard 2014; Mockrin et al., 2023). The role of building materials has also
been examined, revealing mixed findings (Syphard & Keeley, 2019; Mockrin et al., 2023; Troy
et al., 2022). For instance, Syphard & Keeley (2019) found structural features like enclosed
eaves and vent screens were crucial, while others (Price et al., 2021, Metz et al., 2024, Knapp et
al., 2021) identified factors such as spacing and arrangement as more significant, suggesting
determinants of loss are often beyond homeowners' control. Despite these advances, many
studies focus on single events or lack comprehensive data on structure features and exposure
conditions.

Here, we combine the largest existing structure loss database from California with simulated fire
and ember exposure conditions to structures across multiple large-loss events, compare the
effects of structure hardening and nearby defensible space, and apply this to build a predictive
model. Unlike past studies, fire reconstruction modeling that includes urban fire spread is used to
quantitatively add the effect of flame and ember exposure on structures. Geospatial assessments
of vegetation surrounding structures are added using both LiDAR and visual imagery to assess
the level of defensible space (vegetation) surrounding structures. The database is then fit using a
multivariate analysis similar to Mockrin et al. (2023) and Metz et al. (2024) that distinguishes
between the interrelated effects of exposure, structure hardening, and defensible space. A
parameter importance analysis reveals the strong role both structure separation and exposure
play, distinguishing wildfire from other natural hazards that are not affected by neighboring
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conditions, highlighting the importance of a community approach to mitigation. The model
developed is strongly predictive when incorporating all the above features and is also used to
assess the impact of recommended mitigation measures on homes. It is found that it is necessary
to make changes both to the structure itself and surrounding vegetation, especially that closest
vegetation within 1.5 m (5 ft) of the structure (zone 0) to achieve the maximum benefit.

Results

In this study we took advantage of the Damage INSpection (DINS) Dataset collected by
on-the-ground CAL FIRE crews from structures damaged, destroyed, or affected by wildfires in
California during post-fire investigations between 2013 - 2022 (California Department of
Forestry and Fire Protection (CAL FIRE), 2024). Figure 1 shows all fires in the DINS dataset
between 2017 – 2022 as well as five of the largest loss fires in this dataset (2017 Tubbs and
Thomas, 2018 Camp, 2019 Kincade, and 2020 Glass fires) selected for further analysis based on
data availability and the number of structures exposed and destroyed. We combined records of
damage state and building features from this dataset with remotely-sensed assessment of
surrounding vegetation (akin to defensible space) and structure footprints (to assess building
separation) of undamaged, damaged, and destroyed structures within the final fire perimeter
(CAL FIRE Historic Fire Perimeters), including a 91 m (300 ft) buffer around any burned areas
(Hakes and Theodori et al., 2022). Post-fire reconstruction modeling was then used to add local
fire exposure by both flames (flame length) and embers (ember load) to the dataset resulting in a
more complete picture of fire exposure and effects.
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Figure 1- Spatial distribution of damage to structures in California, emphasizing five of the most destructive
WUI fires.

Data from 5 selected fires were extracted from the overall DINS dataset (~90,000 structures) by
combining/stacking the five fire datasets after preprocessing. Additional structures that were
unburned but exposed to fire were added to the dataset (Tubbs ~14,000, Thomas ~ 6,000, Camp
~24,000, Kincade ~2,000, and Glass ~5,000 structures). We employed a resampling process to
balance the samples, resulting in a total of approximately 47,000 structures and 45,947 unique
data points. We simplified the damaged, non-damaged, and destroyed classifications in the
original DINS to a binary classification of Survived and Damaged categories because >90% of
damaged structures are destroyed.

Post-Fire Reconstruction

Five fires were reconstructed using a level-set model (ELMFIRE) that included both wildland
(Lautenberger, 2013, 2017) and urban fire spread (Hamada, 1975) to re-create fire spread
conditions and estimate critical missing exposure data (flame length and ember deposition) from
these events. Figure 2 shows the modeled fires and resulting flame length (in meters) and ember
load (in terms of number of embers deposited per meters squared). These are extracted adjacent
to each of 47,000 structures in our dataset and distributions are shown in terms of flame and
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ember exposure as probability density functions (PDF) in Figure 3. These distributions reveal a
27% and 39% overall decrease in exposure to flames and embers, respectively for structures that
survived vs. those that were damaged. The decrease in exposure, however, is small in
comparison to the difference in total number of structures destroyed and suggests that other
features may play a role in determining which are more or less likely to survive.

Fire Spread Ember Deposition

Figure 2- Ember deposition and fire spread simulation of the 5 fires

Figure 3- Number distribution showing structure damage based on standardized flame and ember values.
These findings highlight the significant impact of simulated ember and flame exposure on the destruction of
structures in large WUI fires.
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Feature Contribution to Structure Loss

We applied an XGBoost Classifier to our dataset and then utilized a SHapley Additive
exPlanations (SHAP) model to explore the importance of various features on structure
destruction. By looking at the stacked results from all 5 fires (Figure 4), we found that structure
density, which is determined by the distance between structures (SSD), is one of the most
important features in structure destruction. The second most important contributor to the
classification results from the XGBoost estimator was exterior siding, representative of the
materials used in construction, followed by Year Built. Note, in the DINS database year built
indicates the year that the primary structure in the parcel was constructed. Year built has
therefore been identified as a confounding variable ultimately combining the effects from
different parameters such as hardening (e.g., materials used for roof construction, eaves, vent
screen, window pane, exterior siding), vegetation, and surrounding features (e.g., defensible
space/vegetation separation distance and nearby structures/structure separation distance).
Results underscore the importance of hardening structures, structure density, and building
arrangements in WUI areas to mitigate fire risk and potential destruction. These results are
consistent with already-established engineering knowledge (Hakes et al., 2017; Knapp et al.,
2021; Maranghides et al., 2022). Furthermore, these insights are based on the available data
rather than being drawn from direct experiments or detailed numerical simulations at the flame
scale.

Exposure was still important in predicting damage from past WUI fires, specifically considering
flame length and ember load derived from fire spread simulations. Flame length, which indicates
the height and intensity of flames, can directly influence the severity of damage to structures and
vegetation in its path. Ember load, representing the number and size of burning embers carried
by the wind, also significantly contributes to the spread of the fire and subsequent structure loss,
as these embers can ignite spot fires far beyond the main fire front. The intensity and reach of
flames, as well as the quantity of embers, played significant roles in the extent of damage and
structure loss observed in these fires.

SHAP values provide a unified measure of feature importance in a predictive model. Based on
the evaluation metrics, the XGBoost model emerged as the most effective estimator,
demonstrating superior skill in predicting losses. This finding is supported by its higher average
SHAP values for key features compared to other models such as Logistic Regression and
Random Forest. The average SHAP values for the XGBoost estimator revealed that certain
features significantly impacted the model's predictions. For instance, Structure Density (SSD)
and flame length had positive average SHAP values of 0.090 and 0.051, respectively,
underscoring the importance of building arrangements and fire behavior in risk assessment. Year
Built showed an average SHAP value of -0.058, suggesting that newer structures might be
associated with lower predicted losses, possibly due to improved building codes and materials.
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We also broke down the feature importance results for each of the 5 individual fires assessed
(Figure 5), and found common features of importance: structure density (SSD), flame length, and
year built, but distinct differences were also revealed between individual fires. The structure
separation distance (SSD) was the most important predictive feature in the 2017 Thomas, 2018
Camp, 2019 Kincade and 2020 Glass fires while flame length was the most predictive feature for
the 2017 Tubbs fire. In fires that burn through densely populated areas, wildfires can transition
into urban conflagrations that become dominated by structure-to-structure spread, which is most
strongly influenced by SSD. The high density of structures in the Thomas and Camp fires in the
cities of Paradise and Ventura (Butte and Ventura counties) therefore emphasize this mode of
spread. In the Kincade and Glass fires, the clustering of structures in Geyserville (Sonoma
County) and Deer Park (Napa County) contributed to the rapid urban spread of the fire. Flame
Length significantly contributes to structure destruction in the Tubbs fire and is the second most
important factor for the Thomas, Camp, and Kincade fires. In the Glass fire, it ranks third in
importance, emphasizing the role of nearby buildings and surrounding fuels in spreading flames
to structures. Year built, in conjunction with building characteristics (eaves, roof, vent, siding,
window), underscores the significance of home hardening in dense WUI areas, limiting fire
spread and protecting structures from losses.

Figure 4- SHAP aggregation results for characterizing the contribution of features in estimations from an
XGBoost classifier for the entire (stacked) WUI data from 5 fires.
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Figure 5- SHAP aggregation results for characterizing the contribution of features in estimations from an
XGBoost classifier for 5 individual fires.

Figure 6 shows the distribution of four key features—SSD (structure separation distance),
FLAME (flame length), YEAR BUILT (year primary structure on parcel was built), and EMBER
(ember load)—across five fires: Tubbs, Camp, Glass, Kincade, and Thomas. Each panel
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represents one feature, displaying both the distribution of values through a violin plot (in light
gray) and the mean values (in blue) overlaid with standard deviation error bars. The violin plots
highlight the density of feature values, with wider sections indicating regions where values are
more concentrated, allowing for a comprehensive comparison of how each feature behaves
across different fires. For instance, the SSD and YEAR BUILT features show relatively wider
distributions in the Glass fire, suggesting a broader range of structure separation distances and
building years compared to other fires. Overlaid bar plots show the mean feature values for each
fire, providing insight into the central tendencies. For example, the SSD and YEAR BUILT
features have relatively higher means in the Camp and Glass fires, indicating greater separation
distances and older structures on average in these regions. In contrast, the Kincade and Tubbs
fires exhibit lower mean SSD values, suggesting tighter structure spacing. The combination of
these two plots makes it possible to assess not only the average feature importance (through the
bar plots) but also the variation within each fire (through the violin plots). This dual approach
reveals both the central trend and the spread of values, offering a nuanced understanding of
feature importance in the context of each fire.
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Figure 6- The distribution (gray) and mean values (blue) of important features across five fires
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Damage Prediction Results

We applied a range of machine learning models, ultimately selecting an XGBoost Classifier as it
was the most accurate to investigate the five large WUI fires in our dataset to predict structure
survival during each fire. Linear models (logistic regression) have been used in the past (Syphard
et al., 2017; Syphard & Keeley, 2019) and achieved an accuracy to predict structure losses for
our 5-fire database of 78%, however the XGBoost Classifier achieved an accuracy of 82% for
the 5-fire database. A confusion matrix is shown in Table 1 outlining the performance of our
classification algorithm breaking down predicted outcomes against actual results, delineating
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The area
under an ROC curve (AUC) is also shown as another measure to evaluate the model’s overall
performance alongside the accuracy (percentage of correct predictions the model makes). Overall
the XGBoost Classifier has a high accuracy in predicting the occurrence of destruction for each
of the 5 individual WUI fires, despite severe limitations in data coming from the aftermath of
real destructive events. An accuracy threshold of 79% is achieved for each fire except for the
Kincade fire (63%) which had a large number of missing values in the DINS inspection dataset
and affected the results. The XGB classifier was also applied to the full DINS dataset
(2017-2022) which incorporated the same preprocessing as the 5 fires but did not include
exposure modeling values and defensible space, although it did incorporate all other analyses
including structure spacing, and year built. An accuracy of 77% was achieved which
demonstrates the flexibility and applicability of this model even when not all data can be
accounted for.

A comparative analysis between the Logistic Regression, Random Forest, XGBoost and
CatBoost models is included in the methods section but importantly underscores the need for
selecting an appropriate algorithm based on the specific characteristics of the dataset and
outcome to be achieved.

Table 1- Results of XGBoost predictions on each test set with a resulting confusion matrix displaying model
performance in terms of true positives (TP), true negatives (TN), false positives (FP), false negatives (FN),
area under an ROC curve (AUC), and the percentage of correct predictions the model makes (Accuracy).

WUI Fire TP FP TN FN AUC Accuracy

Tubbs 1041 58 0 2 0.685 0.94

Thomas 147 25 31 21 0.808 0.79

Camp 3506 686 198 110 0.784 0.82

Kincade 27 58 124 27 0.635 0.63

Glass 151 58 496 106 0.841 0.79

5 Fires Combined 4785 847 885 353 0.833 0.82
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WUI Fire TP FP TN FN AUC Accuracy

All CA DINS (2017-22) 5198 133 2998 1073 0.84 0.77

Using our model we were able to examine various scenarios including home hardening and
defensible space clearing to compare what changes in predicted structure loss and survivability
might occur, in order to propose effective mitigation strategies. This is particularly important
because structure density cannot be modified for existing structures (which make up more than
98% of the current housing stock (Maranghides et al., 2022; Syphard et al., 2021). We applied
this to the 5-fire database we created. In the first scenario, which involved home hardening, we
adjusted all hardening values in our dataset to fire-safe ones (e.g. non-flammable siding, fine
mesh over vents, double paned windows, non-flammable roof, etc.) and applied the XGB model.
This resulted in a 25% survival rate with 75% structure loss due to WUI fires (Fig 7, Fig S5).
Next, we combined home hardening with clearing defensible space in Zone 0 (0-5 feet; 0-1.5
meters), which effectively doubled the survival rate to 40% and reduced the loss rate to 60% (Fig
S7, Fig S6). Finally, we implemented an extreme mitigation scenario that included both home
hardening and the clearing of defensible space in Zone 0 (0-5 feet; 0-1.5 meters) and Zone 1
(5-30 feet; 1.5-9 meters). This further increased the survival rate to 48% and reduced the
structure loss to 52% (Fig 7, Fig S7). Figure 7 shows the structure loss and survivability across
various mitigation scenarios.

Figure 7- Probabilities of structure destruction in various mitigation scenarios. Scenario 1 (add
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hardening), Scenario 2 (add hardening and clear zone 0), Scenario 3 (add hardening and clear zones 0 and
1).

Discussion

Decades of research have shown the importance of ignition-resistant construction, defensible
space, and the proximity of structures to one another (Cohen, Jack D, 2000; Insurance Institute
for Business & Home Safety, 2021; Knapp et al., 2021; Maranghides et al., 2022). The ranked
importance and interplay between these mitigation measures has now been presented in this
study, utilizing simulations to extract exposure conditions during different fires. The application
of XGBoost and SHAP methods has illuminated the critical features contributing to structure
destruction. Following investigations of the Camp fire by Maranghides et al. (2022) and Knapp
et al. (2021), Structure Separation Distance (SSD) arose as a key metric in characterizing the
likelihood of loss for any particular structure during these large WUI fires. While smaller fires
may occur through sparse housing arrangements, the majority of structure losses in California
have occurred in large-loss fires in moderately dense (suburban) communities (Knapp et al.,
2021)(Syphard & Keeley, 2019) communities. In these fires, the structures themselves become
fuel and contribute to spread. These existing structures pose a unique challenge in hazard
management—they are immobile. While these structures can be hardened, they cannot be readily
removed or displaced like many other WUI fuels.

The analysis revealed the role of interactions among competing factors (like SSD, flame length,
ember load, year built, and exterior siding) in influencing fire dynamics, showcasing that
multiple features contribute simultaneously to structure risk. Our results show that the most
important factor that cannot be changed is the distance between structures, as conflagrations tend
to consume a majority of houses in major fires. Nevertheless, there is still a substantial
opportunity to enhance safety through effective mitigation measures such as hardening structures
and establishing a defensible space. Mitigation measures on the structure (hardening) combined
with removal of surrounding fuels in the area immediately adjacent to the structure (zone 0) has
the potential to dramatically reduce losses in future fires. While applying these measures to any
particular structure within a dense urban area makes little difference on the survivability of a
single home, significant reductions in losses are achievable when community-wide actions can
be applied. This has been proposed in many studies and is a major tenant of Firewise and other
community risk-reduction programs, however has not been shown to be effective before because
previous studies focus more on individual structures. The effect of community risk reduction
may have other benefits as well, with amplified effectiveness to responding fire crews (Syphard
& Keeley, 2019). When fewer homes ignite from embers or direct flame contact, less
structure-to-structure spread results and the fire service is freed up to focus on those structures
that are most threatened. If arriving early in fire progression, it is possible that embers can be
extinguished and the “disaster sequence” posited by (Calkin et al., 2014) can be disrupted and a
smaller number of homes may be lost.
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While hardening and defensible space actions may not alter the fundamental risks posed by
structure proximity, they can still dramatically improve the survivability of buildings during
wildfires. By examining individual fire cases, we can further tailor mitigation approaches to
address specific vulnerabilities and enhance resilience against future wildfires. This is apparent
when we see that the factors most correlated with structure destruction change for some fires,
such as the Tubbs fire where flame length played a more significant role than structure spacing
overall. During this fire sparser structures could potentially have benefited from additional fuel
management to reduce fire exposure, although some areas, such as the Coffey Park community
were dense and still dominated by structure separation. While siding materials were not
significant in any one fire, as an overall predictor they were very significant, which speaks to the
fact that clustered structures on each fire often had similar construction materials, built year, etc.
so that those factors do not appear as significant.

Overall we have shown the potential to combine extensive on-the-ground post-fire data
collection, analysis of remotely sensed data, and fire reconstruction modeling to better
understand the complicated interactions between different features and structure survivability
during wildfires. Despite the improvement of these data and modeling tools, we still have a
dramatic lack of information before and during fires that is desperately in need of improvement
to improve future investigations. Pre-fire inspections are limited and were not available at scale
to aid this study, therefore much of the data was collected after the fire and is not at the fine scale
to distinguish all potential factors that play a role in destruction. For instance, year built is an
inter-related term that also corresponds to materials used, construction type, building codes, etc.
It is still useful because it is one of the most easily obtained factors for future analysis, but it
makes it harder to distinguish between other factors. During the fires it would also have been
useful to observe failure modes more directly, e.g. observation of what part of the exterior ignites
by embers, structure-to-structure spread, etc. Still, this study provides a broader understanding
useful to the field now and a framework for future data to be applied.

Methods
We primarily relied on a modified database from 5 selected fires that includes more than 47,000
structures with two broad damage states: “Survived” and “Destroyed”, and five detailed damage
states: “Destroyed (>50%)”, Damaged (“Major (26-50%)”, “Minor (10-25%)”, “Affected
(1-9%)”), “No Damage”. The CAL FIRE Damage INSpection Program (DINS) was founded
with the goal to collect data on damaged, destroyed, and unburned structures during and
immediately after fire events to assist in the recovery process, and to provide local governments
and scientists information for analyzing why some structures burned and why some survived
(Henning, Andrew et al., 2015). Through a public records request, we acquired DINS data for
more than 90,000 structures that survived, were damaged, or were destroyed across all California
wildfires from 2013–2022, making this potentially the largest combined dataset of its sort. We
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then incorporated risk factors associated with structure destruction by wildfires to the DINS data
to gain a deeper understanding of WUI destruction. These factors include structure density,
building materials, year built, defensible space, and exposures to structures (fire intensity and
ember). We employed several Machine Learning (ML) techniques to identify and highlight the
important features in our WUI data. These techniques included feature selection, feature
engineering, and model interpretation methods to ensure we could pinpoint the most significant
variables influencing our results. To enhance the performance of the ML model in this study, we
implemented a range of data preprocessing techniques such as data cleaning, normalization, and
encoding. These preprocessing steps were crucial for improving model accuracy, reducing noise,
and ensuring the robustness of our findings. By meticulously preparing the data, we ensured that
the ML model could effectively learn and make accurate predictions from our complex WUI
dataset. We opted for the XGBoost (eXtreme Gradient Boosting) algorithm for our ML model
due to its superior performance over other methods on our dataset. We also leveraged the SHAP
(SHapley Additive exPlanations) model, which is providing a nuanced understanding of each
column's contribution to the overall predictive outcome. This technique allowed for a
comprehensive assessment of the importance of variables within the dataset, enhancing the
robustness and reliability of our analysis. The results of Confusion Matrices and Receiver
operating characteristics (ROC) Curves, in addition to advanced computational framework,
allowed us to delve into the intricacies of the dataset, capturing complex relationships and
patterns that might not be discernible through conventional methods. Our evaluation extended
beyond a generalized assessment, as we calculated the accuracy and sensitivity metrics for each
individual fire and aggregated the results to encompass all structures within the damage dataset.
This meticulous analysis not only provided insights into the predictive performance of our model
on a per-fire basis but also yielded a comprehensive understanding of its effectiveness across the
entire spectrum of structures in the damage data.

Risk factors to structures from wildfires in WUI

The methodology for integrating risk factors related to structure destruction builds upon the
combination of on-the-ground data with fire modeling reconstructions by Hakes and Theodori et
al. (2022) for community-level risk assessment for the Tubbs fire, which includes:

Structure density which represents “Structure Separation Distance (SSD)”. We employed the
Microsoft Maps dataset (available at https://github.com/microsoft/USBuildingFootprints), which
encompasses open building footprints datasets for entire counties in the United States. This
dataset comprises 129,591,852 computer-generated building footprints. Additionally, we utilized
QGIS software to access geospatial data concerning urban infrastructure, building locations, and
their spatial interconnections.

The year built refers to the year in which the primary structure on a parcel of land was
constructed. In the context of analyzing the impact of WUI fires, the Year Built variable is
significant because the age of a structure can influence its susceptibility to fire damage.
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Furthermore, it acts as a confounding variable that can affect both the building features and the
extent of damage.

Concerning fire safety in building construction materials, numerous in-depth studies have been
carried out through meticulously planned laboratory tests (Manzello et al., 2012; Quarles et al.,
2010). Despite the solid laboratory evidence, few empirical studies have documented building
characteristics associated with structure loss in real wildfire situations (Syphard & Keeley, 2019).
In this study building characteristics include eaves, vent screens, exterior siding, roof
construction, and window panes.

In terms of defensible space, which is representing in this study as “Vegetation Separation
Distance (VSD)”, the state of California requires fire-exposed homeowners to create a minimum
of 30 m (100 ft) of defensible space around structures, and some localities are beginning to
require at least 60 m (200 ft) in certain circumstances (Syphard et al., 2014). We established
three categories for the Vegetation Separation Distance (VSD): Zone0, which comprises the
initial five feet from the building or "0-5"; Zone1, encompassing the area within 30 feet of the
building or "5-30"; and Zone2, extending to within 100 feet of the building or "30-100" (CAL
FIRE DSpace: https://www.fire.ca.gov/dspace). Remote sensing techniques were utilized to
analyze the density and distribution of vegetation in the WUI regions and urban settings,
extracting valuable insights from the aerial and satellite imagery and LiDAR data. The publicly
available datasets (including countywide LiDAR data and a fine scale vegetation and habitat
map) which produced by the Sonoma County Agricultural Preservation and Open Space District
and the Sonoma County Water Agency, provide an accurate, up-to-date inventory of the county's
landscape features, ecological communities and habitats (Sonoma County Vegetation Map:
https://sonomavegmap.org/ ).

Exposures including fire intensity (flame length) and firebrand (ember load). Houses are
destroyed during wildfires when exposed to flames in adjacent fuel, radiant heat from nearby
fuel (≤40m) (Cohen, Jack D, 2000), or airborne embers and firebrands originating in nearby and
distant fuel (typically<10 km) (Koo et al., 2010; Noble et al., 1980). In this study, we used the
Eulerian Level set Model of FIRE spread, ELMFIRE, an operational fire behavior and spread
simulation tool (Lautenberger, 2013) for its additional capability in simulating ember deposition
of multiple embers and its implementation of Monte Carlo analysis (Lautenberger, 2017) to
capture the stochasticity and uncertainty inherent in wildland fire modeling. We used and
modified the semi-physical model of (Lautenberger, 2017; Purnomo et al., 2024) to include
urban fire spread by using the empirical approach of HAMADA (Hamada, 1975).

Data preprocessing

To predict the damage for any of the fire datasets, the dataset was divided into the target variable
or y, and all the other features as inputs or X. A stratified split was executed based on 'y' values,
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allocating 80% of the data for training purposes and reserving the remaining 20% for the testing
set. This strategic partitioning ensured that the distribution of target variable classes remained
proportionate in both the training and testing subsets, enhancing the reliability of the model's
performance evaluation.

To address the noteworthy variations in the scales of the model inputs, a vital preprocessing step
was implemented prior to model training. Using the scikit-learn package, we first designed
imputation strategies through IterativeImputer to handle missing values. These strategies were
trained on the training set and then applied to both the training and test sets. Next, we normalized
the numerical variables using StandardScaler, ensuring that they were on a similar scale, which
helps in the convergence and performance of various models. Additionally, we conducted
OneHotEncoding and Label Encoding on categorical variables using OneHotEncoder and
LabelEncoder from scikit-learn to convert them into a numerical format that can be understood
by the models. Class balance is achieved through the binarization of different labels/classes with
damaged and not damaged/survived. This approach is essential, particularly in scenarios where
certain damage classes may be underrepresented. This preprocessing pipeline allowed us to use a
variety of models on the dataset, ensuring compatibility and enhancing the overall performance
of the models.

In essence, this procedure, encompassing data categorization, stratified splitting, imputation,
standard scaling, OneHotEncoding/Label Encoding, and resampling, laid the foundation for a
robust and unbiased evaluation of the model's predictive capabilities regarding fire damage
across diverse datasets.

Machine Learning Techniques

Machine learning (ML) methods have recently been applied to wildland fire (Jain et al., 2020)
and present an ideal platform for WUI fires as interactions between competing factors can be fit
and modeled. In this work, we employed both regression and classification ML techniques to our
combined dataset resulting in a predictive model for structure destruction based on home
hardening (roof, siding, vents, eaves, window, year built ), vegetation separation (defensible
space and surrounding), exposure metrics (flames and embers), and structure spacing. The
XGBoost (eXtreme Gradient Boosting) machine learning algorithm was chosen as it
outperformed other methods on our dataset. The model hyper parameters were tuned using Grid
Search and Randomized Search Cross Validation, depending on the number of the model’s
parameters. Hyper parameter selection is performed using the best result in terms of the
following classification metrics: F-beta, accuracy, balanced accuracy and Matthews correlation
coefficient. Finally, feature importance with SHAP aggregation analysis was utilized to quantify
the contribution of each feature to the target variable. A higher feature importance score indicates
that the feature has a greater influence on the model's prediction (Masís, 2023). The SHAP
model connects optimal credit allocation with local explanations using the classic Shapley values
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from game theory and their related extensions (Lundberg & Lee, 2017). This was then applied to
a unified framework for interpreting predictions to explain the output of any machine learning
model.

Classifiers

We employed several classification models, including Logistic Regression and Random Forest
(Pedregosa et al., 2012), and Gradient Boosting/XGBoost (Chen & Guestrin, 2016). Each of
these models offers distinct advantages and methodologies for analyzing feature importance.

Logistic Regression is a generalized linear model used for classification problems (Bishop, 2006)
and we use it as a base model to compare with more complex models. The second model used in
this work is the Random Forest. Random Forests are a technique in ensemble learning utilized
for tasks such as classification and regression. During the training, several decision trees are
built. In classification, the random forest outputs the class chosen by the majority of trees (Ho,
1995). Finally, Gradient Boosting (GB) is a method in machine learning that employs boosting
within a functional framework. The XGBoost (eXtreme Gradient Boosting) is a GB
implementation that has been used as it outperformed other methods on our dataset. XGBoost is
often preferable for developing predictive models for large datasets due to its accuracy,
efficiency, and adaptability (Chen & Guestrin, 2016). Furthermore, XGBoost is a robust
algorithm for both classification and regression problems. Due to its strengths in model
prediction, XGBoost can be utilized for damage assessment to create predictive models for
structure destruction.

Feature Contribution Through SHAP Analysis

While machine learning (ML) models are increasingly used due to their high predictive power,
their use in understanding the data-generating process (DGP) is limited. Understanding the DGP
requires insights into feature-target associations, which many ML models cannot directly
provide, due to their opaque internal mechanisms. Feature importance (FI) methods provide
useful insights into the DGP under certain conditions (Ewald et al., 2024). Furthermore, SHAP
(SHapley Additive exPlanations) is a unified framework for interpreting machine learning
models based on cooperative game theory (Lundberg & Lee, 2017). It assigns each feature an
importance value for a particular prediction by computing the contribution of each feature to the
prediction, averaging over all possible combinations of features. This approach ensures
consistency and local accuracy, providing insights into how different features influence model
predictions. SHAP values can explain individual predictions and provide a global understanding
of the model's behavior, making it a valuable tool for model interpretability in research (Masís,
2023). We utilized SHAP interpretation analysis of feature importance to identify and understand
the key factors driving structure destruction in WUI fires.
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Confusion Matrix and ROC Curve for predictions

A confusion matrix summarizes the classification performance of a classifier with respect to
some test data. It is a two-dimensional matrix, indexed in one dimension by the true class of an
object and in the other by the class that the classifier assigns (Ting, 2011). Receiver operating
characteristics (ROC) graphs are useful for organizing classifiers and visualizing their
performance. A receiver operating characteristics (ROC) graph is a technique for visualizing,
organizing and selecting classifiers based on their performance (Fawcett, 2006). We investigated
the five large WUI fires in our dataset to predict structure survival during each fire by
understanding the model's accuracy, and other key performance metrics. By analyzing the
confusion matrices and ROC curves for each fire event, we were able to identify patterns and
discrepancies in model performance, leading to a better understanding of the factors influencing
structure survival in large WUI fires.
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