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e. ΦaÃaAa,5 Terms 23
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Appendix A: Low-Energy Effective Theory of TR-Invariant WSMs with Axionic CDWs

In this section, we will provide a low-energy theory for the DPME in TR-invariant WSMs with axionic CDWs.
We would like to emphasize that the derivation below is not confined to Weyl-CDWs, and can be generalized to any
TR-invariant system with valley axion fields.

1. Minimal Model

A WSM phase can only emerge in systems that either break TR symmetry (magnetic materials) or break inversion
symmetry (non-centrosymmetric crystals). CDWs in magnetic WSMs have been previously studied in numerous
works, including Ref. [1 and 2]. In this work, we focus on CDWs in TR-invariant WSMs, which can be realized in
non-centrosymmetric crystals. Since two Weyl points related by TR symmetry share the same chirality, and because
the total chirality of the whole system must vanish3, there must be four Weyl points in a minimal model of a TR-
invariant WSM. Fig 2(a) schematically shows a distribution of four Weyl points in a minimal TR-invariant WSM,
where for simplicity, we have enforced an additional mirror symmetry that flips y, labeled as my, such that all four
Weyl points are symmetry-related. The momenta of the four Weyl points take the form

ka,α = (−1)a−1(αk0,x, k0,y, αk0,z) , (A1)

where α = ± indicates the relative chirality of the Weyl points, and a = 1, 2 is termed the “valley index.” TR
symmetry, labeled as T , relates k1,α to k2,α with the same chirality index α, while the mirror my changes the
chirality of Weyl points and relates k1,α to k2,−α. We would like to emphasize that, although we keep my in the
following derivation for simplicity, mirror symmetry is not essential for the physics discussed below.

Through a unitary transformation of the bases and by rotating and rescaling axes, we can always transform the
low-energy Lagrangian of the four Weyl points into the following form1

La,α = ψ†t,r,a,α

[
i∂t − α

∑
i

vi(−i∂i − ka,α,i)σi

]
ψt,r,a,α , (A2)

where ψt,r,a,α is a two-component field for the two bands that form the Weyl point at ka,α, σ0,x,y,z are the Pauli
matrices, vi indicates the Fermi velocity along the i direction, and t and r are time and position, respectively. In
this work, we will for simplicity focus on the case in which i = x, y, z are the three laboratory directions. Following
the derivation in Ref. [1 and 4], we keep k = 0 as the momentum-space origin of all fermion fields, as this choice
naturally includes the Weyl-point-induced valley Hall effect in the effective action, as discussed below. Throughout
this section on the low-energy theory, we adopt a proper rescaling of the space and fields to cancel the Fermi velocities
as elaborated in Appendix. F; the Fermi velocities will later be restored for comparison to the TB model in Sec. B.

As mentioned above, both T and my change the valley index a of the fields in Eq. (A2), while my (T ) changes
(preserves) the chirality index α. Thus, we can always choose the bases to represent T and my as iσyK and −iσy for
the band index, respectively, where K is complex conjugation. According to the above symmetry representation for
T and my, a symmetry-preserving mean-field CDW term that couples two Weyl points of the same valley index a
can be written as1

LCDW = −
∑
a

ma(r)ei(−1)a−1Q·rψ†a,+ψa,− + h.c. , (A3)

where the t, r dependence of ψ is implied, and where Q = k1,+ − k1,− = −(k2,+ − k2,−) is the CDW wavevector, as
shown in Fig 2(a). Throughout this work, we will include the spatial dependence of the CDW order parameter ma(r),
while keeping the order parameter time-independent (i.e. static). TR symmetry requires thatm1(r) = m2(r)∗ ≡ m(r),
and my symmetry requires that m∗1(myr) = m2(r). In general, m(r) = |m(r)|eiφ(r) is complex, and |m(r)| and φ(r)
are the magnitude and phase of the CDW order parameter, respectively. As discussed in the main text, we consider
the case where m(r) is equal to a complex constant mass m0 = |m0|eiφ0 in the bulk throughout the work, i.e.,
|m(r)| = |m0| and φ(r) = φ0 for r in the bulk. The underlying interaction that gives rise to the bulk CDW is
discussed in Appendix. D at the mean-field level. Nevertheless, m(r), as well as |m(r)| and φ(r), can still have
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spatial dependence if the sample size is finite. Inspired by Ref. [5], we set |m(r)| → ∞ and φ(r) = 0 for r deep
in the vacuum. Different gapped and symmetry-preserving boundaries can then be represented by different ways of
smoothly connecting the bulk and vacuum limits of |m(r)| and φ(r). We next introduce the γ matrices

γµ = (τxσ0,−iτyσ)µ , γ
5 = iγ0γ1γ2γ3 , (A4)

where µ = 0, 1, 2, 3 and τ0,x,y,z are Pauli matrices for the chirality index α. Using the above definitions of the γ
matrices, we can rewrite the CDW term as

LCDW = −
∑
a

|m(r)|ψae−iΦa(r)γ5

ψa , (A5)

where ψa = ψ†aγ
0, and Φa(r) = (−1)a−1(φ(r) + Q · r). For the remainder of this work, the spatial dependence of

|m|, φ,Φa will be implicit, and we will suppress the explicit dependencies on r for notational simplicity.
In order to elucidate the strain-induced linear response, we next introduce an electron-strain coupling for normal

strain (i.e. stretch or compression along a specified axis) along the z direction, labeled as uzz(t). We require that the
strain be adiabatic, homogeneous, and infinitesimal. Enforcing TR and mirror symmetries, the most general form of
the leading-order electron-strain coupling reads

Lstr =
∑
a

ψa[−ξ0γ0 + (−1)a(γ1γ5ξx + γ2ξy + γ3γ5ξz)]ψauzz , (A6)

where the time dependence of uzz is implied, and where the parameters ξ0,x,y,z are material-dependent. In Eq. (A6),
we do not include the effects of strain that couple different Weyl points, as Weyl-point coupling strain is necessarily
proportional to |m0|uzz, and because |m0| is typically small in real materials. The detailed procedure of adding
the electron-strain coupling is shown in Appendix. E. We set the strain to be uniform throughout all of space, such
that the gapped and symmetry-preserving boundary is implemented by the spatial dependence of the CDW order
parameter m, as opposed to an inhomogeneous strain field.

Summing up Eq. (A2), Eq. (A5), and Eq. (A6) and including the U(1) gauge field coupling for the electromagnetic
field, we arrive at the total low-energy Lagrangian L =

∑
a La with

La = ψa

[
i(/∂ + ie /̃Aa − i/∂ϕa − i /Aa,5γ

5)− |m|e−iΦaγ
5
]
ψa , (A7)

where /∂ = γµ∂µ, /̃Aa = γµÃµ,a, /Aa,5 = γµAa,5,µ, ϕa = (ka,+ +ka,−) ·r/2, and the metric is chosen as (−,+,+,+). La
describes a massive 3D Dirac fermion that couples to a valley-dependent U(1) gauge field Ãa and a valley-dependent
chiral gauge field Aa,5, and Φa is the mass phase of the Dirac fermion. In terms of uzz and the CDW wavevector Q,
the valley-dependent chiral gauge field is given by

Aa,5,µ = (−1)a−1∂µ(Q · r/2) + (−1)auzz(0, ξx, 0, ξz)µ . (A8)

The valley-dependent U(1) gauge field takes the form

Ãa,µ = Aµ +
uzz
e

(ξ0, 0, (−1)a−1ξy, 0)µ , (A9)

which contains the physical gauge field Aµ and the pseudo-gauge field induced by the strain uzz. In particular, the y
component of the pseudo-gauge field can provide a pseudo-electric field that points in opposite directions in each of
the two valleys

Epse
a = (−1)a

ξy
e
u̇zzey . (A10)

As we will show below, all the nontrivial leading-order linear response comes from the pseudo-electric field in Eq. (A10).

2. Effective Action

The low-energy response to A and uzz can be derived from the total effective action Seff =
∑
a Seff,a, which takes

the form

eiSeff,a =

∫
DψaDψa exp

[
i

∫
dtd3rLa

]
, (A11)
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where the measure of the functional integral is in real space∫
DψaDψa ∝

∏
t,r

∫
dψt,r,adψt,r,a . (A12)

We note that Eq. (A2), as well as Eq. (A11), are only exact when the momenta of the fermion fields in Eq. (A12)
are restricted near the Weyl points (or equivalently the momentum deviation from the corresponding Weyl point is
below a finite momentum cutoff Λ). In Appendix. F, we demonstrate, however, that the correction to the response of
interest brought by a finite Λ is of the order O(|m0|2/Λ2), which is negligible owing to |m0| � Λ in realistic materials.
Since the focus of this work is on the low-energy response of the system, we can limit Λ→∞ and take the functional
integration (Eq. (A12)) over the entire k ∈ R3, following Ref. [1, 2, 4, and 6].

The physical U(1) gauge field A and the strain tensor uzz in Eq. (A7) are treated as fixed backgrounds, meaning
that we neglect their dynamics. Under this assumption, La has local valley U(1) gauge invariance, i.e., invariance

under ψa → ψae
ieΓa(t,r) and Ãa,µ → Ãa,µ − ∂µΓa(t, r), where Γa is a valley-dependent scalar function and the

corresponding transformation on ψa is implicit here (and will remain implicit and for the reminder of this work).
The valley U(1) gauge invariance corresponds to a separate vector current conservation for each valley; as different
valleys are decoupled in Eq. (A7), we preserve the current conservation in each valley against all orders of quantum
correction, which is reasonable as long as valleys are well defined. As a result, the measure of the functional integral

(Eq. (A12)) is invariant under ψa → eieΓaψa, and Seff,a is gauge invariant Seff,a[Ãa,µ − ∂µΓa] = Seff,a[Ãa,µ]. The

valley U(1) gauge invariance of Seff,a[Ãa,µ] allows us to perform a gauge transformation Ãa,µ → Ãa,µ + ∂µϕa/e to
cancel the ϕa term in Eq. (A7) without changing the form of Seff,a, resulting in

La = ψa

[
i(/∂ + ie /̃Aa − i /Aa,5γ

5)− |m|e−iΦaγ
5
]
ψa . (A13)

La also has an effective Lorentz invariance, which we also preserve against quantum corrections and take to be a
symmetry of the effective action Seff,a.

We can further perform a chiral gauge transformation ψa → eiΦaγ
5/2ψa to cancel the phase of the Dirac mass in

Eq. (A13). Owing to the valley U(1) gauge invariance and the effective Lorentz invariance, Fujikawa’s method suggests
that the Jacobian of the measure (Eq. (A12)) would contain a topologically nontrivial factor7,8, which enters into the
effective action as

Seff,a =

∫
dtd3r

e2

16π2

Φa
2
εµνρδF̃a,µν F̃a,ρδ + ... , (A14)

where F̃a,µν = ∂µÃa,ν − ∂νÃa,µ, and “...” includes all other terms. In this work, we only consider the leading-order
linear response to A and uzz. Through an explicit evaluation of Feynman diagrams in Appendix. F, we find that the
only leading-order linear response contained in “...” is the trivial correction to the permittivity and permeability in
the material, which can be absorbed into the Maxwell term of A. Hence, all nontrivial leading-order linear responses
come from the first term of Eq. (A14). After omitting all of the higher-order and trivial terms, we can split Eq. (A14)
into three parts by using Eq. (A9):

Seff,a = Seff,a,θ + Seff,a,Σ + Seff,a,uzz . (A15)

Seff,a,θ is the action for valley-separated axion electrodynamics

Seff,a,θ =
e2

32π2

∫
dtd3rθaε

µνρδFµνFρδ , (A16)

where the valley axion field is given by the phase of the CDW order parameter as

θa = (−1)a−1φ . (A17)

Seff,a,Σ takes the form of a Chern-Simons theory

Seff,a,Σ =
1

2

∫
dtd3r ΣH,a,iε

iµνρAµ∂νAρ , (A18)

and describes a valley layered QAHE with a valley Hall conductivity given by the CDW wavevector Q

ΣH,a = (−1)a
Q

2π

e2

2π
. (A19)
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Because the two valleys are related to each other by TR symmetry, then ΣH,a (a = 1, 2) take opposite values in each
of the two valleys and add to a net-zero total Hall conductivity, coinciding with the vanishing Chern number required
by the TR symmetry. In general, an odd-integer valley layered QAHE indicates that a gapped Weyl-CDW with
well-defined valleys is in a WTI phase if all higher energy bands are topologically trivial, as discussed and numerically
confirmed in Sec. B. The last term Seff,a,uzz describes the strain-induced effect and reads

Seff,a,uzz =
eξy
4π2

∫
dtd3r(φ+Q · r)u̇zzBy , (A20)

where By = F31. The effective action (Eq. (A15)) is one central result of this work. We emphasize that the validity
of Eq. (A15) replies on the fact that the system must be gapped everywhere – including the boundary – if the system
is finite-sized5.

3. Piezoelectric Effect and DPME

Because Seff,a,θ and Seff,a,Σ in Eq. (A15) have opposite signs in each of the two valleys, then the contributions of
Seff,a,θ and Seff,a,Σ sum to zero in the total effective action. Hence, the total effective action only includes Seff,a,uzz ,
which can be rewritten as

Seff =

∫
dtd3r

∑
a

A ·
[
(− e2

4π2
∇θa + ΣH,a)×Epse

a

]
. (A21)

Eq. (A21) indicates that the total action relies on a nonzero electron-strain coupling, implying that the response of
the action characterizes the deviation of the electron from the homogeneous deformation of the sample9.

The total current derived from Seff can be decomposed into two parts

j =
δSeff
δA

= jPE + jM . (A22)

jPE is the total low-energy valley Hall current induced by the pseudo-electric field

jPE =
∑
a

ΣH,a ×Epse
a , (A23)

which, as required by my symmetry, lies in the xz plane. Eq. (A10) and Eq. (A19) together imply that the pseudo-
electric field and the low-energy Hall conductivity both have opposite signs in the two valleys, such that the induced
Hall currents add constructively to give a total nonzero value. (See Fig 2(b).) In Eq. (A23), jPE is thus the bulk-
uniform piezoelectric current induced by the CDW wavevector Q, where the piezoelectric coefficient is given by

χizz =
∂jPE,i
∂u̇zz

=
e

2π2
ξy (Q× ey)i . (A24)

Hence, jPE can be understood as a 3D stack of 2D valley Hall systems in which each layer exhibits the 2D piezoelectric
effect discussed in previous literature10–13. We would like to emphasize that Eq. (A24) only includes the low-energy
contribution to the piezoelectric current, while the high-energy contribution to the piezoelectric current is typically
also present in realistic materials. Nevertheless, the high-energy contributions to the piezoelectric current should also
be uniform in the bulk of the system.

In Eq. (A22), jM takes the form of a magnetization current

jM = ∇×M (A25)

in which the total orbital magnetization M is induced by a pseudo-electric field through the valley axion field

M = −
∑
a

e2

4π2
θaE

pse
a . (A26)

Physically, Eq. (A25) can be understood from the bulk-boundary correspondence as follows. First, given a gapped
and symmetry-preserving boundary, the CDW phase φ smoothly changes from a constant value φ0 in the bulk to zero
in the vacuum, implying that the magnetization current jM is localized on the boundary. According to the bulk-
boundary correspondence of the axion field, the surface valley Hall conductance (along the normal direction of the
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FIG. S1. (a) Density of states on the (001̄) surface of the TB model HTB,0 in the absence of a CDW. The red and blue dots
in (a) indicate the projections of four Weyl points, and the bright lines are the topological surface Fermi arcs. The (red) blue
dots in (a) indicate Weyl points with chiral charge (−1) 1. (b,c) Surface spectral function along the gray dashed lines in (a) at
kxa0 = π/2 and kx = 0, respectively. (d,e) The surface spectral function along k′xa

′
x = π and k′x = 0 on the (001̄) surface of

the TB model in the presence of a CDW (HTB,0 +HTB,CDW ) for arg(µ1 + iµ2) = π/4, respectively. (f) The bulk value of the
axion field as a function of φ0 in the a = 1 valley. The blue dots and orange dashed line in (f) have respectively been obtained
from the TB model (HTB,0 +HTB,CDW ) and the effective action Eq. (A15), respectively.

surface) should take the form σH,a = e2

2π
θbulka

2π on any surface, where θbulka = (−1)a−1φ0. Hence, the surface-localized
magnetization current jM is simply the surface Hall current induced by the pseudo-electric field, as shown in Fig 2(c).
The surface current generates a uniform bulk magnetization of the form

M bulk = −
∑
a

e2

2π

θbulka

2π
Epse
a =

eξy
2π2

φ0u̇zzey , (A27)

which is the DPME proposed in this work, as illustrated in Fig 1(d). Unlike the piezoelectric current in Eq. (A23)
originating from the 2D valley Hall conductance, jm in Eq. (A27) originates from the fundamentally 3D bulk valley
axion field, and is fundamentally different from Eq. (A23).

Appendix B: Minimal TB Model for TR-invariant WSM

The analysis in Sec. A is based on low-energy effective field theory. It is natural to ask whether our low-energy
prediction of a DPME in TR-invariant Weyl-CDWs remains valid in the presence of high-energy bands (or equivalently
in a UV completion). Furthermore, the low-energy analysis in Sec. A relies on “valley” quantum numbers; however,
valley index is neither a generic symmetry of TB models, nor a symmetry of real solid-state materials. To address
these questions, we will construct a minimal TB model of a TR-invariant Weyl-CDW and compute the bulk-average
value of the valley axion field and the DPME, which we will compare to those predicted by the effective action.
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Prior to the onset of a CDW, we begin with an orthorhombic lattice, in which we choose for simplicity the lattice
constants to be ax = ay = az = a0. We then consider there to be two sublattices in each unit cell. We next place a
Kramers pair of spinful s orbitals on one sublattice and a Kramers pair of spinful py orbitals on the other sublattice,

resulting in a four-component basis c†k,i,s, where i = 1, 2 is the sublattice index and s = ± is the spin index. We then
construct a four-band TB model HTB,0 that preserves TR and my symmetries, which has the following form

HTB,0 =
∑
k

c†khTB,0(k)ck , (B1)

where

hTB,0(k)

=
1

a0
[d1τzσ0 + d2τyσ0 + d3τxσx + d4τxσz + d5τyσx] ,

(B2)

in which τ0,x,y,z and σ0,x,y,z have been redefined to respectively act on the sublattice and spin indices, and where
explicit expressions for d1,2,3,4,5 are provided in Appendix. G. Throughout this work, we will take the inverse of the
lattice constant without strain 1/a0 as the unit of energy, which occurs because we have employed a convention in
which ~ = c = 1. Using parameters specified in Appendix. G, HTB,0 hosts four Weyl points at

ka,α = (−1)a−1(α
π

2a0
,
π

4a0
, 0) , (B3)

that are related by TR and my symmetries. The projection of the bulk Weyl points onto the (001̄) surface is shown
with blue and red dots in Fig. S1(a), where a (red) blue dot indicates a Weyl point with a chiral charge (−1) 1. The
topological surface Fermi arcs that connect Weyl points with opposite chiralities appear as bright curves in Fig. S1(a),
and the linear dispersion of the (001̄)-projecting bulk bands from the Weyl points is shown in Fig. S1(b). On the
kx = 0 plane, HTB,0 is gapped in the bulk and exhibits a nontrivial TR-protected 2D Z2 index. The nontrivial Z2

topology is indicated by the appearance of gapless helical modes along kx = 0 on the (001̄) surface, as shown in
Fig. S1(c).

We next add a CDW term that preserves TR and my symmetries into the TB model, where the CDW coupling
takes the form

HTB,CDW =
∑
k

c†k+( πa0
,0,0) [−iµ1 sin(kxa0)M1(ky, kz)

+µ2M2(ky, kz)] ck ,

(B4)

in which M1 and M2 are Hermitian matrices whose explicit forms are provided in Appendix. G, and where µ1 and
µ2 are real scalar parameters. Eq. (B4) suggests that the CDW term contains two channels that are characterized by
two real coupling constants, µ1 and µ2. Throughout this work, we will set |µ1 + iµ2| = 0.3/a0 for all of the numerical
calculations for the TB model in the presence of the CDW. Unlike Ref. [14], we do not study the microscopic origin
of the CDW order parameter in this work, as the main goal of introducing the TB model is simply to provide a UV
completion of the low-energy theory on which our analysis is rigorously based. Owing to the lattice-commensurate
nature of the CDW in HTB,CDW , HTB,0 +HTB,CDW has reduced (but not fully relaxed) lattice translation symmetry,
where the new lattice constants of the modulated cell are given by a′x = 2a0, a′y = a0, and a′z = a0. The CDW backfolds
two Weyl points of the same valley index onto the same momentum in the reduced 1BZ

k′a = (−1)a−1(
π

a′x
,
π

4a′y
, 0) (B5)

to form an unstable 3D Dirac fermion, which then becomes gapped. The gap induced by the CDW is reflected by the
appearance of a bulk gap at k′xa

′
x = π in Fig. S1(d), which stands in contrast to the gapless (WSM) bulk in Fig. S1(b).

1. Weak Z2 Topological Insulator Phase

While the bulk of the Weyl-CDW phase is gapped, Fig. S1(d) demonstrates the existence of the gapless helical edge
modes along k′xa

′
x = π on the (001̄) surface. As shown in Fig. S1(e), there are also gapless helical edge modes on the

(001̄) surface at k′x = 0. Hence, the k′x = 0 and k′xa
′
x = π planes both exhibit nontrivial TR-protected Z2 topology.
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This indicates that the model HTB,0 +HTB,CDW is in a WTI phase characterized by a nontrivial weak Z2 index vector
(νx, νy, νz) = (1, 0, 0), where νx, νy, νz are the weak Z2 indices in the k′x = 0, k′y = 0, and k′z = 0 planes, respectively.

The nontrivial WTI index vector can be understood from the odd-integer valley layered QAHE Seff,a,Σ in the
effective action Eq. (A15), provided that the high-energy bands are trivial. To see this, we first project the TB model
into each of the two valleys. From this, we see that HTB,0 +HTB,CDW reproduces Eq. (A2) and Eq. (A5) with

vx =
√

2 , vy = −2 , vz =
1

2
. (B6)

and

m0 = (µ1 + iµ2)e−i2ϕ ⇒ φ0 = arg(µ1 + iµ2)− 2ϕ , (B7)

where ϕ is the U(1) gauge degree of freedom of the eigenvectors (further discussed in Appendix. G). We emphasize that,
at this stage, we have not yet incorporated the effects of dynamical strain, which will be added in the next section. After
restoring the Fermi velocities for Eq. (A19) (Appendix. F), we can use Eq. (B6) and Q = (π/a0, 0, 0) = (2π/a′x, 0, 0)
to derive the valley Hall conductivity induced by the CDW wavevector, which we find to be given by

ΣH,a = (−1)a−1 e
2

2π

(
1

a′x
, 0, 0

)
. (B8)

Eq. (B8) implies that the two valleys as a set contribute two counterpropagating chiral edge modes for each k′x-indexed
plane in the 1BZ. The two couterpropagating chiral modes exhibit a TR-protected crossing at k′x = 0 and k′x = π/a′x,
indicating the presence of a nontrivial weak Z2 index νx = 1.

We pause to compare the WTI phase of HTB,0 + HTB,CDW (Eq. (B1) and Eq. (B4)) to the WTI Dirac-CDW
phase in Ref. [15]. In Ref. [15], which was revised to include TR-symmetric semimetal-CDWs during the final stages
of preparing this work, the authors study a TR-invariant Dirac semimetal that is gappd by a CDW. Specifically, in
Ref. [15], two 3D Dirac points become coupled by the CDW order parameter, and the gapped Dirac-CDW additionally
respects spatial inversion symmetry when the phase of the CDW order parameter φ0 = 0, π. The authors of Ref. [15]
find that φ0 = 0, π correspond to two distinct WTI phases (with nontrivial weak Z2 indices) that differ by a fractional
lattice translation in the modulated cell. Although the model in Ref. [15] appears to be similar to HTB,0 +HTB,CDW

with the two valleys moved to the same momentum, the my symmetry enforced in this work is essentially different
from the inversion symmetry at φ0 = 0, π in Ref. [15]. This can be seen by recognizing that my in this work is a
symmetry of the Weyl-CDW for all values of φ0, including φ0 6= 0, π. We do note that HTB,0 + HTB,CDW has an
effective spinless-mx symmetry at arg(µ1 + iµ2) = 0, π (see Appendix. G). However, the spinless mx symmetry is an
artifact of our simple TB model, which only occurs because all of the Weyl points are located at the kz = 0 plane.
Because the effective action Eq. (A7) allows the four Weyl points to move away from the kz = 0 plane – thus breaking
any form of mx symmetry (effective or physical), the artificial spinless mx symmetry of our TB model does not affect
any of the conclusions of and analysis performed in this work.

2. Valley Axion Field

In addition to the valley QAH term Seff,a,Σ, the term Seff,a,θ in Eq. (A15) indicates that the bulk average value
of the valley axion field is

θbulka = (−1)a−1sgn(vxvyvz)φ0 = (−1)aφ0 (B9)

after restoring the Fermi velocities (Appendix. F). To compare Eq. (B9) with the TB model, we first set θbulka = 0 at
arg(µ1 + iµ2) = 0 as the reference for the TB model. We are required to set a reference for the evaluation of θbulka ,
because the valley axion field is defined over an open manifold, such that its bulk average value is reference-dependent.
Hence, we may only evaluate the change of θbulka relative to a reference value. Because the low-energy result Eq. (B9)
suggests that θbulka = 0 for φ0 = 0, we further set the U(1) degree of freedom ϕ in Eq. (B7) to ϕ = 0 in order to match
the zero points of θbulka in the low-energy result and in the TB model. We may then use φ0 = arg(µ1 + iµ2) for the
TB model and evaluate θbulka with5

θbulka (φ0) = −
∫ φ0

0

dφ0

∫
a

d3k′

16π
εi1i2i3i4 Tr[Fi1i2Fi3i4 ] , (B10)

where k′ is only integrated over the half of the reduced 1BZ that contains the ath valley. In Eq. (B10),

Fi1i2 = ∂k′i1
Ai2 − ∂k′i2Ai1 − i[Ai1 ,Ai2 ] (B11)
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is the non-Abelian Berry curvature of the non-Abelian Berry connection [Ai]nm = −i〈un,k′ |∂k′i |um,k′〉, and i1,2,3,4
takes values from 1 to 4 where k′4 = φ0. Although θbulka can be equivalently evaluated based on the Chern-Simons
3-form5, this method would require to choose the gauge and k-space boundary condition very carefully, and thereby
we use gauge-invariant Eq. (B10) in this work.

The resulting numerical computation of θbulka for the a = 1 valley is shown in Fig. S1(f), and extremely closely
matches the value θbulk1 = −φ0 expected from the low-energy action. However, there is still a quantitative deviation
between the low-energy and TB results, which occurs because the bulk valley axion field is not defined over a closed
manifold, and is thus not quantized, implying that high-energy degrees of freedom (which are necessarily present in a
solid-state material) can drive the value away from the low-energy result. Nevertheless, the relatively small deviation
between the TB and low-energy results in Fig. S1(f) suggests that the effect of high-energy modes on the valley axion
field is small in the TB model employed in this work.

3. Piezoelectric Effect and the DPME

Finally, we use the TB model to verify the strain-induced piezoelectric effect and the DPME described by the term

Seff,a,uzz in Eq. (A15). We incorporate the effects of strain into the TB model by adding a prefactor of (1− (∆rz)2

(∆r)2 uzz)

for each hopping term in HTB,0, where ∆r is the displacement of the hopping16 (see Appendix. E and Appendix. G
for further details). As a result, the low-energy projection of the extra strain term implies that the added strain
reproduces Eq. (A6) with

ξ0 = ξz = 0 , ξx =
1√
2a0

, ξy = − 1√
2a0

. (B12)

Because the TB model is a WTI with the weak Z2 index vector (1, 0, 0), we consider a slab configuration with N
layers perpendicular to x with periodic boundary conditions along y and z. The slab can be viewed as a quasi-2D
system, and we may therefore calculate the 2D piezoelectric tensor of the slab using9

χ2D
izz = e

∫
d2k′

(2π)2

∑
n∈ occupied

∂uzz Aslabn,i (k′y, k
′
z)
∣∣
uzz→0

, (B13)

where Aslabn,i = −i〈ϕk′y,k′z,n|∂k′i |ϕk′y,k′z,n〉 and |ϕk′,n〉 is the periodic part of the Bloch states of the slab Hamiltonian
in the presence of strain. By inserting a projection operator onto each layer of the slab, we can then derive the 2D
piezoelectric tensor for each layer, which we label χ2D

izz(l
′
x), where l′x = 1, 2, ..., N is the layer index (see Appendix. G

for details). The 2D current density induced by the infinitesimal dynamical strain for each layer is then given by
j2D
i (l′x) = χ2D

izz(l
′
x)u̇zz. Using this method, we next calculate the 2D z-directional current density of each layer for

varying values of φ0 and N = 20 by setting ϕ = 0 in Eq. (B7) and using φ0 = arg(µ1 + iµ2). We note that the current
along the y direction conversely vanishes in our numerics at each value of φ0, due to the bulk my symmetry at each
value of φ0.

In Fig 3(a), we plot the current density distribution j2D
z (l′x) for φ0 = −0.9π,−0.45π, 0, 0.45π,−0.9π. As schemati-

cally shown in Fig 3(b), we can decompose the current density distribution into a uniform background current 〈j2D
z 〉

(averaged over the layer index) and a layer-dependent part δj2D
z (l′x) = j2D

z (l′x) − 〈j2D
z 〉. The uniform background

current 〈j2D
z 〉 characterizes the uniform piezoelectric response, and, as shown in Fig 3(c), the piezoelectric current is

nearly independent of φ0, as expected from the low-energy expression Eq. (A23).
On the other hand, the layer-dependent contribution to the layer current density δj2D

z (l′x) is asymmetrically dis-
tributed. Specifically, δj2D

z (l′x) exhibits opposite signs near the two surfaces, resulting in a bulk magnetization M bulk
y .

To calculate the bulk magnetization, we treat the l′xth layer as a uniform 2D system that is infinite in the y, z directions
but finite in the x direction as x ∈ [(l′x − 1)a′x, l

′
xa
′
x]. From this, we then express the 3D current density as

j3D
z (x) =

∑
l′x

Θl′x
(x)j2D

z (l′x)/a′x , (B14)

where Θl′x
(x) = 1 for x ∈ [(l′x − 1)a′x, l

′
xa
′
x] and Θl′x

(x) = 0 otherwise. We next take the magnetization at the center
of the sample x0 = a′xN/2 derived from the Biot-Savart law to be the bulk magnetization, which yields

M bulk
y = −1

2

∑
l′x

δj2D
z (l′x)sgn(l′x −

N + 1

2
) , (B15)
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where the uniform background contribution naturally vanishes. In Eq. (B15), we have chosen sgn(0) = 0, because,
when N is odd, there exists an l′x = (N + 1)/2 layer with a vanishing current contribution.

Using Eq. (B14), we plot M bulk
y as a function of φ0 in Fig 3(d). To compare with the TB result, we restore the

Fermi velocity for the low-energy expression Eq. (A27) and substitute Eq. (B6) and Eq. (B12) into Eq. (A27), from
which we obtain

M bulk

M0
=
a0ξysgn(vxvyvz)

2π2vy
φ0ey = − 1

4π2
√

2
φ0ey , (B16)

where M0 = eu̇zz/a0. As shown in Fig 3(d), the TB and low-energy results are of the same order of magnitude (the
deviation is smaller than 70% of the low-energy result). This agrees with our earlier determination that the high-
energy modes have relatively small effects on the valley axion field (Fig. S1(f)). In particular, the TB and low-energy
results in Fig 3(c) match extremely well as φ0 approaches ±π (the deviation is smaller than 7% of the low-energy
result). As discussed below, the agreement between the TB and low-energy results can be attributed to the TB model
exhibiting boundary gap closings at exactly φ0 = ±π.

Appendix C: Boundary TQPT and DPME Jump

In this section, we will first show that the slab configuration of HTB,0 +HTB,CDW has a boundary gap closing at
φ0 = ±π, which we will show to be a boundary TQPT that changes the surface Z2 index and induces a discontinuous
change of the DPME. This boundary gap closing accidentally happens on the two surfaces of the slab at the same value
of arg(µ1 + iµ2), allowing us to fully interpret the discontinuous change of DPME within the low-energy theory. We
will then add an extra term to HTB,0 +HTB,CDW to split the accidental simultaneous surface gap closing, resulting in
a more realistic model in which the gap closings on the two surfaces occur at different values of arg(µ1 + iµ2). Lastly,
we will demonstrate that a jump in the DPME still occurs across each surface gap closing, though the low-energy
theory is incapable in fully describing the jump due to the unavoidable presence of a gapless boundary helical mode
on one side of the jump. Throughout this section, we will continue to choose φ0 = arg(µ1 + iµ2) by setting ϕ = 0 in
(B7), except in Sec. C 3.

1. TB Model

According to Eq. (B7), φ0 only appears in the TB model as cos(φ0) and sin(φ0) in µ1 and µ2, respectively, and
thus any TB result must be periodic in φ0. Hence, tuning µ2 from negative to positive while keeping µ1 < 0 should
drive φ0 from −π to π and give a jump of the magnetization, as shown in Fig 3(d). The dramatic difference between
the current distributions at φ0 = ±0.9 in Fig 3(a) provides evidence of the expected jump in the bulk magnetization.
Fig 4(a) suggests that the jump of the DPME at φ0 = ±π happens along with the boundary gap closing while the
bulk stays gapped. Moreover, the gap closing manifests as one 2D gapless Dirac cone in each valley on each surface
perpendicular to x, as shown in Fig 4(b-d). Because there are two TR-related Dirac cones on one surface at the gap
closing, then the surface gap closing has the same form as the 2D Z2 transition that happens at a TR-related pair of
generic momenta17–19. Because the bulk remains gapped across the transition, then the surface gap closings represent
examples of boundary TQPTs, which can be detected by jumps in the DPME.

Another signature of the boundary TQPT appears in the domain wall structure shown in Fig. S2(a). We consider
a slab configuration that is split into two parts along the z direction, where each part exhibits a different value of the
CDW phase φ0 (specifically φ+

0 for z > 0 and φ−0 for z < 0), while all other parameters in the slab are taken to be
the same for the two parts. The sample is set to be periodic in the y direction and open in the x direction. In our
numerical calculations, we have specifically employed a slab with 20 layers along x and have fixed φ+

0 = 0.8π. We
note that we have also chosen 20 layers along z for z < 0 and 20 layers along z for z > 0, but we do not depict the
additional surface modes at large |z| (i.e. the leftmost and rightmost surfaces in Fig. S2(a)).

We plot the phase diagram of the domain wall structure in Fig. S2(b) by varying φ−0 from φ+
0 to π and then from −π

back to φ+
0 . As a result, we identify two phases, which we label as I and II. The phase I contains the point φ−0 = φ+

0 ,
implying that the surfaces of both parts of the slab are not related by boundary TQPTs, such that boundary between
the two domains is gapped. As φ−0 is varied from π + 0− to −π + 0+, the gap closes on the top and bottom surfaces
normal to the x direction in the z < 0 region, as discussed above and shown in Fig 4. This indicates that the z < 0
region has undergone a pair of boundary TQPTs to enter phase II. The appearance of 1D gapless helical modes at
the edge of the z = 0 interface in phase II confirms the presence of a nonzero surface relative Z2 index for the two
sides of the gap closing (Fig. S2(c)). The 1D gapless helical modes in phase II persist until φ−0 reaches φ+

0 − π, where
the gap closes in the 2D bulk of the interface as shown in Fig. S2(d). The interface gap closing again manifests as two
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FIG. S2. (a) A schematic showing the domain wall structure along z with an open boundary condition along x and periodic
boundary conditions along y for the TB model HTB,0 + HTB,CDW . The interface lies at z = 0, and we have omitted the
surfaces at large |z|. The lower panel in (b) shows the phase diagram for the domain wall structure as φ−0 is varied while fixing
φ+
0 = 0.8π, which contains two phases I and II and two transition points φ−0 = ±π and φ−0 = φ+

0 − π. The upper panel in (b)
shows the positions (red) of the gapless modes in the domain wall structure for the corresponding values of φ−0 . (c) The energy
dispersion near the top edge (inset) of the interface for φ−0 = −0.8π in the phase II of (b). (d) The energy dispersion near the
interface (inset) for φ−0 = φ+

0 − π = −0.2π.

gapless Dirac cones at two valleys and thus changes the Z2 index of the interface, coinciding the disappearance of the
helical edge modes in phase I.

2. Low-energy Effective Theory

We now interpret the boundary TQPT in the TB model from the perspective of the low-energy theory. According
to Eq. (A7), one bulk Dirac cone has two mass terms, and thus the bulk gap closing for Eq. (A7) requires fine-tuning
at least two parameters, which typically does not occur in a realistic model or material. On the (1̄00) surface, the
projections of the valleys are along the myT -invariant line, and the gap closing along this line only requires fine-tuning
one parameter, according to Ref. [13]. The analysis in Ref. [13] further suggests that the gap closing appears as one
gapless surface Dirac cone for each valley (Fig 5(a)) and is thus a surface Z2 transition, coinciding with the TB results
in Fig 4 and Fig. S2(c). The parameter values for which the gap closings appear depend on the boundary condition
that we choose in Eq. (A7) (see Appendix. F for a special boundary condition that realizes both surface gap closings
at φ0 = π). Nevertheless, the codimension-1 nature of the gap closing indicates that, even if the boundary conditions
are varied, it is still difficult to remove the gap closing point. When the boundary conditions are changed, the gap
closing instead shifts to a different value of φ0. Indeed, as we will shortly show in using a TB model with an extra
term that splits the simultaneous boundary gap closing, the boundary phase transitions are movable in arg(µ1 + iµ2),
but globally unremovable. This agrees with the picture presented in Ref. [15], in which tuning φ0 pumps 2D TI layers
in the WTI phase until a layer reaches the system boundary, causing a surface gap closing. The same argument can
also be applied to the (100) surface.

In general, the gap closings on the (100) and (1̄00) surfaces do not happen at the same critical value of φ0. We
find that simultaneous surface gap closings only occur when the system configurations (parameter values or boundary
conditions) are designed in a fine-tuned manner such that unrealistic (i.e. artificial) effective symmetries appear
in the effective action (such as an effective TR symmetry within one valley after omitting the CDW wavevector).
This suggests that the presence of simultaneous surface gap closings in the above TB model HTB,0 + HTB,CDW is
accidental. In this accidental (fine-tuned) case, a simultaneous gap closing changes the surface valley Hall conductance
by ±e2/2π, which, according to the bulk-boundary correspondence of the axion term, results in a change of the θbulka –
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FIG. S3. Slab geometry for a realistic model of a TR-invariant Weyl-CDW. The top panel in (a) shows a slab of HTB,0 +
HTB,CDW + Hextra that is open in x and periodic in y and z. The middle panel in (a) schematically illustrates the case of
a generic TR-invariant minimal Weyl-CDW where the gap closings on the top and bottom surfaces happen separately for an
even number of layers. In the case of an even number of layers, the slab has two phases: (i) a Z2-trivial phase that includes
arg(µ1 + iµ2) = π, and (ii) a Z2-nontrivial phase that includes arg(µ1 + iµ2) = π. The bottom panel in (a) corresponds to
the case in which the slab has an odd number of layers, which causes the Z2-trivial and nontrivial phases to flip relative to
the middle panel in (a). (b-e) The y-directed slab Wilson loop20 as a function of k′za

′
z for the slab configuration with 5 and 6

layers and arg(µ1 + iµ2) = 0, π. In (b-e), Wy is the eigenvalue of the Wilson loop evaluated along k′y. The dashed line lies at a
Wilson energy of −1.5 in (b) and −2 in (c-e). In the inset panels in (b-e), we show the number of Wilson loop bands passing
through the dashed line in half of the 1BZ, which are 5, 6, 4 and 5 for (b,c,d,e), respectively. An odd (even) number of Wilson
crossings in half of the 1BZ at a fixed Wilson energy indicates that the slab Z2 index is nontrivial (trivial)21,22.

or equivalently φ0 – by 2π. Combined with Eq. (A27), the 2π jump of φ0 further results in a jump of the magnetization

∆M bulk =
eξy
πvy

sgn(vxvyvz)u̇zzey = − 1

2π
√

2
M0ey , (C1)

in which the Fermi velocities have been restored (see Appendix. F) and the parameter values derived from the pro-
jection of the TB model (Eq. (B6) and Eq. (B12)) have been used in the second equality. The predicted ∆M bulk

precisely matches the jump given by the TB model in Fig 3(d). Therefore, the boundary TQPT and the induced jump
of the DPME can be captured within the low-energy theory when valleys are well-defined and when the gap closings
happen simultaneously on both surfaces.

Lastly, we will use the low-energy theory to explain the gap closing in the 2D bulk of the interface of the domain
wall (Fig. S2(d)). Within the low-energy theory, if two gapped Dirac cones have a mass phase difference π and form
a domain wall structure, then there must be an odd number of 2D gapless Dirac cones localized at the interface14.
Therefore, when φ±0 in Fig. S2(a) differ by π, an odd number of 2D gapless Dirac cones appear at the interface for
each valley, as shown in Fig 5(b), and the gap closing correspondingly changes the Z2 index of the interface. Indeed,
the description given by the low-energy theory coincides with the TB result shown in Fig. S2(b) and (d).

3. Separate Gap Closings on Two Surfaces

In the final part of this section, we will discuss the more general (and also more realistic) case in which the gap
closings on the (100) and (1̄00) surfaces occur at different values of arg(µ1 + iµ2). In this subsection, we do not set
ϕ = 0 in Eq. (B7) and thus in general φ0 6= arg(µ1 + iµ2). We can shift the gap closings on two surfaces in opposite
directions in arg(µ1 + iµ2) by adding an extra TR- and my-symmetry-preserving term Hextra in the TB model, as
schematically shown in Fig. S3(a). (The explicit form of Hextra is provided in Appendix. G). Because each surface gap
closing is a Z2 TQPT, then the Z2 index of the entire slab is changed across the transition, resulting in two phases
with different Z2 indices for the whole slab (i.e. the slab as a whole, for varying arg(µ1 + iµ2), is or is not a 2D Z2
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TI). Exactly which phase of the slab has nontrivial Z2 index is determined by the number of layers, owing to the
nontrivial weak Z2 index in the bulk (Fig. S3(a)).

To numerically model this more generic case, we choose appropriate parameter values for the model (Appendix. G)
to split the simultaneous boundary phase transition into two boundary transitions: one at arg(µ1 + iµ2) = 0.9π on
the (1̄00) surface and another at arg(µ1 + iµ2) = −0.9π on the (100) surface. This results in the appearance of two
phases in the slab: one phase that includes arg(µ1 + iµ2) = 0, and another that includes arg(µ1 + iµ2) = π. As shown
through slab Wilson-loop calculations15 in Fig. S3(b,d), the 5-layer slab is Z2 trivial in the arg(µ1 + iµ2) = π phase,
and is nontrivial in the arg(µ1 + iµ2) = 0 phase. On the other hand, Fig. S3(c,e) indicate that the 6-layer slab is Z2

trivial in the arg(µ1 +iµ2) = 0 phase and nontrivial in the arg(µ1 +iµ2) = π phase. The 5-layer and 6-layer results can
be generalized for all odd-layer and even-layer slabs, respectively, as long as the number of layers is large enough to
avoid any additional layer-dependent gap closings. In general, this is consistent with the early recognition of odd-even
boundary modes in WTIs23, and with the picture established in Ref. [15] in which a TR-invariant Weyl-CDW phase
can be captured by a stack of 2D TIs whose normal vectors lie parallel to the wavevector Q, where the position of
the 2D TI in each cell is set by arg(µ1 + iµ2).

The DPME predicted by the effective action is valid only when the slab is Z2 trivial, as the nontrivial Z2 index of
the slab necessarily indicates the presence of a gapless helical mode on the side surface, violating the gapped boundary
requirement (i.e., the validity of DPME predicted by the low-energy effective action requires a gapped and symmetry-
preserving boundary). The failure of the effective action can also be seen from the bulk-boundary correspondence.
The bulk-boundary correspondence of axion electrodynamics implies that an unambiguous bulk value of the axion
field (in the units of 2π) should be equal to the Hall conductance of every gapped surface (in unit of e2/(2π))5. When
one surface undergoes a Z2 transition, the valley Hall conductance on that surface changes by e2/(2π), while the valley
Hall conductance on the other surface remains constant. As a result, at least on one side of each surface transition,
different surfaces infer different bulk values of the valley axion field, indicating the incapability of the effective action
in predicting the DPME5. The underlying physical reason for the failure of the effective action is that there is a
contribution from the gapless helical mode to the DPME that cannot be captured by the low-energy effective action.
Therefore, in general, it is not always appropriate to set ϕ = 0 in Eq. (B7). Instead, one should choose ϕ such that
the DPME predicted from the low-energy action matches the TB result when the slab is Z2-trivial.

Nevertheless, the discontinuous change of the DMPE should still exist across the gap closing on one surface; the
jump will just contain two contributions in the more realistic case. One contribution arises from the appearance of
an extra gapless helical mode. The other contribution is given by the discontinuous change of the surface valley Hall
conductance (or more directly, the discontinuous change of the strain-induced surface current). The slab configuration
in Fig. S3(a) allows us to demonstrate the second contribution to the DPME jump (Fig. S4), because the periodic
boundary conditions along y and z avoid the contribution from the side-surface helical modes. As long as the effective
action is valid in the slab-Z2-trivial region, the total change of the DPME over the slab-Z2-nontrivial region can still
be predicted. Moreover, in a domain wall structure like Fig. S2(a), the gapless surface domain wall mode still appears
across the gap closing on one surface of the z < 0 side, where the domain wall mode is exactly the extra gapless helical
mode that corresponds to the change in the slab Z2 index on the z < 0 side of the domain wall.

Appendix D: Derivation of Mean-Field CDW Term

In this section, we derive the mean-field CDW term in Eq. (A5). Here, we use the imaginary time and allow the
temperature to be nonzero.

We first convert Eq. (A2) to the imaginary time, resulting in

S0 =
∑
a,α

∫
d4q

(2π)4
c†q,a,α(iω + α

∑
i

viqiσi)cq,a,α , (D1)

where q = (ω, q), ω = (2n + 1)π/β is the fermionic Matsubara frequency,
∫
dω = (2π/β)

∑
ω if temperate T is not

zero, β = 1/(kBT ), x = (τ, r), ψx,a,α =
∫

d4k
(2π)4 e

ixq+ir·ka,αcq,a,α, and xq = ωτ + q · r.

We consider two channels of the interaction

Sint,1 = −g1

∑
a

∫
d4x(ψ†x,a,+ψx,a,−)(ψ†x,a,−ψx,a,+) (D2)

and

Sint,2 = −g2

∫
d4x

[
(ψ†x,1,+ψx,2,−)(ψ†x,2,+ψx,1,−) + (ψ†x,2,−ψx,1,+)(ψ†x,1,−ψx,2,+)

]
, (D3)
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FIG. S4. The strain-induced bulk magnetization calculated from the realistic slab configuration of HTB,0 +HTB,CDW +Hextra

(see Fig. S3). The number of layers is chosen to be 20. The two black dashed lines indicate the two surface transitions at
arg(µ1 + iµ2) = ±0.9π.

where g1 > 0 and g2 < 0, and g2 is a perturbation with |g2| ∼ 0. The g1 term is just a double copy of that used in
Ref. [1]. As shown below, g1 accounts for the nonzero CDW magnitudes while g2 determines their relative phase.

To derive the mean-field CDW term, we first perform the Hubbard-Stratonovich transformation on Sint,1

e−Sint,1 =
∏
a

∫
Dm̃∗aDm̃a exp

[∫
d4x

(
−|m̃a(x)|2

g1
− m̃a(x)ψ†a,+ψa,− − m̃∗a(x)ψ†a,−ψa,+

)]
. (D4)

Then, we have

Z =

∫
Dm̃∗Dm̃

∫
Dψ†Dψe

−S0−Sint,2+
∫
d4x

∑
a

(
− |m̃a(x)|2

g1
−m̃a(x)ψ†a,+ψa,−−m̃

∗
a(x)ψ†a,−ψa,+

)
=

∫
Dm̃∗Dm̃e−SMF [m̃]

(D5)
Now, we perform the mean-field approximation. We neglect the quantum fluctuation of m̃a(x) and only consider a

classical m̃a(x) that minimizes SMF [m̃], meaning that m̃a(x) ∝ 〈ψ†x,a,−ψx,a,+〉. Comparing m̃a(x) with Eq. (A5), we

can define m̃a(x) = mae
i(−1)a−1Q·r where ma is the CDW parameter mentioned in main text. Since we only care

about the CDW order parameter that is constant in the bulk of the system, we choose ma to be independent of x.
As a result, we arrive at a simplified Z:

Z =

∫
Dψ†Dψe

−Sint,2−
∑
a

∫ d4q

(2π)4
ψ†q,aG

−1
a (q)ψq,a−

∑
a βV

|ma|2
g1 = e−SMF , (D6)

where G−1
a (q) = iω+

∑
i viqiτzσi +Ma, Ma = maτ+σ0 +m∗aτ−σ0, τ± = (τx± iτy)/2, and V is the total volume of the

system.

Next, we derive SMF to the first order of g2. The g2-independent part of SMF , labeled as SMF,0, reads

e−SMF,0 =
∏
a

∫
Dψ†aDψa exp

[
−
∫

d4q

(2π)4
ψ†q,aG

−1
a (q)ψq,a − βV

|ma|2

g1

]
, (D7)
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which gives

SMF,0 = −βV
∑
a

{∫
d4q

(2π)4
log det [G−1

a (q)]− |ma|2

g1

}
+ const.

= −βV
∑
a

{∫
d4q

(2π)4
2 log(ω2 +

∑
i

v2
i q

2
i + |ma|2)− |ma|2

g1

}
+ const.

.

(D8)

Define ma = |ma|eiφa , then we see that SMF,0 does not depend on φa.
For the first order of g2, we have

SMF,1 = βVg2

∑
δ=±

∫
d4q

2π4

∫
d4q′

2π4
Tr[G1(q)τδσ0G2(q′)τδσ0]

= 2βVg2(m1m2 +m∗1m
∗
2)

∫
d4q

2π4

∫
d4q′

2π4

1

(ω2 +
∑
i q

2
i v

2
i + |m1|2)(ω′2 +

∑
i q
′2
i v

2
i + |m2|2)

= 4βVg2|m1||m2| cos(φ1 + φ2)I1I2 ,

(D9)

where Ia =
∫

d4q
(2π)4

1
ω2+

∑
i v

2
i q

2
i+|ma|2 .

As a result, we have SMF = SMF,0 +SMF,1 to the first order of g2. Next, we minimize SMF . First, for φa, we have

∂

∂(φ1 + φ2)
SMF = 0⇒ sin(φ1 + φ2) = 0⇒ φ1 + φ2 = nπ . (D10)

Since g2 < 0 and Ia > 0, φ1 +φ2 = 2nπ minimizes SMF . The 2π ambiguity will disappear after introducing a gapped
boundary, and a symmetry-preserving boundary would give

φ1 = −φ2 = φ0 (D11)

in the bulk. Second, for |ma|, we have

∂

∂|ma|
SMF = 0⇒ − 1

2g1
+

∫
d4q

(2π)4

1

ω2 +
∑
i q

2
i v

2
i + |ma|2

+O(g2) = 0 , (D12)

resulting in

− |vxvyvz|
g1

+
Λ2

8π2
=

1

8π2
|ma|2 log(

|ma|2 + Λ2

|ma|2
) +O(g2) , (D13)

where ω2 +
∑
i q

2
i v

2
i ≤ Λ2 is used. The equation for |ma| with vx = vy = vz = 1 matches that in Ref. [1], which

indicates that we need to have a large enough g1 to have the nonzero CDW magnitude. The solution to the above
equation has the form

|ma| = |m0|+O(g2) , (D14)

where |m0| is independent of g2. In the main text, we directly neglect the g2 in |ma| and choose |ma| = |m0|. Then,
m0 = |m0|eiφ0 .

Appendix E: Incorporating the Effects of Strain

In this section, we discuss the effect of strain on the crystals in details. To discuss strain, we need to introduce the
displacement gradient uij = ∂ui

∂rj
, where ui is the ith component of the displacement of the point at r. The strain

tensor is just the symmetric part of the tensor (uij+uji)/2, while the anti-symmetric part (uij−uji)/2 is the rotation.
By setting the strain to be adiabatic, homogeneous, and infinitesimal, we mean to choose uij to have these properties.

In the following, we describe the theory for uij , which contains the strain as a special case. We first discuss the
general formalism for crystals, then the TB model, and at last the low-energy model. Throughout the work, u(t) is
treated as a real fixed background, which acts as a constant under symmetry operators, e.g., T u(t)T −1 = u∗(t) = u(t)
for TR symmetry.
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1. General Formalism

We first discuss a generic single-particle Hamiltonian for electrons in a crystal:

H0 =
p2

2me
+ λS · (∇xV (x)× p) + V (x) , (E1)

where λ ∈ R labels the spin-orbit coupling, ∇xV (x) = i[p, V (x)],

V (x) =
∑
R,i

Vi(x−R− τ i) , (E2)

R is the lattice vector, and τ i labels the sublattice. We adopt the clamped-ion approximation9, and then the ions
exactly follow the homogeneous deformation R + τ i → (1 + u)(R + τ i). With the homogeneous infinitesimal u, the
Hamiltonian becomes

Hu =
p2

2me
+ λS · (∇xVu(x)× p) + Vu(x) , (E3)

where

Vu(x) =
∑
R,i

Vi(x− (1 + u)(R+ τ i)) . (E4)

H0 has the lattice translation symmetry [H0, TR] = 0 with TR = e−ip·R. Then, H0 can be rewritten as

H0 =

∫
1BZ

ddk

(2π)d

∑
G,G′,s,s′

c†k+G,s[h0(k)]Gs,G′s′ck+G′,s′ =

∫
ddk

(2π)d
c†kh0(k)ck , (E5)

where k ∈1BZ, and G is the reciprocal lattice vector. c†k+G,s is the creation operator for |k +G, s〉, and satisfies

{c†k+G,s, ck′+G′,s′} = (2π)dδ(k − k′)δGG′δss′ . (E6)

Moreover, c†k is a vector operator with c†k+G,s its the (G, s) component.

In the presence of u, the lattice translation of Hu becomes [Hu, TRu ] = 0 with Ru = (1 + u)R. As a result, the
reciprocal lattice vectors and Bloch momenta become Gu = (1 − uT )G and ku = (1 − uT )k. Then, Hu can be
rewritten as

Hu =

∫
1BZu

ddku
(2π)d

∑
G,G′,s,s′

c†ku+Gu,s
[hu(k)]Gs,G′s′cku+G′u,s

′ , (E7)

where
∑
Gu

is equivalent to
∑
G since Gu has a one-to-one relation to G. Moreover, Hu=0 = H0 means that

hu=0(k) = h0(k). The anticommutation relation for c†ku+Gu,s
reads

{c†ku+Gu,s
, ck′u+G′u,s

′} = (2π)dδ(ku − k′u)δGG′δss
′ = (2π)dδ(k − k′) 1

|det(1− uT )|
δGG′δss

′ . (E8)

We can define c̃†k,G,s(u) = |det(1− uT )|1/2c†ku+Gu,s
, and then it has the same anti-commutation relation as Eq. (E6):

{c̃†k,G,s, c̃k′,G′,s′} = (2π)dδ(k − k′)δGG′δss′ . (E9)

As a result, Hu can be further re-expressed in terms of c̃ as

Hu =

∫
1BZ

ddk

(2π)d
c̃†khu(k)c̃k . (E10)

Comparing Eq. (E5) and Eq. (E10), it is clear that the deformation induces two changes: (i) c†k → c̃†k(u), and

(ii) h0(k) → hu(k). According to Eq. (E6) and Eq. (E9), c†k and c̃†k(u) have the same anti-commutation relations.
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The similarity between them can also be reflected by the equivalent representations furnished for the corresponding
symmetry operators.

For the lattice translation, we have

TRc
†
kT
−1
R = c†ke

−ik·R , T(1+u)Rc̃
†
kT
−1
(1+u)R = c̃†ke

−ik·R . (E11)

More generally, for a generic space group operator g = {R|t}, the representation furnished by c†k reads

gc†kg
−1 = c†Rke

−iRk·tUg , (E12)

where [Ug]G′s′,Gs = δG′,RGe
−iG′·t(RS)s′s and RS is the matrix representation of R in the spin subspace. Then, we

can define gu = {R|tu = (1 + u)t} and have

guc̃
†
k(R−1uR)g−1

u = c̃†Rk(u)e−iRk·tUg . (E13)

For the TR symmetry that acts on the Bloch states, we have

T c†kT
−1 = c†−kUT , T c̃†k(u(t))T −1 = c̃†−k(u(t))UT (E14)

where [UT ]G′s′,Gs = δG′,−G(iσy)s′s.
With these symmetry representations, we can derive the symmetry properties of hu(k) from those of h0(k), which

are useful for the change (ii). Suppose [g,H0] = 0. Then, we have gu(HR−1uR)g−1
u = Hu based on Eq. (E1) and

Eq. (E3). As a result, we have

Ugh0(k)U†g = h0(Rk) , Ughu(k)U†g = hRuR−1(Rk) . (E15)

For TR symmetry, suppose [T , H0] = 0, and then we have T Hu(t)T −1 = Hu(t), which gives

UT h
∗
0(k)U†T = h0(−k) , UT h

∗
u(t)(k)U†T = hu(t)(−k) . (E16)

2. Tight-binding Model

The above formalism in general is hard to deal with analytically. More commonly, we deal with the TB model,
which reads

HTB,0 =
∑

R,R′,i,i′

c†R+τ i
Mii′(R+ τ i −R′ − τ i′)cR′+τ i′ (E17)

in the absence of deformation, or reads

HTB,u =
∑

R,R′,i,i′

c†(1+u)(R+τ i)
Mii′ [(1 + u)(R+ τ i −R′ − τ i′)]c(1+u)(R′+τ i′ )

(E18)

with deformation. Here c†R+τ i
is a vector whose components stand for orbital, spin, etc, and are labeled by βi as

c†R+τ i,βi
. Note that βi can take different ranges of values for different sublattices. In this work, we approximate

Mii′ [(1 + u)(R+ τ i −R′ − τ i′)] as16

Mii′ [(1 + u)(R+ τ i −R′ − τ i′)] ≈

(
1− δ

Tuδ

|δ|2

)
Mii′(R+ τ i −R′ − τ i′) , (E19)

where δ = R + τ i −R′ − τ i′ is treated as a column vector. Since the above expression only involves the symmetric
part of u, this only takes in to account the effect of strain. It is reasonable sicne a global rotation of the system cannot
induce any response.

Let us define

c†k,i,βi =
1√
N

∑
R

eik·(R+τ i)c†R+τ i,βi
, c̃†k,i,βi(u) =

1√
N

∑
R

eik·(R+τ i)c†(1+u)(R+τ i),βi
, (E20)
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with N redefined as the total number of lattice sites. From {c†r,β , cr′,β′} = δrr′δββ′ , we can derive that c†k,i,βi and

c̃†k,i,βi have the same anti-commutation relation{
c†k,i,βi , ck′,i′,β′i′

}
=
{
c̃†k,i,βi , c̃k′,i′,β′i′

}
= δkk′δii′δβiβ′i′ . (E21)

With Eq. (E20), the Hamiltonian can be re-expressed as

HTB,0 =
∑
k

c†kh0(k)ck , HTB,u =
∑
k

c̃†khu(k)c̃k (E22)

with

[h0(k)]iβi,i′β′i′ =
∑
∆R

e−i(∆R+τ i−τ i′ )·k [Mii′(∆R+ τ i − τ i′)]βiβ′i′ (E23)

and

[hu(k)]iβi,i′β′i′ =
∑
∆R

e−i(∆R+τ i−τ i′ )·k [Mii′((1 + u)(∆R+ τ i − τ i′))]βiβ′i′ . (E24)

Therefore, similar as the general formalism, the strain effect to the TB model includes (i) c†k → c̃†k and (ii) h0(k) →
hu(k) , where c†k and c̃†k have the same commutation relation, and hu=0(k) = h0(k).

The similarity also exists for the symmetry properties. First, Eq. (E11) for the lattice translations still holds here.

Second, if [g,H0] = 0 for a space group operation g, then c†R+τ i
furnishes a representation of g, i.e.,

gc†R+τ i
g−1 = c†R(R+τ i)+t

M igi
g = c†Rg+τ ig

M igi
g (E25)

with M
igi
g the representation of g in the β space. The existence of M

igi
g means ig and i are the same kind of atoms

with the same orbitals. Then, Eq. (E12), Eq. (E13), and Eq. (E15) hold here for a different definition of Ug:

[Ug]i′β′
i′ ,iβi

= δi′ig [M i′i
g ]β′

i′βi
. (E26)

M i′i
g is defined to be zero for i′ and i being different kinds of atoms. Third, if [T , H0] = 0 for the TR operation T ,

then

T c†R+τ i
T −1 = c†R+τ i

M i
T (E27)

with M i
T the representation of T in the β space, and Eq. (E14) and Eq. (E16) hold here for a different definition of

UT :

[UT ]i′β′
i′ ,iβi

= δii′ [M
i
T ]β′

i′βi
. (E28)

Therefore, the strain effect is formally the same for the general Hamiltonian and the TB model.

3. Low-Energy Model

In this part, we project the general Hamitonian or the TB model to the low energy subspace. We consider a group
of orthonormal vectors vα(ka) that satisfy

h0(ka)vα(ka) = Eα(ka)vα(ka) , (E29)

where a, α are re-defined to label the valley and energies. We choose vα(ka)’s so that they furnish a representation of
the symmetry group of H0:

Ugvα(ka) = vα′(ka′)δka′ ,Rka [W a
g ]α′α (E30)

if g is a symmetry of H0, and

UT v
∗
α(ka) = vα′(ka′)δka′ ,−ka [W a

T ]α′α (E31)
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if T is a symmetry of H0.
Let us define

b†q,a,α = c†q+ka
vα(ka) , b̃†q,a,α(u) = c̃†q+ka

(u)vα(ka) , (E32)

where q only takes a small symmetric neighborhood around ka. As a result, b†q and b̃†q have the same commutation
relation

{b†q,a,α, bq′,a′,α′} = {b̃†q,a,α, b̃q′,a′,α′} = (2π)dδ(q − q′)δaa′δαα′ , (E33)

and the effective Hamiltonian reads

Heff
0 =

∫
ddq

(2π)d
b†qh

eff
0 (q)bq , H

eff
u =

∫
ddq

(2π)d
b̃†qh

eff
u (q)̃bq . (E34)

Here we use the form for the general Hamiltonian, since the derivation for the TB model is equivalent. Clearly, the

effect of deformation again includes (i) b†k → b̃†k and (ii) heff0 (k)→ heffu (k) . Furthermore, the symmetry properties

of b̃†q are

gub̃
†
q(R−1uR)g−1

u = b̃†Rq(u)Ueffg e−iRq·t (E35)

with (Ueffg )a′α′,aα = [W a
g ]α′αδka′ ,Rkae

−iRka·t if g is a symmetry of H0, and

T b̃†q(u(t))T −1 = b̃†−q(u(t))UeffT (E36)

with (UeffT )a′α′,aα = [W a
T ]α′αδka′ ,−ka if T is a symmetry of H0. The symmetry properties of bq can be derived by

limiting u→ 0 in the above expression.

In general, heff0 (q) and heffu (q) can be derived from h0(q) and hu(q) using the perturbation theory, respectively.
However, this is not always straightforward to be done analytically, so sometimes we derive their form from symmetries.

Note that Heff
0 and Heff

u should have the same symmetry properties as H0 and Hu, respectively. Then,we have

Ueffg heff0 (q)(Ueffg )† = heff0 (Rq) , Ueffg heffu (q)(Ueffg )† = heffRuR−1(Rq) (E37)

if [g,H0] = 0, and

UeffT [heff0 (q)]∗(UeffT )† = heff0 (−q) , UeffT [heffu(t)(q)]∗(UeffT )† = heffu(t)(−q) (E38)

if [T , H0] = 0.
Now we restore the original definition of a, α, and consider the case discussed in the main text. With this scheme

and the following symmetry representations

myc
†
q,1,αm

−1
y = c†myq,2,−α(−iσy) ,

myc
†
q,2,αm

−1
y = c†myq,1,−α(−iσy) ,

T c†q,1,αT −1 = c†−q,2,α(iσy) ,

T c†q,2,αT −1 = c†−q,1,α(iσy) ,

(E39)

we can obtain the leading-order electron-strain coupling as

Hstr =

∫
d3q

(2π)3

∑
a

c̃†q,a[ξ0τ0σ0 + (−1)a−1(τ0σxξx + τzσyξy + τ0σzξz)]c̃q,auzz . (E40)

Converting to the field operator c̃t,q,a,α and using

ψt,r,a,α = eika,α·r
∫

d3q

(2π)3
eiq·r c̃t,q,a,α , (E41)

we can obtain Eq. (A6). Here the low-energy approximation allows us to extend the range of q to R3 and treat a, α
as internal indices. Since the strain cannot change the commutation relation of the field operator, the measure of the
functional integral in the partition function does not change with the strain.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

ሚ𝐴𝑎
𝐴𝑎,5 Φ𝑎

FIG. S5. This figure shows Feynman diagrams that might contribute to the effective action of Eq. (F2) up to the leading
order. The solid line stands for the Fermion propagator Eq. (F3), and the meanings of other lines are labeled in the graph.

Appendix F: More Details on the Low-Energy Theory

In the section, we provide more details on the effective action and the boundary condition of the low-energy theory.

1. Effective Action

In this part, we derive Eq. (A15) from Eq. (A13) and Eq. (A11).
Let us first simplify Eq. (A13). As mentioned in the main text, |m| = |m(r)| equals to a constant |m0| in the

bulk, and then we can define M(r) such that (s.t.) |m(r)| = |m0| + M(r). Since M(r) is constantly zero in the
bulk regardless of the gapped boundary, it cannot contribute to any bulk response, and thus we can neglect it in the
following derivation, simplifying Eq. (A13) to

La = ψa

[
i(/∂ + ie /̃Aa − i /Aa,5γ

5)− |m0|e−iΦaγ
5
]
ψa . (F1)

From the above equation, a generic term in the effective action has a specific nonnegative powers of Ãa, Aa,5, and
Φa, labeled as n1, n2, and n3, respectively. Among all these terms, the charge response comes from those with n1 ≥ 1,
since the functional derivative of the action with respect to A is required to derive the current. We next adopt the
leading order approximation, which consists of three parts. First, since we only consider the currents that are linear
in uzz or A, the terms in the effective action that we are interested in must have n1 ≤ 2. Second, we only keep terms
to the linear order of φ and Q for simplicity, and then we can simplify Eq. (F1) to

La = ψa

[
i(/∂ + ie /̃Aa − i /Aa,5γ

5)− |m0|+ i|m0|Φaγ5
]
ψa . (F2)

The first two approximations further require n2 ≤ 2 and n3 ≤ 1 and forbid (n1, n2, n3) = (1, 2, 1), (2, 1, 1), (2, 2, 0), (2, 2, 1).
As a result, we have only eight possible values of (n1, n2, n3) that might have nonzero contribution to the effective
action within the first two approximations, whose Feynman diagrams are summarized in Fig. S5. The third approx-
imation is that since uzz and A are chosen to slowly vary along with t and/or r, we keep at most two space-time
derivatives of them.

In the Feynman diagrams, the fermion propagator reads 1
i S(k) with

S(k) = (/k + |m0|)−1 , (F3)

and the vertices are defined according to Eq. (F2). Note that Eq. (F3) is defined based on a new definition of the
Fourier transformation

ψx,a,α =

∫
d4q

(2π)4
eiqxψq,a,α , (F4)
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since this form leaves the measure invariant. The Fourier transformation of Ãa, Aa,5, and Φa follows the same rule
as above. In this section, we adopt the real time: xµ = (t, r)µ and define qµ = (ν, q). In the following, we evaluate
each graph. For the derivation, we do not use the dimensional regularization due to the existence of Levi-Civita
symbol, but adopt the classic Adler’s method for the chiral anomaly, which does not choose a regularization scheme
as discussed in Ref. [7 and 8]. Eq. (F2) has effective Lorentz invariance and U(1) gauge invariance, and we preserve it
to all orders of quantum correction.

Before evaluating each diagram, we would like to discuss a subtlety. The U(1) gauge field is added as ∂xµ →
∂xµ+ieAµ(x) for ψt,r. According to Eq. (E41), ψt,r actually corresponds to a fermion at xphy = (t, rphy) = (t, (1+u)r).
Therefore, Aµ(x) is related to the actual physical U(1) gauge field Aphyµ (xphy) as

A0(x) = Aphy0 (t, (1 + u)r) , A(x) = (1 + u)Aphy(t, (1 + u)r) . (F5)

Nevertheless, we can directly replace A(x) by the physical U(1) gauge field Aphy(x) in this work as discussed below.
All current responses can be split into two classes depending on whether the response involves the electron-strain
coupling parameter ξi or not. For the response that involves ξi, it must at least involve the electron-strain coupling
ξiuzz of power one, which means the strain effect in A(x) (if appears) would make the response non-linear in uzz.
Since we at most consider the response to the first order of uzz, A(x) should be directly replaced by Aphy(x) for
the response that involves ξi. The ξi-independent response would stay unchanged even if the electron-strain coupling
limits to zero. If we keep the strain effect in A(x) for this type of response, a ξi-independent strain-induced current
might appear. Such a strain-induced response corresponds to the motions of the electrons that exactly follow the
homogeneous deformation, which is ambiguous at the linear order for the infinitely large system according to Ref. [9]
and thus must be neglected. Therefore, we should also directly replace A(x) by Aphy(x) for the response that does
not involve ξi. In sum, we can treat A(x) as Aphy(x) in our work. In other words, all the strain-induced linear current
responses derived here characterize to what degree the electrons fail to follow the homogeneous deformation, which is
what we should consider according to Ref. [9].

a. Ãa Term

The contribution of Fig. S5(a) to iSeff,a reads

−
∫
d4xÃx,a,µ

∫
d4k

(2π)4
Tr

[
−ieγµ

1

i
S(k)

]
= −e

∫
d4xÃx,a,µ Tr [γµγν ]

∫
d4k

(2π)4

kν
k2 + |m0|2

= 0 , (F6)

where we use

Tr [γµ1γµ2 ...γµn ] = 0 for odd n , (F7)

and ∫
d4kkµ1

kµ2
...kµnf(k2) = 0 for odd n . (F8)

However, there is a tricky part here. Eq. (F6) is just one way to assign momentum to the graph Fig. S5(a), and
there are infinite many other ways as

−
∫
d4xÃx,a,µ

∫
d4k

(2π)4
Tr

[
−ieγµ

1

i
S(k + p)

]
(F9)

with p independent of k. As Tr [γµS(k)]
k2→∞−−−−→ 1/k and we do not choose any regularization scheme, we have∫

d4kTr [γµS(k)] has UV divergence
∫
d4k1/k. As a result,

∫
d4k

(2π)4 Tr [γµS(k + p)] 6=
∫

d4k
(2π)4 Tr [γµS(k)] for nonzero

p, meaning that the expression for Fig. S5(a) is ambiguous7,8. This ambiguity only appears for the UV divergence
faster than logrimathiric divergence, which also appears for some other graphs in Fig. S5 as discussed below.

Nevertheless, we can use symmetry and physics to remove this ambiguity for Fig. S5(a). Eq. (F6), if nonzero, breaks
the effective Lorentz invariance and suggests that a nonzero current would exist without any external perturbation.
Therefore, it should be restricted to zero, meaning that Eq. (F6) is the only allowed way of assigning momentum.
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b. ÃaAa,5 Term

Fig. S5(b) reads

−
∫

d4q

(2π)4
Ãq,a,µA−q,a,5,ν

∫
d4k

(2π)4
Tr

[
1

i
S(k + q)(−ieγµ)

1

i
S(k)(iγνγ5)

]
. (F10)

With

Tr
[
γ5γµγνγργδ

]
= −4iεµνρδ

Tr
[
γ5γµ1γµ2 ...γµn

]
= 0 for an odd number n of γµ matrices

Tr
[
γ5γµγν

]
= Tr

[
γ5
]

= 0 ,

(F11)

Fig. S5(b) can be simplified to ∫
d4q

(2π)4
eÃq,a,µA−q,a,5,ν(−4i)εµνρδqδRρ , (F12)

where

Rρ(q) =

∫
d4k

(2π)4

kρ
((k + q)2 + |m0|2)(k2 + |m0|2)

, (F13)

and εµνρδ is the Levi-Civita symbol. The divergence of Rρ is of order k, and thus is ambiguous under the shift of the
k. In general, for any f(k) that of order O(1/k3) for large k2, the ambiguity can be evaluated as7,8∫

d4k

(2π)4
(f(k + p)− f(k)) = lim

k2→∞

∫
dΩ3+1

(2π)4
k2(kp)f(k) , (F14)

where dΩ3+1 is the solid angle in the 3+1D space-time manifold and invariant under of the Lorentz transformation.

Then, for fρ(k)
k2→∞−−−−→ kρ/k

4, such as the integrand of Rρ, we have∫
d4k

(2π)4
(fρ(k + p)− fρ(k)) = i

2π2

(2π)4

pρ
4

=
i

32π2
pρ , (F15)

where we use ∫
dΩ3+1 = i2π2 ,

∫
dΩ3+1kµkνf(k2) =

∫
dΩ3+1k

2f(k2)
gµν
4

, (F16)

which can be derived with Wick rotation. Here gµν = diag(−1, 1, 1, 1)µν is the metric.
Owing to Eq. (F15), the expression of Rρ(q) in Eq. (F12) should be

Rρ(q) =

∫
d4k

(2π)4

kρ
((k + q)2 + |m0|2)(k2 + |m0|2)

mod k shift , (F17)

after taking into account the ambiguity induced by the momentum shift. Nevertheless, we can evaluate Rρ up to a
momentum shift. To do so, we need to introduce the widely used trick called Feynman parametrization7:

n∏
i=1

1

Ai
=

∫
dFn

1(∑n
i=1

∑
Ai
xi
)n (F18)

with ∫
dFn = (n− 1)!

∫ 1

0

dx1

∫ 1

0

dx2...

∫ 1

0

dxn δ

(
−1 +

n∑
i=1

xi

)
. (F19)

With this trick, Rρ becomes

Rρ(q) =

∫ 1

0

dx

∫
d4l

(2π)4

lρ − xqρ
(l2 +D)2

mod l shift⇒ Rρ(q) = B0(q2)qρ +
i

32π2
pρ , (F20)
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where l = k + xq, D = xq2 − x2q2 + |m0|2, B0 =
∫ 1

0
dx
∫

d4l
(2π)4

−x
(l2+D)2 , pρ marks the ambiguity given by the shift of

the momentum, including the change from k to l in the integral also contributes the momentum shift. The effective
Lorentz in-variance requires Rρ(Λq) = Λ ρ′

ρ Rρ′(q) for Lorentz transformation Λ. This symmetry requirement imposes

a constraint on the momentum shift of the Rρ(q), pρ must have the form pρ = B1(q2)qρ, which partially removes the
ambiguity. As a result, we have

Rρ(q) =

[
B0(q2) +

i

32π2
B1(q2)

]
qρ . (F21)

Substituting the above expression into Eq. (F12), we find Eq. (F12) is zero.

c. ÃaΦa Term

Fig. S5(c) reads

−
∫

d4q

(2π)4
Ãq,a,µΦ−q,a

∫
d4k

(2π)4
Tr

[
1

i
S(k + q)(−ieγµ)

1

i
S(k)(−|m0|γ5)

]
. (F22)

Using Eq. (F11), the above expression can be evaluated to zero.

d. ÃaÃa Term

Fig. S5(d) formally is the same as the loop correction to the photon propagator for quantum electrodynamics7,
which has the form

iC0
e2

2

∫
d4xF̃a,µν F̃

µν
a , (F23)

where C0 is a constant. According to the expression of F̃a, summing the above expression over a gives

iC0e
2

∫
d4xFµνF

µν , (F24)

where the terms that cannot contribute to the charge response have been neglected. Therefore, this term stands for
the trivial correction of the permittivity and permeability inside the material.

e. ΦaÃaAa,5 Terms

Fig. S5 (e) and (f) together give rise to the ΦaÃaAa,5 term, which reads

−
∫

d4q1

(2π)4

d4q2

(2π)4
Ãq1,a,µAq2,a,5,νΦq,a

∫
d4k

(2π)4

{
Tr

[
1

i
S(k + q1)(−ieγµ)

1

i
S(k)(iγνγ5)

1

i
S(k − q2)(−|m0|γ5)

]
+ Tr

[
1

i
S(k)(−ieγµ)

1

i
S(k − q1)(−|m0|γ5)

1

i
S(k + q2)(iγνγ5)

]}
= i

∫
d4q1

(2π)4

d4q2

(2π)4
e|m0|Ãq1,a,µAq2,a,5,νΦq,a (Rµν1 −R

νµ
2 )

(F25)

where q = −q1 − q2,

Rµν1 =

∫
d4k

(2π)4
Tr
[
S(k + q1)γµS(k)γνγ5S(k − q2)γ5

]
(F26)

and

Rνµ2 =

∫
d4k

(2π)4
Tr
[
γ5S(k + q2)γ5γνS(k)γµS(k − q1)

]
(F27)
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At large k2, we have

Tr
[
S(k + q1)γµS(k)γνγ5S(k − q2)γ5

]
∼ O(

1

k4
) (F28)

and

Tr
[
γ5S(k + q2)γ5γνS(k)γµS(k − q1)

]
∼ O(

1

k4
) , (F29)

where we use

Tr [γµ1γµ2 ...γµn ] = 0 for odd n . (F30)

It means Rµν1 and Rνµ2 are logarithmically divergent and thus unambiguous under the shift of k in the integral.
With the Feynman parametrization (Eq. (F18)), we can derive the expression for R1 and R2 as

Rµν1 = Rνµ2 =

∫
d4l

(2π)4

∫
dF3

4|m0|
(l2 +D)3

[
(−l2 − |m0|2)gµν − 2(Qµqν1 +Qµqν2 ) + qµ1 q

ν
2 − q

µ
2 q
ν
1 + (2q1Q−Q2 + q1q2)gµν

]
,

(F31)
where Q = x1q1 − x3q2, D = x1q

2
1 + x3q

2
2 −Q2 + |m0|2, and l = k +Q. We also use

Tr
[
γµγνγργδ

]
= 4(gµνgρδ − gµρgνδ + gµδgρν) and Tr [γµγν ] = −4gµν . (F32)

As a result, Eq. (F25) is zero.

f. ÃaAa,5Aa,5 Terms

Fig. S5(g) reads

−
∫

d4q1

(2π)4

d4q2

(2π)4
Ã−q1−q2,a,µAq1,a,5,νAq2,a,5,ρ

∫
d4k

(2π)4
Tr

[
1

i
S(k + q1)(iγνγ5)

1

i
S(k)(iγργ5)

1

i
S(k − q2)(−ieγµ)

]
= −e

∫
d4q1

(2π)4

d4q2

(2π)4
Ã−q1−q2,a,µAq1,a,5,νAq2,a,5,ρU

µνρ
q1,q2 ,

(F33)

where

Uµνρq1,q2 =
1

2

∫
d4k

(2π)4
fµνρU (k, q1, 0,−q2) + (q1 ↔ q2, ρ↔ ν) , (F34)

and

fµνρU (k, p1, p2, p3) = Tr
[
S(k + p1)γνγ5S(k + p2)γ5γρS(k + p3)γµ

]
. (F35)

Since fµνρU (k, p1, p2, p3) is of O(1/k3) order as

fµνρU (k, p1, p2, p3)
k2→∞−−−−→ Tr[γµ/kγν/kγρ/k]

k6
, (F36)

the shift of k in the integral of fµνρU (k, q1, q2) causes ambiguity as∫
d4k

(2π)4
[fµνρU (k + p, p1, p2, p3)− fµνρU (k, p1, p2, p3)] =

i

24π2
(pνgµρ + pρgµν + pµgνρ) . (F37)

Here we use ∫
dΩ3+1kµkνkρkδf(k2) =

∫
dΩ3+1k

4kδf(k2)
1

24
(gµνgρδ + gµρgνδ + gµδgρν) (F38)

and

γµγνγµ = 2γν . (F39)
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Then, we can evaluate the integral of fµνρU (k, p1, p2, p3) up to a shift of integration variable:∫
d4k

(2π)4
fµνρU (k, p1, p2, p3)

=

∫
dF3

∫
d4l

(2π)4

Tr[γµ(−/l + /Q1 + |m0|)γν(/l − /Q2 + |m0|)γρ(−/l + /Q3 + |m0|)]
(l2 +D)3

mod l shift

=

∫
dF3

∫
d4l

(2π)4

1

(l2 + |m0|2)3

{
−2l2[gµν(Q3 −Q1 +Q2)ρ) + gµρ(−Q3 +Q1 +Q2)ν + gνρ(Q3 +Q1 −Q2)µ]

+4|m0|2[gµν(Q3 −Q1 −Q2)ρ + gµρ(−Q3 +Q1 −Q2)ν + gνρ(Q3 +Q1 +Q2)µ]
}

+O(p3) mod l shift

(F40)

where

l = k +

3∑
i=1

xipi , D =

3∑
i=1

xiq
2
i − (x1q1 + x2q2 + x3q3)2 + |m0|2 , Qi =

3∑
i=1

xipi − pi , (F41)

and the Taylor expansion with respect to the pi is used for the last equality.
Substitute the p1 = q1, p2 = 0, and p3 = −q2 in the above equation and use∫

dF3xi = 1/3 , (F42)

we arrive at∫
d4k

(2π)4
fµνρU (k, q1, 0,−q2) =

∫
d4l

(2π)4

1

(l2 + |m0|2)3

{
−4

3
l2(gµν(2q1 + q2)ρ + gµρ(−q1 − 2q2)ν + gνρ(−q1 + q2)µ)

+
8

3
|m0|2(gµν(q1 + 2q2)ρ + gµρ(−q2 − 2q1)ν)

}
+O(q3) mod l shift ,

(F43)

where the leading order term would vanish after symmetrizing by q1 ↔ q2 and ν ↔ ρ. We can neglect the O(q3)
terms in the above equation since the leading order approximation allows at most two space-time derivatives on the
fields, meaning that we only need to consider the terms up to q2 order. Then, since Eq. (F37) indicates that Eq. (F34)
only holds up to a shift in integration variable, we have

Uµνρq1,q2 =
i

24π2
(pνgµρ + pρgµν + pµgνρ) , (F44)

where pµ labels the total ambiguity, and pµ can depend on q1 or q2 but must be invariant under q1 ↔ q2. This
ambiguity is removed by the U(1) gauge invariance (Ward identity) that requires

(−q1 − q2)µU
µνρ
q1,q2 = 0 , (F45)

which further requires that p should be set to zero. As a result, we conclude that Fig. S5(g) can be neglected within
the leading-order approximation.

g. ÃaÃaAa,5 term

Fig. S5(h) reads

−
∫

d4q1

(2π)4

d4q2

(2π)4
Ãq1,a,µÃq2,a,νA−q1−q2,a,5,ρ

∫
d4k

(2π)4
Tr

[
1

i
S(k + q1)(−ieγµ)

1

i
S(k)(−ieγν)

1

i
S(k − q2)(iγργ5)

]
= ie2

∫
d4q1

(2π)4

d4q2

(2π)4
Ãq1,a,µÃq2,a,νA−q1−q2,a,5,ρV

µνρ
q1,q2 ,

(F46)
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where

V µνρq1,q2 =
i

2

∫
d4k

(2π)4
fµνρV (k, q1, 0,−q2) + (q1 ↔ q2, µ↔ ν) , (F47)

and

fµνρV (k, p1, p2, p3) = Tr
[
γ5S(k + p1)γµS(k + p2)γνS(k + q3)γρ

]
. (F48)

Since fµνρV (k, p1, p2, p3) decays as 1/k3 for large k2 as

fµνρV (k, p1, p2, p3)
k2→∞−−−−→ −Tr[γ5/kγµ/kγν/kγρ]

k6
, (F49)

its integral is ambiguous as∫
d4k

(2π)4
[fµνρV (k + p, p1, p2, p3)− fµνρV (k, p1, p2, p3)] =

1

8π2
εµνρδpδ , (F50)

where Eq. (F11) and Eq. (F38) are used. It means Eq. (F47) holds up to a shift of momentum.
Now we evaluate the integral of fµνρV (k, p1, p2, p3):∫

d4k

(2π)4
fµνρV (k, p1, p2, p3)

=

∫
dF3

∫
d4l

(2π)4

Tr
[
γ5(−/l + /Q1 + |m0|)γµ(−/l + /Q2 + |m0|)γν(−/l + /Q3 + |m0|)γρ

]
(l2 +D)3

mod l shift

=

∫
dF3

∫
d4l

(2π)4

−4i

(l2 + |m0|2)3
εδµνρ

[
(Q1 +Q2 +Q3)δ

l2

2
+ (Q1 −Q2 +Q3)δ|m0|2

]
+O(p3) mod l shift

=
1

8π2
εµνρδ

2

3
(p1 − 2p2 + p3)δ +O(p3) mod l shift

= 0 +O(p3) mod l shift ,

(F51)

where the first equality uses Eq. (F18) and Eq. (F41), the second equality uses Eq. (F11) and the Tyler expansions
with respect to pi, the third equality uses Eq. (F42) and∫

d4l

(2π)4

1

(l2 +D)3

Wick Rotation−−−−−−−−−→
∫

i
d4 l̄

(2π)4

1

(l̄2 +D)3
=

i

32π2D
, (F52)

and the last equality uses Eq. (F50). Substituting p1 = q1, p2 = 0 and p3 = −q2 into the above equation and neglect
O(q3) terms according to the leading order approximation, we can derive the expression of V from Eq. (F47)as

V µνρq1,q2 =
i

8π2
εµνρδpδ , (F53)

where pδ should depend on q1, q2 and changes its sign under q1 ↔ q2. Then, in general pδ = q1,δC1(q1, q2) +
q2,δC2(q1, q2), where C2(q2, q1) = −C1(q1, q2). Again, the ambiguity is removed by the U(1) gauge invariance

q1,µV
µνρ
q1,q2 = q2,νV

µνρ
q1,q2 = 0 , (F54)

which requires C1 = C2 = 0. Eventually, we know Fig. S5(h) is negligible within the leading order approximation.

h. ÃaÃaΦa Term

Fig. S5(i) reads

−
∫

d4q1

(2π)4

d4q2

(2π)4
Ãq1,a,µÃq2,a,νΦ−q1−q2,a

∫
d4k

(2π)4
Tr

[
1

i
S(k + q1)(−ieγµ)

1

i
S(k)(−ieγν)

1

i
S(k − q2)(−|m0|γ5)

]
= −i

∫
d4q1

(2π)4

d4q2

(2π)4
Ãq1,a,µÃq2,a,νΦ−q1−q2,ae

2|m0|Tµν(q1, q2) ,

(F55)
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where

Tµν(q1, q2) =
1

2

∫
d4k

(2π)4
fµνT (k, q1, 0,−q2) + (µ↔ ν, q1 ↔ q2) , (F56)

and

fµνT (k, p1, p2, p3) = Tr
[
S(k + p1)γµS(k + p2)γνS(k + p3)γ5

]
. (F57)

Since

fµνT (k, p1, p2, p3)
k2→∞−−−−→ O(1/k4) , (F58)

the integral of fT has at most logarithmic divergence, and thus is unambiguous under the shift of integration variable.
Then, we can evaluate the integral∫

d4k

(2π)4
fµνT (k, p1, p2, p3)

=

∫
dF3

∫
d4l

(2π)4

Tr
[
γ5(−/l + /Q1 + |m0|)γµ(−/l + /Q2 + |m0|)γν(−/l + /Q3 + |m0|)γ5

]
(l2 +D)3

=

∫
dF3

∫
d4l

(2π)4

|m0|
(l2 + |m0|2)3

(−4i)εµνρδ(−Q1,ρQ2,δ −Q2,ρQ3,δ −Q3,ρQ1,δ) +O(p3)

= − 1

8π2|m0|
εµνρδ(p1,ρp2,δ + p2,ρp3,δ + p3,ρp1,δ) +O(p3) ,

(F59)

where the first equality uses Eq. (F18) and Eq. (F41), the second equality uses Eq. (F11) and the Tyler expansion with
respect to pi, and the third equality uses

∫
dFn 1 = 1.

Substituting p1 = q1, p2 = 0, and p3 = −q2 and neglecting the O(q3) terms, we have

Tµν(q1, q2) = − 1

8π2|m0|
εµνρδq1ρq2δ , (F60)

which means the leading-order contribution from Fig. S5(i) to the effective action has the form of the axion term:∫
d4x

e2

32π2
Φaε

µνρδF̃a,µν F̃a,ρδ . (F61)

Only this term contains nontrivial contribution to the leading-order linear response.

i. Restoring Fermi Velocities

As shown above, only Fig. S5(d) and (i) have nonzero contribution to the leading-order linear response. Fig. S5(d)
only gives the correction to the permittivity and permeability in the material and thus is trivial. The only nontrivial
leading-order linear response comes from Fig. S5(i), which gives Eq. (A15).

Note that the following transformation is used to derive Eq. (A7) and Eq. (A13),

ri → rivi , qi → qi/vi, ka,α,i → ka,α,i/vi,

Ai → Ai/vi, ψa,α → |vxvyvz|−1/2ψa,α .
(F62)

Then, we can perform the inverse transformation on Eq. (A15) to restore the Fermi velocities.
As a result, Eq. (A10) becomes

Epse
a = (−1)a

ξy
evy

u̇zzey , (F63)

Eq. (A17) becomes

θa = (−1)a−1sgn(vxvyvz)φ , (F64)
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Eq. (A19) becomes

ΣH,a = (−1)asgn(vxvyvz)
Q

2π

e2

2π
. (F65)

Eq. (A20) becomes

Seff,a,uzz = sgn(vxvyvz)
eξy

4π2vy

∫
dtd3r(φ+Q · r)u̇zzBy , (F66)

Eq. (A24) becomes

χizz =
∂jPE,i
∂u̇zz

= sgn(vxvyvz)
e

2π2

ξy
vy

[Q× ey]i , (F67)

and Eq. (A27) becomes

M bulk = −
∑
a

e2

2π

θbulka

2π
Epse
a . (F68)

j. Massless Limit

The derivation here suggests that the axion term comes from i|m0|Φaψ̄aγ5ψa term, while the Aa,5,µψ̄aγ
µγ5ψ̄ has

zero contribution. This seems to contradict the fact that Aa,5,µψ̄aγ
µγ5ψa in the |m0| = 0 case should account for the

axion term of the chiral anomaly. The reason for this seeming contradiction is that the Taylor expansion with respect

to the momentum of Ãa/Aa,5/Φa that we perform above is invalid in the |m0| → 0 limit. In another word, the method
used here does not have the proper |m0| → 0 limit and thus cannot restore the massless chiral anomaly. However, we
still adopt this method since it can reproduce the previous experimentally-verified results1,6 and the results derived
above are verified by the TB model as discussed in Appendix. G.

k. Momentum-Cutoff Correction to Eq. (F55)

The nontrivial contribution to the leading order response is given by Eq. (F55). In the above, we have derived the
response without imposing a finite momentum cutoff. In this part, we will impose a momentum cutoff |k| < Λ in
Eq. (F55) to discuss the possible correction. Λ here is different from that in Appendix. D.

The key quantity in Eq. (F55) is Tµν(q1, q2), which reads

Tµν(q1, q2) =
1

2
Iµν(q1, q2) + (µ↔ ν, q1 ↔ q2) , (F69)

where

Iµν(q1, q2) =

∫
d4k

(2π)4
Tr
[
S(k + q1)γµS(k)γνS(k − q2)γ5

]
. (F70)

With Eq. (F11), we have

Iµν(q1, q2) = |m0|
∫

d4k

(2π)4

−4iερµδνq1,ρq2,δ

((k + q1)2 + |m0|2)(k2 + |m0|2)((k − q2)2 + |m0|2)
. (F71)

Performing the Wick rotation and neglecting the O(q3) order since Ã is a slow field, we arrive at

Iµν(q1, q2) = 4ερµδνq1,ρq2,δ
4π

(2π)4

∫ Λ

0

d|k||k|2
∫
dk̄0

|m0|
(k̄2

0 + |k|2 + |m0|2)3

= ερµδνq1,ρq2,δ
1

8π2

1

( |m0|2
Λ2 + 1)3/2

1

|m0|
.

(F72)
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FIG. S6. (a) shows the spacial dependence of m in Eq. (F74) for a slab configuration with boundaries perpendicular to x.
Both Im(m) and Re(m) are smooth and monotonic functions of |x|. (b) shows the spatial dependence of the phase φ for (a).
Owing to the monotonicity of Im(m), the φ0 should take values in (−π, π) and the continuous φ cannot take the path that
passes ±π as |x| increases. (c) shows the spatial dependence of m for Im(m0) = 0 and Re(m0) < 0, where a gapless mode
appears at the boundary.

As a result, the corresponding terms in the action reads[
1

( |m0|2
Λ2 + 1)3/2

]∫
d4x

e2

32π2
Φaε

µνρδF̃a,µν F̃a,ρδ =

[
1 +O(

|m0|2

Λ2
)

] ∫
d4x

e2

32π2
Φaε

µνρδF̃a,µν F̃a,ρδ , (F73)

implying that imposing a momentum cutoff Λ would lead to a O( |m0|2
Λ2 ) correction to the response coefficient of

Eq. (A14).
In the above derivation, we use Eq. (A13), in which the momentum origin of the fermion field is typically not at

the Weyl point. However, the order of magnitude of the derived correction to the response coefficient will be left
invariant under a shift of the origin to the Weyl points, since such a shift can only change the forms of Aa,5 and Φa,
and therefore cannot affect the form of the response coefficient according to Eq. (F73).

2. A Symmetry Preserving Boundary Condition

In this part, we present a symmetry-preserving boundary condition that can realize the boundary TQPT. We
consider a slab sample with open boundary perpendicular to x and thickness 2xB , i.e., |x| < xB , while the momenta
along y and z are kept as good quantum numbers. For the discussion of the boundary condition, we can omit the
gauge field since it has no effect on the boundary condition. Moreover, we can also neglect strain since we choose it to
be homogeneous in the entire space, meaning that the difference between the material and vacuum is solely accounted
for by the spatial dependence of the CDW order parameters. We choose the boundary to preserve the TR and mirror
symmetries, and thereby we may focus on one valley since the other one is related by the TR symmetry. In this case,
we can freely rotate the fermion bases to cancel the ϕa and Q terms in Eq. (A7), leaving us

La = ψa

[
i/∂ − |m|e−i(−1)a−1φγ5

]
ψa . (F74)

As mentioned in the main text, m equals to a constant m0 deep in the bulk of the sample, i.e., m(|x| = 0) = m0;
the vacuum outside the sample is approximated as a Dirac fermion with infinitely large real mass for each valley, i.e.,
Re[m(|x| → ∞)] → ∞ and Im[m(|x| → ∞)] = 0. Between these two limits, we choose both Re[m] and Im[m] to be
smooth and monotonic for simplicity (see Fig. S6(a) for an example), and thus |m| is always continuous.

Owing to Im[m(|x| → ∞)] = 0, we can always set φ(|x| → ∞) = 0 for the vacuum. Furthermore, we always try to
choose a continuous φ. When Im[m(|x| = 0)] = Im[m0] 6= 0, the monotonicity requires Im[m] cannot take zero values
for finite |x|. As a result, a continuous φ can only take values in (−π, π) and thus requires φ(|x| = 0) = arg(m0) ≡ φ0 to
only take values in (−π, π), since φ otherwise must pass ±π as |x| increases and breaks the monotonicity of Im[m].(See
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FIG. S7. (a) shows the lattice of the TB model without CDW Eq. (G3). This is a cubic lattice with lattice constant a0 and
there are two sublattices in one unit cell. (b) demonstrates the choice of the unit cell for the TB model with CDW. Now the
unit cell contains four sublattices.

Fig. S6(b).) When Im[m0] = 0, the monotonicity requires Im[m(|x|)] = 0 for any x and φ must be a step function
with φ(|x| < xB) = nπ with n odd and φ(|x| > xB) = 0. This discontinuity of φ for Im[m0] = 0 comes from the
gapless boundary mode given by the real mass domain wall Re[m0] < 0 and Re[m(|x| → ∞)] → +∞, as well as the
vanishing Im[m] = 0, as shown in Fig. S6(c). When φ0 6= π (e.g., Fig. S6(a)), the nonvanishing Im[m] guarantees the
boundary to be gapped and makes sure that φ is continuous. Since the derivation of the response from the effective
action is only valid when the system is gapped everywhere and φ is continuous, Eq. (A27) is only valid for φ0 6= π,
which gives us a uniform strain induced magnetization deep in the bulk of the system. If we keep Re[m0] < 0 and
tune Im[m0] from 0− to 0+, φ0 should jump from −π + 0+ to π + 0−, leading to a jump of bulk magnetization. This
jump is induced by the gap closing at the boundary of the system, while the bulk of the system stay gapped.

In the above discussion, we choose smooth monotonic functions for m. The existence of the gapless boundary mode
for each valley and the magnetization jump is stable against any symmetry-preserving perturbation, as long as the two
valleys are well defined. It is because the gapless mode for one valley on one surface is a Weyl point in the (qy, qz, φ0)
space, meaning that the perturbations can only shift the appearance of the gapless mode and the magnetization jump
to other values of φ0 instead of removing them. It coincides with the fact that the gap closing only needs 1 fine-tuning
parameter.

Appendix G: Details on TB Model

In this part, we build a TB model to reproduce the results derived from the effective action.

1. Without CDW

We first consider the case without CDW. The model is built on a square lattice with lattice constant set to a0, and
each lattice site contains two sub-lattice atoms, one at τ 1 = (0, 0, 0) and the other at τ 2 = (0, 0, 1/2)a0, as shown in
Fig. S7(a). We put a spinful s orbital at τ 1 and a spinful py orbital at τ 2, and the bases read |R+ τ i, s〉 with s =↑↓
the spin index. According to the Fourier transformation

c†k,i,s =
1√
N

∑
R

ei(R+τ i)·kc†R+τ i,s
, (G1)

the representations of the symmetry operations read

myc
†
km
−1
y = c†myk(−iτzσy) , T c†kT

−1 = c†−k(iτ0σy) , (G2)

where c†R+τ i,s
is the creation operator for |R+ τ i, s〉, and τ and σ label the sublattice and spin indices, respectively.
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With certain nearest-neighbor hopping terms, we choose the following symmetry-allowed form for the strained TB
model:

HTB,u =
∑
k

c†khTB,u(k)ck , (G3)

hTB,u(k) =
1

a0
[d1τzσ0 + d2τyσ0 + d3τxσx + d4τxσz + d5τyσx] , (G4)

where the k dependence of d’s is implied, the strain-induced redefinition of ck discussed in Appendix. E is implied,
and

d1 = n0 − 1 + cos(kxa0) + n2 cos(kya0) + (1− uzz) cos(kza0)

d2 = (1− uzz
5

) sin(kya0) cos(kza0/2)

d3 = (1− uzz) sin(kza0/2)

d4 = (1− uzz
5

) cos(kxa0) sin(kza0/2)

d5 = (1− uzz
5

)n1 cos(kza0/2) cos(kya0) + (1− uzz
5

)n3 cos(kza0/2) cos(kxa0) ,

(G5)

where uzz stands for the normal strain along z. HTB,0 is just HTB,u with uzz = 0. Eigenenergies take the form

±
√
d2

1 + d2
3 + (

√
d2

2 + d2
4 ± |d5|)2, and we consider half filling, resulting in the gapless condition d1 = d3 =

√
d2

2 + d2
4−

|d5| = 0.
For concreteness, we choose

n0 = −
√

2, n1 = 1, n2 = 2, n3 = −1 . (G6)

Then, without uzz = 0, the gapless points exist at k = (±π/2,±π/4, 0)/a0, and the zero-energy eigenvectors at
k = (π/2, π/4, 0) read

v1 = ei5π/8(1,−1,−1, 1)T /2

v2 = e−iπ/8(1,−1, 1,−1)T /2 .
(G7)

The zero-energy eigenvectors at the three other gapless points are related by symmetries to realize Eq. (E39). In
general, the expression of v1 and v2 allows an arbitrary global U(1) factor, i.e.

v1 → v1e
iϕ , v2 → v2e

iϕ , (G8)

which can alter the projection of CDW in the following.

2. With CDW

The CDW-like term that we add in the TB model is shown in Eq. (B4), where

M1 = [− cos(kza0/2)τyσ0 + τzσx] sin(kya0) , (G9)

and

M2 = [− cos(kza0/2)τyσx + τzσ0]/
√

2 . (G10)

The CDW term couples Weyl points that are separated by (π, 0, 0)/a0, which is commensurate. Therefore, we can
double the unit cell along x by defining

c̄†R′x,k′y,k′z,ix
= c†R′x+ixa0,k′y,k

′
z

(G11)

with R′x = 2l′xa0, ix = 0, 1, and l′x an integer, to exploit the reduced lattice translation symmetry. It means that the
new lattice constants are a′x = 2a0, a

′
y = a0, a

′
z = a0, as shown in Fig. S7(b). Using k′x to label the Bloch momentum

conjugate to R′x and defining k′ = (k′x, k
′
y, k
′
z), we can re-write the CDW term as

HTB,CDW =
∑
k′

c̄†k′hCDW (k′)c̄k′ =
∑
k′

c̄†k′
[
µ1ρy sin(k′xa

′
x/2)M1(k′y, k

′
z) + µ2ρzM2(k′y, k

′
z)
]
c̄k′ . (G12)
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ρ’s are Pauli matrices for new index 1, 2 introduced by the doubling the unit cell,

c̄†k′ =
1√
N ′x

∑
R′x

eiR′xk
′
x c̄†R′x,k′y,k′z

1

eik′xa
′
x/2

 , (G13)

and N ′x = Nx/2.
The previous HTB,u can also be rewritten with c̄ as

HTB,u =
∑

k′x,ky,kz

c̄†k′ h̄TB,u(k′)c̄k′ , (G14)

where

h̄TB,u(k′) =
1

a0

{
ρ0

[
(n0 − 1 + n2 cos(k′ya

′
y) + (1− uzz) cos(k′za

′
z))τzσ0 + d2(k′)τyσ0 + d3(k′)τxσx

+(1− uzz
5

)n1 cos(k′za
′
z/2) cos(k′ya

′
y)τyσx

]
+ cos(k′xa

′
x/2)ρx

[
τzσ0 + (1− uzz

5
) sin(k′za

′
z/2)τxσz + (1− uzz

5
)
n3

2
cos(k′za

′
z/2)τyσx

]}
.

(G15)

Then, the total Hamiltonian reads HTB = HTB,u +HTB,CDW .
When µ2 = 0, the model has an effective mx symmetry

ρx[h̄TB,u(k′x,k
′
⊥) + hCDW (k′x,k

′
⊥)]ρx = h̄TB,u(−k′x,k

′
⊥) + hCDW (−k′x,k

′
⊥) . (G16)

3. Low-Energy Projection

Suppose [HTB,0, c
†
kv] = Ec†kv, then we have [HTB,0, c̄

†
k′=kv̄] = Ec̄†kv̄ with v̄ = (vT , vT )T /

√
2. Therefore, at

k′ = (π/a′x, π/(4a
′
y), 0), we can choose zero-energy eigenvectors for HTB,0 with Eq. (G6) as

v′1 =
1√
2

v1

v1

 , v′2 =
1√
2

v2

v2

 , v′′1 =
1√
2

 τzσ0v
∗
1

−τzσ0v
∗
1

 , v′′2 =
1√
2

 τzσ0v
∗
2

−τzσ0v
∗
2

 , (G17)

where the form of v′′1 and v′′2 are determined by symmetries. By projecting the whole Hamiltonian HTB to them, we
have the following low-energy model to the leading order of q and uzz

qz
2

√
2qx + 2iqy + ei

π
4

a0
uzz µ1 + iµ2 0

√
2qx − 2iqy + e−iπ

4

a0
uzz − qz2 0 µ1 + iµ2

µ1 − iµ2 0 − qz2
(
−
√

2
)
qx − 2iqy + e−iπ

4

a0
uzz

0 µ1 − iµ2

(
−
√

2
)
qx + 2iqy + ei

π
4

a0
uzz

qz
2

 .

(G18)
The U(1) freedom Eq. (G8) can only rotate µ1 + iµ2 to (µ1 + iµ2)e−i2ϕ. Compared with Eq. (A2), Eq. (A5), and
Eq. (A6), we can get the parameter values listed in Eq. (B6), Eq. (B12), and Eq. (B7).

4. Calculation of the 2D Layered Currents

As discussed in the main text, the strained-induced current distribution like Fig 3(a) is calculated for a slab config-
uration of HTB with the open-boundary condition along x, labeled as

Hslab
TB =

∑
k′y,k

′
z

c̄†k′y,k′z
hslab(k

′
y, k
′
z, uzz)c̄k′y,k′z . (G19)
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Here c̄†k′y,k′z
includes the layer index c̄†k′y,k′z,l′x,ix,i,s

with l′x = 1, ..., 20, and

[
hslab(k

′
y, k
′
z, uzz)

]
l′x,1,l

′
x,2

=
1

N ′x

∑
k′x

ei(l′x,1−l
′
x,2)a′xk

′
x

1

eik′xa
′
x/2

[h̄TB,u(k′) + hCDW (k′)
]1

e−ik′xa
′
x/2

 . (G20)

Hslab
TB is effectively a 2D system (with two well-defined momenta), and thus we can calculate its 2D piezoelectric

coefficient according to

χ2D
izz = −e

∫
d2k′

(2π)2

∑
n∈ occupied

Fnk′i,uzz

∣∣∣
uzz→0

, (G21)

with

Fnk′i,uzz = (−i)
(
∂k′iVn,k′y,k′z,uzz

)†
∂uzzVn,k′y,k′z,uzz − (k′i ↔ uzz) (G22)

with Vn,k′y,k′z,uzz a eigenvector of hslab(k
′
y, k
′
z, uzz). We can rewrite the expression into the Kubo formula form as

∑
n∈ occupied

Fnk′i,uzz =
∑

n∈ occupied,m∈ empty

(−i)
1

(En − Em)2
V †n∂k′ihslabVmV

†
m∂uzzhslabVn − (k′i ↔ uzz) = Tr

[
Fk′i,uzz

]
,

(G23)

where

Fk′i,uzz =
∑

n∈ occupied,m∈ empty

(−i)
1

(En − Em)2
(VnV

†
n )∂k′ihslab(VmV

†
m)∂uzzhslab + h.c. . (G24)

As a result, the expression of χ2D
izz (Eq. (B13)) can be rewritten as

χ2D
izz = −e

∫
d2k′

(2π)2
Tr
[
Fk′i,uzz

]
uzz→0

. (G25)

The above form allows us to project the total piezoelectric constant into different layers as

χ2D
izz(l

′
x) = −e

∫
d2k′

(2π)2
Tr
[
Pl′xFk′i,uzz

]
uzz→0

, (G26)

where

[Pl′x ]l′x,1,l′x,2 = δl′x,1,l′xδl′x,2,l′x18×8 . (G27)

Clearly,

χ2D
izz =

N∑
l′x=1

χ2D
izz(l

′
x) , (G28)

where N is chosen to be 20 in our numerical calculations. Since the total piezoelectric current of the slab reads

j2D,tot
i = χ2D

izzu̇zz , (G29)

the 2D current for each layer should read

j2D
i (l′x) = χ2D

izz(l
′
x)u̇zz . (G30)
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5. An Extra Term That Splits the Simultaneous Boundary Transitions

The extra term Hextra in the TB model that mentioned above has the form:

Hextra =
∑
k′

c̃†k′
n4

a0
sin(k′ya

′
y)ρ0τzσx , (G31)

where we choose n4 = 0.2 for the numerical calculation. Hextra preserves the TR and my symmetries, as well as the
effective mx symmetry at µ2 = 0.

∗ cxl56@psu.edu
1 Zhong Wang and Shou-Cheng Zhang, “Chiral anomaly, charge density waves, and axion strings from weyl semimetals,”

Phys. Rev. B 87, 161107 (2013).
2 Bitan Roy and Jay D. Sau, “Magnetic catalysis and axionic charge density wave in weyl semimetals,” Phys. Rev. B 92,

125141 (2015).
3 H.B. Nielsen and M. Ninomiya, “A no-go theorem for regularizing chiral fermions,” Physics Letters B 105, 219 – 223 (1981).
4 A. A. Zyuzin and A. A. Burkov, “Topological response in weyl semimetals and the chiral anomaly,” Phys. Rev. B 86, 115133

(2012).
5 Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, “Topological field theory of time-reversal invariant insulators,”

Phys. Rev. B 78, 195424 (2008).
6 J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig,

and C. Felser, “Axionic charge-density wave in the weyl semimetal (tase4)2i,” Nature 575, 315–319 (2019).
7 Mark Srednicki, Quantum field theory (Cambridge University Press, 2007).
8 Reinhold A Bertlmann, Anomalies in quantum field theory, Vol. 91 (Oxford University Press, 2000).
9 D Vanderbilt, “Berry-phase theory of proper piezoelectric response,” Journal of Physics and Chemistry of Solids 61, 147 –

151 (2000).
10 Abolhassan Vaezi, Nima Abedpour, Reza Asgari, Alberto Cortijo, and Maŕıa A. H. Vozmediano, “Topological electric
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