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Appendix A: Low-Energy Effective Theory of TR-Invariant WSMs with Axionic CDWs

In this section, we will provide a low-energy theory for the DPME in TR-invariant WSMs with axionic CDWs.
We would like to emphasize that the derivation below is not confined to Weyl-CDWs, and can be generalized to any
TR-invariant system with valley axion fields.

1. Minimal Model

A WSM phase can only emerge in systems that either break TR symmetry (magnetic materials) or break inversion
symmetry (non-centrosymmetric crystals). CDWs in magnetic WSMs have been previously studied in numerous
works, including Ref.[1 and 2]. In this work, we focus on CDWs in TR-invariant WSMs, which can be realized in
non-centrosymmetric crystals. Since two Weyl points related by TR symmetry share the same chirality, and because
the total chirality of the whole system must vanish®, there must be four Weyl points in a minimal model of a TR-
invariant WSM. Fig2(a) schematically shows a distribution of four Weyl points in a minimal TR-invariant WSM,
where for simplicity, we have enforced an additional mirror symmetry that flips y, labeled as m,, such that all four
Weyl points are symmetry-related. The momenta of the four Weyl points take the form

ka,a = (_1)a_1(ak0,:cakO,yaakO,z) 5 (Al)

where @ = = indicates the relative chirality of the Weyl points, and a = 1,2 is termed the “valley index.” TR
symmetry, labeled as T, relates ki to koo with the same chirality index «, while the mirror m, changes the
chirality of Weyl points and relates kq o to k2 —o. We would like to emphasize that, although we keep m, in the
following derivation for simplicity, mirror symmetry is not essential for the physics discussed below.

Through a unitary transformation of the bases and by rotating and rescaling axes, we can always transform the
low-energy Lagrangian of the four Weyl points into the following form?!

L a — wz,r,a,a lat - azvz(flal - ka,a,i)gi wt,r,a,a 5 (A2)

where 9 oo is & two-component field for the two bands that form the Weyl point at k4., 00.4,y,. are the Pauli
matrices, v; indicates the Fermi velocity along the ¢ direction, and ¢ and 7 are time and position, respectively. In
this work, we will for simplicity focus on the case in which i = x,y, z are the three laboratory directions. Following
the derivation in Ref. [l and 4], we keep k = 0 as the momentum-space origin of all fermion fields, as this choice
naturally includes the Weyl-point-induced valley Hall effect in the effective action, as discussed below. Throughout
this section on the low-energy theory, we adopt a proper rescaling of the space and fields to cancel the Fermi velocities
as elaborated in Appendix. F; the Fermi velocities will later be restored for comparison to the TB model in Sec. B.

As mentioned above, both 7 and m, change the valley index a of the fields in Eq. (A2), while m, (7) changes
(preserves) the chirality index a.. Thus, we can always choose the bases to represent 7 and m, as io,K and —io,, for
the band index, respectively, where K is complex conjugation. According to the above symmetry representation for
T and my, a symmetry-preserving mean-field CDW term that couples two Weyl points of the same valley index a
can be written as'

Lcpw = Zm -nrle Tyl 4%a,— +he, (A3)

where the ¢,r dependence of ¢ is implied, and where Q = k1 + — k1, = —(ko 4 — ko) is the CDW wavevector, as
shown in Fig2(a). Throughout this work, we will include the spatial dependence of the CDW order parameter m,(r),
while keeping the order parameter time-independent (i.e. static). TR symmetry requires that mq(r) = ma(r)* = m(r),
and m, symmetry requires that mj(m,r) = ma(r). In general, m(r) = |m(r)|e!*(") is complex, and |m(r)| and ¢(r)
are the magnitude and phase of the CDW order parameter, respectively. As discussed in the main text, we consider
the case where m(r) is equal to a complex constant mass my = |mg|e®® in the bulk throughout the work, i.e.,
|m(7)| = |mo| and ¢(r) = ¢ for r in the bulk. The underlying interaction that gives rise to the bulk CDW is
discussed in Appendix.D at the mean-field level. Nevertheless, m(r), as well as |m(r)| and ¢(r), can still have



spatial dependence if the sample size is finite. Inspired by Ref. [5], we set |m(r)] — oo and ¢(r) = 0 for r deep
in the vacuum. Different gapped and symmetry-preserving boundaries can then be represented by different ways of
smoothly connecting the bulk and vacuum limits of |m(r)| and ¢(r). We next introduce the v matrices

Y = (1200, —iTyo)u , v =1y, (A4)

where 1 = 0,1,2,3 and 79,4,,,. are Pauli matrices for the chirality index o. Using the above definitions of the v
matrices, we can rewrite the CDW term as

Lopw = Z|m Vb %My, (A5)

where 1, = i~° and ®,(r) = (—1)*"1(é(r) + Q - r). For the remainder of this work, the spatial dependence of
|m|, ¢, @, will be implicit, and we will suppress the explicit dependencies on r for notational simplicity.

In order to elucidate the strain-induced linear response, we next introduce an electron-strain coupling for normal
strain (i.e. stretch or compression along a specified axis) along the z direction, labeled as u,.(t). We require that the
strain be adiabatic, homogeneous, and infinitesimal. Enforcing TR and mirror symmetries, the most general form of
the leading-order electron-strain coupling reads

Ly = Zw —607° + (1) (V"7 + 77y + 777 [Pause (A6)

where the time dependence of u,, is implied, and where the parameters &y 5 , . are material-dependent. In Eq. (A6),
we do not include the effects of strain that couple different Weyl points, as Weyl-point coupling strain is necessarily
proportional to |mg|u,., and because |mg| is typically small in real materials. The detailed procedure of adding
the electron-strain coupling is shown in Appendix. E. We set the strain to be uniform throughout all of space, such
that the gapped and symmetry-preserving boundary is implemented by the spatial dependence of the CDW order
parameter m, as opposed to an inhomogeneous strain field.

Summing up Eq. (A2), Eq. (A5), and Eq. (A6) and including the U(1) gauge field coupling for the electromagnetic
field, we arrive at the total low-energy Lagrangian £ =) L, with

=B [0+ ey — g0 — 1o 57°) = Imle 7" (AT)

where @ = 440, A, = 7“&”“ Aa75 =" Aa 505 Pa = (Ka,+ +Eq,—)-7/2, and the metric is chosen as (—, +,+,+). L,
describes a massive 3D Dirac fermion that couples to a valley-dependent U(1) gauge field A, and a valley-dependent
chiral gauge field A, 5, and @, is the mass phase of the Dirac fermion. In terms of u,, and the CDW wavevector Q,
the valley-dependent chiral gauge field is given by

Aag = (=1)710,(Q  7/2) + (—1)"u22(0,64,0,82) . - (A8)
The valley-dependent U(1) gauge field takes the form

uZZ

Aa N7 A + (€0a 0’ (_1)a71£y7 O),u ) (Ag)

which contains the physical gauge field A,, and the pseudo-gauge field induced by the strain u... In particular, the y
component of the pseudo-gauge field can provide a pseudo-electric field that points in opposite directions in each of
the two valleys

EP = (_1)a%azzey : (A10)

As we will show below, all the nontrivial leading-order linear response comes from the pseudo-electric field in Eq. (A10).

2. Effective Action

The low-energy response to A and u., can be derived from the total effective action Sef¢ = 3" Seff,a, which takes
the form

eiSesfa :/D@apwa exp {i/dtd?’rﬁa} 7 (A11)



where the measure of the functional integral is in real space
/ DY, Dy x [ ] / Ay padtra - (A12)
t,r

We note that Eq. (A2), as well as Eq. (A11), are only exact when the momenta of the fermion fields in Eq. (A12)
are restricted near the Weyl points (or equivalently the momentum deviation from the corresponding Weyl point is
below a finite momentum cutoff A). In Appendix. F, we demonstrate, however, that the correction to the response of
interest brought by a finite A is of the order O(Jmg|?/A?), which is negligible owing to |mg| < A in realistic materials.
Since the focus of this work is on the low-energy response of the system, we can limit A — oo and take the functional
integration (Eq. (A12)) over the entire k € R3, following Ref.[1, 2, 4, and 6].

The physical U(1) gauge field A and the strain tensor u,, in Eq. (A7) are treated as fixed backgrounds, meaning
that we neglect their dynamics. Under this assumption, £, has local valley U(1) gauge invariance, i.e., invariance
under 1, — YqelT=®") and Eav# — /L# — 0,4(t,r), where T'; is a valley-dependent scalar function and the
corresponding transformation on v, is implicit here (and will remain implicit and for the reminder of this work).
The valley U(1) gauge invariance corresponds to a separate vector current conservation for each valley; as different
valleys are decoupled in Eq. (A7), we preserve the current conservation in each valley against all orders of quantum
correction, which is reasonable as long as valleys are well defined. As a result, the measure of the functional integral

(Eq. (A12)) is invariant under 1, — e'*faep,, and Setf.a is gauge invariant Seff,a[gahu, —-0,I,] = Seff,a[ﬁa,u]- The

valley U(1) gauge invariance of Seyrfq[Aq ] allows us to perform a gauge transformation A, , — Aq , + Oupa/e to
cancel the ¢, term in Eq. (A7) without changing the form of Scsy 4, resulting in

La=, [i(F+icdy — idy57°) = Imle " 4 . (A13)

L, also has an effective Lorentz invariance, which we also preserve against quantum corrections and take to be a
symmetry of the effective action Scty 4.

We can further perform a chiral gauge transformation ¢, — ei®ar”/ 2104 to cancel the phase of the Dirac mass in
Eq. (A13). Owing to the valley U(1) gauge invariance and the effective Lorentz invariance, Fujikawa’s method suggests
that the Jacobian of the measure (Eq. (A12)) would contain a topologically nontrivial factor”®, which enters into the
effective action as

e @, ~ ~
Seff7a == /dtdBTWTEHVp(SFaMVFa,pé + cee (A14)
where ﬁa’,“, = (“)#ga’l, — ayﬁa’#, and “...” includes all other terms. In this work, we only consider the leading-order

linear response to A and u,,. Through an explicit evaluation of Feynman diagrams in Appendix. F, we find that the
only leading-order linear response contained in “...” is the trivial correction to the permittivity and permeability in
the material, which can be absorbed into the Maxwell term of A. Hence, all nontrivial leading-order linear responses
come from the first term of Eq. (A14). After omitting all of the higher-order and trivial terms, we can split Eq. (A14)
into three parts by using Eq. (A9):

Seffa=Seffa0 T Seffas + Seffau.. - (A15)
Seff.a,6 is the action for valley-separated axion electrodynamics
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o / dtd®r0,e"*° F,,, Fps (A16)

Seffra.0 =
where the valley axion field is given by the phase of the CDW order parameter as
bo = (~1)"" 16 (A17)

Setf.a,x takes the form of a Chern-Simons theory
1 )
Sefﬁa,g = 3 /dtdg’l“ EH@J&“LUPAH&,AP , (AIS)

and describes a valley layered QAHE with a valley Hall conductivity given by the CDW wavevector Q

2
Qe

Pra = (1) 2 2m

(A19)



Because the two valleys are related to each other by TR symmetry, then X5, (a = 1,2) take opposite values in each
of the two valleys and add to a net-zero total Hall conductivity, coinciding with the vanishing Chern number required
by the TR symmetry. In general, an odd-integer valley layered QAHE indicates that a gapped Weyl-CDW with
well-defined valleys is in a WTT phase if all higher energy bands are topologically trivial, as discussed and numerically
confirmed in Sec. B. The last term Seff.q,.,, describes the strain-induced effect and reads

Seff7a7uzz = %f_[_’é /dtdgr(¢+ Q : T)uzsz ) (A20)

where B, = F3;. The effective action (Eq. (A15)) is one central result of this work. We emphasize that the validity
of Eq. (A15) replies on the fact that the system must be gapped everywhere — including the boundary — if the system
is finite-sized®.

3. Piezoelectric Effect and DPME

Because Seffa,0 and Serfq,x in Eq. (A15) have opposite signs in each of the two valleys, then the contributions of
Seff.ao and Serrq s sum to zero in the total effective action. Hence, the total effective action only includes Seff,a,u..
which can be rewritten as

2
_ 3 e se
Seff = /dtd r Ea A - [(_471'2 Vo, + EH,a) X Eg . (A21)

Eq. (A21) indicates that the total action relies on a nonzero electron-strain coupling, implying that the response of
the action characterizes the deviation of the electron from the homogeneous deformation of the sample®.
The total current derived from S.f; can be decomposed into two parts

. 08 . .

J= (n{f =JpE TInM - (A22)
J pg s the total low-energy valley Hall current induced by the pseudo-electric field

P o

which, as required by m, symmetry, lies in the xz plane. Eq.(A10) and Eq. (A19) together imply that the pseudo-
electric field and the low-energy Hall conductivity both have opposite signs in the two valleys, such that the induced
Hall currents add constructively to give a total nonzero value. (See Fig2(b).) In Eq.(A23), jpg is thus the bulk-
uniform piezoelectric current induced by the CDW wavevector Q, where the piezoelectric coefficient is given by

_ Ojpr; e
Xizz = 8’&22 - ﬁgy (Q X ey)i . (A24)

Hence, j pp can be understood as a 3D stack of 2D valley Hall systems in which each layer exhibits the 2D piezoelectric
effect discussed in previous literature'® '3, We would like to emphasize that Eq. (A24) only includes the low-energy
contribution to the piezoelectric current, while the high-energy contribution to the piezoelectric current is typically
also present in realistic materials. Nevertheless, the high-energy contributions to the piezoelectric current should also
be uniform in the bulk of the system.

In Eq. (A22), j,, takes the form of a magnetization current

Ju=VxM (A25)

in which the total orbital magnetization M is induced by a pseudo-electric field through the valley axion field

2
e
M=->" Ll 2 (A26)
a
Physically, Eq. (A25) can be understood from the bulk-boundary correspondence as follows. First, given a gapped
and symmetry-preserving boundary, the CDW phase ¢ smoothly changes from a constant value ¢ in the bulk to zero
in the vacuum, implying that the magnetization current j,, is localized on the boundary. According to the bulk-
boundary correspondence of the axion field, the surface valley Hall conductance (along the normal direction of the
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FIG. S1. (a) Density of states on the (001) surface of the TB model Hrp,o in the absence of a CDW. The red and blue dots
in (a) indicate the projections of four Weyl points, and the bright lines are the topological surface Fermi arcs. The (red) blue
dots in (a) indicate Weyl points with chiral charge (—1) 1. (b,c) Surface spectral function along the gray dashed lines in (a) at
kyao = 7/2 and k, = 0, respectively. (d,e) The surface spectral function along kj,al, = m and k, = 0 on the (001) surface of
the TB model in the presence of a CDW (Hrp,0 + Hre,cpw) for arg(ui + iu2) = 7/4, respectively. (f) The bulk value of the
axion field as a function of ¢g in the a = 1 valley. The blue dots and orange dashed line in (f) have respectively been obtained
from the TB model (Hrg,0 + Hre,cpw) and the effective action Eq. (A15), respectively.

bulk
e? 0,

surface) should take the form op , = §--4— on any surface, where goulk = (—1)2~1¢,. Hence, the surface-localized
magnetization current j,, is simply the surface Hall current induced by the pseudo-electric field, as shown in Fig 2(c).
The surface current generates a uniform bulk magnetization of the form

2 pbulk
iea EPse — 6£y

Atk —
- 2 2w ¢ 272

¢0ﬂzzey 5 (A27)

which is the DPME proposed in this work, as illustrated in Fig1(d). Unlike the piezoelectric current in Eq. (A23)
originating from the 2D valley Hall conductance, j,, in Eq. (A27) originates from the fundamentally 3D bulk valley
axion field, and is fundamentally different from Eq. (A23).

Appendix B: Minimal TB Model for TR-invariant WSM

The analysis in Sec. A is based on low-energy effective field theory. It is natural to ask whether our low-energy
prediction of a DPME in TR-invariant Weyl-CDWs remains valid in the presence of high-energy bands (or equivalently
in a UV completion). Furthermore, the low-energy analysis in Sec. A relies on “valley” quantum numbers; however,
valley index is neither a generic symmetry of TB models, nor a symmetry of real solid-state materials. To address
these questions, we will construct a minimal TB model of a TR-invariant Weyl-CDW and compute the bulk-average
value of the valley axion field and the DPME, which we will compare to those predicted by the effective action.



Prior to the onset of a CDW, we begin with an orthorhombic lattice, in which we choose for simplicity the lattice
constants to be a; = a, = a, = ag. We then consider there to be two sublattices in each unit cell. We next place a
Kramers pair of spinful s orbitals on one sublattice and a Kramers pair of spinful p, orbitals on the other sublattice,
resulting in a four-component basis CLi)S, where ¢ = 1,2 is the sublattice index and s = + is the spin index. We then
construct a four-band TB model Hyp o that preserves TR and m,, symmetries, which has the following form

Hrpo= Z CLhTB,O(k)Ck ) (B1)
k

where

hrgo(k)

1 (B2)
= [diT.00 + daTyoo + d3Tp0y + daTy0, + dsTy0o,]
0

in which 79 5 4,. and ¢4, . have been redefined to respectively act on the sublattice and spin indices, and where
explicit expressions for dj 2345 are provided in Appendix. G. Throughout this work, we will take the inverse of the
lattice constant without strain 1/ap as the unit of energy, which occurs because we have employed a convention in
which A = ¢ = 1. Using parameters specified in Appendix. G, Hrp o hosts four Weyl points at

koo = (_l)a_l(a a a

)

- - B3
2(10’ 4(107 ) ’ ( )
that are related by TR and m, symmetries. The projection of the bulk Weyl points onto the (001) surface is shown
with blue and red dots in Fig. S1(a), where a (red) blue dot indicates a Weyl point with a chiral charge (—1) 1. The
topological surface Fermi arcs that connect Weyl points with opposite chiralities appear as bright curves in Fig. Si(a),
and the linear dispersion of the (001)-projecting bulk bands from the Weyl points is shown in Fig.S1(b). On the
k; = 0 plane, Hrp o is gapped in the bulk and exhibits a nontrivial TR-protected 2D Z, infiex. The nontrivial Zs
topology is indicated by the appearance of gapless helical modes along k, = 0 on the (001) surface, as shown in
Fig.S1(c).

We next add a CDW term that preserves TR and m, symmetries into the TB model, where the CDW coupling
takes the form

Hrpcpw = ZCL+(GL,O7O) [—ip sin(kzao) My (ky, k)
k 0 (B4)

+M2M2(kya kz)] Ck

in which M; and M5 are Hermitian matrices whose explicit forms are provided in Appendix. G, and where p; and
1o are real scalar parameters. Eq. (B4) suggests that the CDW term contains two channels that are characterized by
two real coupling constants, 1 and pe. Throughout this work, we will set |1 + ius| = 0.3/ag for all of the numerical
calculations for the TB model in the presence of the CDW. Unlike Ref. [14], we do not study the microscopic origin
of the CDW order parameter in this work, as the main goal of introducing the TB model is simply to provide a UV
completion of the low-energy theory on which our analysis is rigorously based. Owing to the lattice-commensurate
nature of the CDW in Hrg cpw, Hrp,o0+ Hrp,cpw has reduced (but not fully relaxed) lattice translation symmetry,
where the new lattice constants of the modulated cell are given by a/, = 2ay, a; = ap, and a, = ag. The CDW backfolds
two Weyl points of the same valley index onto the same momentum in the reduced 1BZ

T T

ko = (=1)"7( 0) (B5)

10 17
a;  4ay,

to form an unstable 3D Dirac fermion, which then becomes gapped. The gap induced by the CDW is reflected by the
appearance of a bulk gap at k_a’, = 7 in Fig. S1(d), which stands in contrast to the gapless (WSM) bulk in Fig. S1(b).

1. Weak Z; Topological Insulator Phase

While the bulk of the Weyl-CDW phase is gapped, Fig. S1(d) demonstrates the existence of the gapless helical edge
modes along kf,a, = 7 on the (001) surface. As shown in Fig.S1(e), there are also gapless helical edge modes on the
(001) surface at k, = 0. Hence, the k!, = 0 and klal, = m planes both exhibit nontrivial TR-protected Zs topology.



This indicates that the model Hrp o+ Hrp,cpw is in a WTI phase characterized by a nontrivial weak Zy index vector
(Va, vy, v2) = (1,0,0), where v, v, v, are the weak Z, indices in the &}, = 0, k;, = 0, and k. = 0 planes, respectively.

The nontrivial WTT index vector can be understood from the odd-integer valley layered QAHE Scf¢q s in the
effective action Eq. (A15), provided that the high-energy bands are trivial. To see this, we first project the TB model
into each of the two valleys. From this, we see that Hrp o + Hrp,cpw reproduces Eq. (A2) and Eq. (A5) with

1
U$:\/§,vy:—2,v,z:§. (B6)
and
mo = (p1 +ipz)e % = ¢ = arg(ur +ipz) — 2¢ , (B7)

where ¢ is the U(1) gauge degree of freedom of the eigenvectors (further discussed in Appendix. G). We emphasize that,
at this stage, we have not yet incorporated the effects of dynamical strain, which will be added in the next section. After
restoring the Fermi velocities for Eq. (A19) (Appendix. F), we can use Eq. (B6) and Q = (7/a0,0,0) = (27/a’,,0,0)
to derive the valley Hall conductivity induced by the CDW wavevector, which we find to be given by

62
2H,a = (_1)(1717 <

1
ol Gty 0) . (BS)

!
aw

Eq. (B8) implies that the two valleys as a set contribute two counterpropagating chiral edge modes for each k. -indexed
plane in the 1BZ. The two couterpropagating chiral modes exhibit a TR-protected crossing at k, = 0 and &k, = w/a’,,
indicating the presence of a nontrivial weak Zy index v, = 1.

We pause to compare the WTI phase of Hrpo + Hrpcpw (Eq.(Bl) and Eq. (B4)) to the WTI Dirac-CDW
phase in Ref. [15]. In Ref.[15], which was revised to include TR-symmetric semimetal-CDWs during the final stages
of preparing this work, the authors study a TR-invariant Dirac semimetal that is gappd by a CDW. Specifically, in
Ref. [15], two 3D Dirac points become coupled by the CDW order parameter, and the gapped Dirac-CDW additionally
respects spatial inversion symmetry when the phase of the CDW order parameter ¢g = 0, 7. The authors of Ref. [15]
find that ¢y = 0, 7 correspond to two distinct WTI phases (with nontrivial weak Z, indices) that differ by a fractional
lattice translation in the modulated cell. Although the model in Ref. [15] appears to be similar to Hrp o+ Hrp,cpow
with the two valleys moved to the same momentum, the m, symmetry enforced in this work is essentially different
from the inversion symmetry at ¢o = 0,7 in Ref.[15]. This can be seen by recognizing that m, in this work is a
symmetry of the Weyl-CDW for all values of ¢g, including ¢9 # 0,7. We do note that Hrp o + Hrp,cpw has an
effective spinless-m, symmetry at arg(u; + ips) = 0,7 (see Appendix. G). However, the spinless m, symmetry is an
artifact of our simple TB model, which only occurs because all of the Weyl points are located at the k, = 0 plane.
Because the effective action Eq. (A7) allows the four Weyl points to move away from the k., = 0 plane — thus breaking
any form of m, symmetry (effective or physical), the artificial spinless m, symmetry of our TB model does not affect
any of the conclusions of and analysis performed in this work.

2. Valley Axion Field

In addition to the valley QAH term Sesy,q 5, the term Serfq0 in Eq. (A15) indicates that the bulk average value
of the valley axion field is

ghutk — (—1)“_1sgn(vzvyvz)¢o =(=1)"¢o (B9)

after restoring the Fermi velocities (Appendix. F). To compare Eq. (B9) with the TB model, we first set °“% = 0 at
arg(uy +ipz) = 0 as the reference for the TB model. We are required to set a reference for the evaluation of §2%k,
because the valley axion field is defined over an open manifold, such that its bulk average value is reference-dependent.
Hence, we may only evaluate the change of #2%* relative to a reference value. Because the low-energy result Eq. (B9)
suggests that §2%% = 0 for ¢y = 0, we further set the U(1) degree of freedom ¢ in Eq. (B7) to ¢ = 0 in order to match
the zero points of #°*/¥ in the low-energy result and in the TB model. We may then use ¢g = arg(u; + ius) for the
TB model and evaluate §°“* with®

gbulk _ ¢Od d°K’ t1i2ista Y[ F.  F. (BlO)
a (¢0) — 0 ¢0 167’1’6 I‘[ 1112 1314] ’

where k' is only integrated over the half of the reduced 1BZ that contains the ath valley. In Eq. (B10),
Firig = Opy Aiy = Opy Aiy —i[Ai;, Asy | (B11)



is the non-Abelian Berry curvature of the non-Abelian Berry connection [A;]nm = —i(un’kf|8k;\um)k/>, and 1,234
takes values from 1 to 4 where k} = ¢o. Although 0°“¥ can be equivalently evaluated based on the Chern-Simons
3-form®, this method would require to choose the gauge and k-space boundary condition very carefully, and thereby
we use gauge-invariant Eq. (B10) in this work.

The resulting numerical computation of %% for the a = 1 valley is shown in Fig.S1(f), and extremely closely
matches the value 2“* = —¢, expected from the low-energy action. However, there is still a quantitative deviation
between the low-energy and TB results, which occurs because the bulk valley axion field is not defined over a closed
manifold, and is thus not quantized, implying that high-energy degrees of freedom (which are necessarily present in a
solid-state material) can drive the value away from the low-energy result. Nevertheless, the relatively small deviation
between the TB and low-energy results in Fig. S1(f) suggests that the effect of high-energy modes on the valley axion
field is small in the TB model employed in this work.

3. Piezoelectric Effect and the DPME

Finally, we use the TB model to verify the strain-induced piezoelectric effect and the DPME described by the term

Seff,au.. in Eq. (A15). We incorporate the effects of strain into the TB model by adding a prefactor of (1— ((AA:f))Q Uszz)

for each hopping term in Hrp o, where Ar is the displacement of the hopping!® (see Appendix. E and Appendix. G
for further details). As a result, the low-energy projection of the extra strain term implies that the added strain
reproduces Eq. (A6) with

1 1
\/iao ’ §y——\/§a0 .

Because the TB model is a WTT with the weak Zy index vector (1,0,0), we consider a slab configuration with N
layers perpendicular to z with periodic boundary conditions along y and z. The slab can be viewed as a quasi-2D
system, and we may therefore calculate the 2D piezoelectric tensor of the slab using®

§0:§z207 gw: (B12)

K
2D __ slab
Xizz = 6/ (27‘_)2 Z auzz An,i (]{727]{7/2){“22_)0 ’ (B13)

n€ occupied

where A;‘i{‘;b = —i<<pk/y7k27n|6k£|<pkgy7k/z,n> and |@g ) is the periodic part of the Bloch states of the slab Hamiltonian
in the presence of strain. By inserting a projection operator onto each layer of the slab, we can then derive the 2D
piezoelectric tensor for each layer, which we label x?2 (1), where I, = 1,2, ..., N is the layer index (see Appendix. G
for details). The 2D current density induced by the infinitesimal dynamical strain for each layer is then given by

Pty = x22(1")i,,. Using this method, we next calculate the 2D z-directional current density of each layer for
varying values of ¢y and N = 20 by setting ¢ = 0 in Eq. (B7) and using ¢o = arg(u; +iue). We note that the current
along the y direction conversely vanishes in our numerics at each value of ¢g, due to the bulk m, symmetry at each
value of ¢q.

In Fig3(a), we plot the current density distribution j2P(I’) for ¢g = —0.97, —0.457,0,0.457, —0.97. As schemati-
cally shown in Fig3(b), we can decompose the current density distribution into a uniform background current (j2P)
(averaged over the layer index) and a layer-dependent part §52P(1.) = j2P (%) — (j2P). The uniform background
current (j2P) characterizes the uniform piezoelectric response, and, as shown in Fig 3( ), the piezoelectric current is
nearly independent of ¢y, as expected from the low-energy expression Eq. (A23).

On the other hand, the layer-dependent contribution to the layer current density 652”(I%) is asymmetrically dis-
tributed. Specifically, 5522 (1) exhibits opposite signs near the two surfaces, resulting in a bulk magnetization Mé’“”“.
To calculate the bulk magnetization, we treat the I/ th layer as a uniform 2D system that is infinite in the y, z directions

but finite in the x direction as z € [(I}, — 1)al, lLa ;] From this, we then express the 3D current density as

Pa) =Y 0 ()" (1)/d, | (B14)
2

where Oy, (z) = 1 for x € [(I}, — 1)a,,l},a}] and Oy (z) = 0 otherwise. We next take the magnetization at the center

£7’I"I‘

of the sample xy = a/,N/2 derived from the Biot-Savart law to be the bulk magnetization, which yields

y N+1
Mtk = Z5]2D (I)sen(l, = ——) (B15)
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where the uniform background contribution naturally vanishes. In Eq. (B15), we have chosen sgn(0) = 0, because,
when N is odd, there exists an I/, = (N 4 1)/2 layer with a vanishing current contribution.

Using Eq. (B14), we plot Mé’“”“ as a function of ¢¢ in Fig3(d). To compare with the TB result, we restore the
Fermi velocity for the low-energy expression Eq. (A27) and substitute Eq. (B6) and Eq. (B12) into Eq. (A27), from
which we obtain

My agéysgn(v,vyv;) 1

My 27120, doey = 47r2\/§¢oey 7 (B16)
where My = et,,/ag. As shown in Fig3(d), the TB and low-energy results are of the same order of magnitude (the
deviation is smaller than 70% of the low-energy result). This agrees with our earlier determination that the high-
energy modes have relatively small effects on the valley axion field (Fig. S1(f)). In particular, the TB and low-energy
results in Fig3(c) match extremely well as ¢g approaches +m (the deviation is smaller than 7% of the low-energy
result). As discussed below, the agreement between the TB and low-energy results can be attributed to the TB model
exhibiting boundary gap closings at exactly ¢g = +m.

Appendix C: Boundary TQPT and DPME Jump

In this section, we will first show that the slab configuration of Hrp o + Hrp,cpw has a boundary gap closing at
¢o = £m, which we will show to be a boundary TQPT that changes the surface Z, index and induces a discontinuous
change of the DPME. This boundary gap closing accidentally happens on the two surfaces of the slab at the same value
of arg(uy + iug), allowing us to fully interpret the discontinuous change of DPME within the low-energy theory. We
will then add an extra term to Hrp o+ Hrp,cpw to split the accidental simultaneous surface gap closing, resulting in
a more realistic model in which the gap closings on the two surfaces occur at different values of arg(u; +ipg). Lastly,
we will demonstrate that a jump in the DPME still occurs across each surface gap closing, though the low-energy
theory is incapable in fully describing the jump due to the unavoidable presence of a gapless boundary helical mode
on one side of the jump. Throughout this section, we will continue to choose ¢y = arg(p1 + iue) by setting ¢ = 0 in
(B7), except in Sec. C 3.

1. TB Model

According to Eq. (B7), ¢¢ only appears in the TB model as cos(¢g) and sin(¢g) in p; and ps, respectively, and
thus any TB result must be periodic in ¢y. Hence, tuning po from negative to positive while keeping p; < 0 should
drive ¢p from —7 to 7 and give a jump of the magnetization, as shown in Fig3(d). The dramatic difference between
the current distributions at ¢g = £0.9 in Fig3(a) provides evidence of the expected jump in the bulk magnetization.
Fig4(a) suggests that the jump of the DPME at ¢9 = £7 happens along with the boundary gap closing while the
bulk stays gapped. Moreover, the gap closing manifests as one 2D gapless Dirac cone in each valley on each surface
perpendicular to x, as shown in Fig4(b-d). Because there are two TR-related Dirac cones on one surface at the gap
closing, then the surface gap closing has the same form as the 2D Zs transition that happens at a TR-related pair of
generic momenta'”1?. Because the bulk remains gapped across the transition, then the surface gap closings represent
examples of boundary TQPTs, which can be detected by jumps in the DPME.

Another signature of the boundary TQPT appears in the domain wall structure shown in Fig. S2(a). We consider
a slab configuration that is split into two parts along the z direction, where each part exhibits a different value of the
CDW phase ¢¢ (specifically (,253_ for z > 0 and ¢y for z < 0), while all other parameters in the slab are taken to be
the same for the two parts. The sample is set to be periodic in the y direction and open in the x direction. In our
numerical calculations, we have specifically employed a slab with 20 layers along x and have fixed ¢6r = 0.87. We
note that we have also chosen 20 layers along z for z < 0 and 20 layers along z for z > 0, but we do not depict the
additional surface modes at large |z| (i.e. the leftmost and rightmost surfaces in Fig. S2(a)).

We plot the phase diagram of the domain wall structure in Fig. S2(b) by varying ¢, from ¢ to 7 and then from —m
back to ¢5r . As a result, we identify two phases, which we label as I and /1. The phase I contains the point ¢, = (bg ,
implying that the surfaces of both parts of the slab are not related by boundary TQPTs, such that boundary between
the two domains is gapped. As ¢, is varied from 7 + 0~ to —7 + 0%, the gap closes on the top and bottom surfaces
normal to the x direction in the z < 0 region, as discussed above and shown in Fig4. This indicates that the z < 0
region has undergone a pair of boundary TQPTs to enter phase II. The appearance of 1D gapless helical modes at
the edge of the z = 0 interface in phase II confirms the presence of a nonzero surface relative Z, index for the two
sides of the gap closing (Fig. S2(c)). The 1D gapless helical modes in phase II persist until ¢; reaches ¢f — 7, where
the gap closes in the 2D bulk of the interface as shown in Fig. S2(d). The interface gap closing again manifests as two
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(a) (b) I I =

-0.5

-0.3

FIG. S2. (a) A schematic showing the domain wall structure along z with an open boundary condition along z and periodic
boundary conditions along y for the TB model Hrg,o + Hre,cpw. The interface lies at z = 0, and we have omitted the
surfaces at large |z|. The lower panel in (b) shows the phase diagram for the domain wall structure as ¢ is varied while fixing
qzﬁa' = 0.87, which contains two phases I and I and two transition points ¢, = £m and ¢, = ¢3’ — 7. The upper panel in (b)
shows the positions (red) of the gapless modes in the domain wall structure for the corresponding values of ¢; . (c) The energy
dispersion near the top edge (inset) of the interface for ¢, = —0.87 in the phase IT of (b). (d) The energy dispersion near the
interface (inset) for ¢5 = ¢f — m = —0.27.

gapless Dirac cones at two valleys and thus changes the Z, index of the interface, coinciding the disappearance of the
helical edge modes in phase I.

2. Low-energy Effective Theory

We now interpret the boundary TQPT in the TB model from the perspective of the low-energy theory. According
to Eq. (A7), one bulk Dirac cone has two mass terms, and thus the bulk gap closing for Eq. (A7) requires fine-tuning
at least two parameters, which typically does not occur in a realistic model or material. On the (100) surface, the
projections of the valleys are along the m, 7T-invariant line, and the gap closing along this line only requires fine-tuning
one parameter, according to Ref. [13]. The analysis in Ref.[13] further suggests that the gap closing appears as one
gapless surface Dirac cone for each valley (Fig5(a)) and is thus a surface Zs transition, coinciding with the TB results
in Fig4 and Fig. S2(c). The parameter values for which the gap closings appear depend on the boundary condition
that we choose in Eq. (A7) (see Appendix.F for a special boundary condition that realizes both surface gap closings
at ¢p = ). Nevertheless, the codimension-1 nature of the gap closing indicates that, even if the boundary conditions
are varied, it is still difficult to remove the gap closing point. When the boundary conditions are changed, the gap
closing instead shifts to a different value of ¢g. Indeed, as we will shortly show in using a TB model with an extra
term that splits the simultaneous boundary gap closing, the boundary phase transitions are movable in arg(uy +ius),
but globally unremovable. This agrees with the picture presented in Ref. [15], in which tuning ¢ pumps 2D TI layers
in the WTT phase until a layer reaches the system boundary, causing a surface gap closing. The same argument can
also be applied to the (100) surface.

In general, the gap closings on the (100) and (100) surfaces do not happen at the same critical value of ¢g. We
find that simultaneous surface gap closings only occur when the system configurations (parameter values or boundary
conditions) are designed in a fine-tuned manner such that unrealistic (i.e. artificial) effective symmetries appear
in the effective action (such as an effective TR symmetry within one valley after omitting the CDW wavevector).
This suggests that the presence of simultaneous surface gap closings in the above TB model Hrp o + Hrp,cpw is
accidental. In this accidental (fine-tuned) case, a simultaneous gap closing changes the surface valley Hall conductance
by +e? /27, which, according to the bulk-boundary correspondence of the axion term, results in a change of the #2%/* —
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FIG. S3. Slab geometry for a realistic model of a TR-invariant Weyl-CDW. The top panel in (a) shows a slab of Hrpo +
Hrp,cpw + Hertro that is open in x and periodic in y and z. The middle panel in (a) schematically illustrates the case of
a generic TR~invariant minimal Weyl-CDW where the gap closings on the top and bottom surfaces happen separately for an
even number of layers. In the case of an even number of layers, the slab has two phases: (i) a Zo-trivial phase that includes
arg(p1 + ip2) = m, and (ii) a Zo-nontrivial phase that includes arg(p1 + ipz2) = 7. The bottom panel in (a) corresponds to
the case in which the slab has an odd number of layers, which causes the Zs-trivial and nontrivial phases to flip relative to
the middle panel in (a). (b-e) The y-directed slab Wilson loop® as a function of k,a/, for the slab configuration with 5 and 6
layers and arg(p1 +ip2) = 0, 7. In (b-e), Wy, is the eigenvalue of the Wilson loop evaluated along k;,. The dashed line lies at a
Wilson energy of —1.5 in (b) and —2 in (c-e). In the inset panels in (b-e), we show the number of Wilson loop bands passing
through the dashed line in half of the 1BZ, which are 5, 6, 4 and 5 for (b,c,d,e), respectively. An odd (even) number of Wilson
crossings in half of the 1BZ at a fixed Wilson energy indicates that the slab Z» index is nontrivial (trivial)?*2.

or equivalently ¢g — by 2. Combined with Eq. (A27), the 27 jump of ¢ further results in a jump of the magnetization

ek 1
AM i = =2 sgn(vyvy v, )is.ey = ———Moe,
bulk T, 123 ( x Uy z) zzCy 2/2 0€y

(C1)
in which the Fermi velocities have been restored (see Appendix.F) and the parameter values derived from the pro-
jection of the TB model (Eq.(B6) and Eq. (B12)) have been used in the second equality. The predicted AM py ik
precisely matches the jump given by the TB model in Fig3(d). Therefore, the boundary TQPT and the induced jump
of the DPME can be captured within the low-energy theory when valleys are well-defined and when the gap closings
happen simultaneously on both surfaces.

Lastly, we will use the low-energy theory to explain the gap closing in the 2D bulk of the interface of the domain
wall (Fig.S2(d)). Within the low-energy theory, if two gapped Dirac cones have a mass phase difference 7 and form
a domain wall structure, then there must be an odd number of 2D gapless Dirac cones localized at the interface'.
Therefore, when qbat in Fig.S2(a) differ by 7, an odd number of 2D gapless Dirac cones appear at the interface for
each valley, as shown in Fig5(b), and the gap closing correspondingly changes the Zy index of the interface. Indeed,
the description given by the low-energy theory coincides with the TB result shown in Fig. S2(b) and (d).

3. Separate Gap Closings on Two Surfaces

In the final part of this section, we will discuss the more general (and also more realistic) case in which the gap
closings on the (100) and (100) surfaces occur at different values of arg(u; + ipo). In this subsection, we do not set
© =0 in Eq. (B7) and thus in general ¢g # arg(u; + ipz). We can shift the gap closings on two surfaces in opposite
directions in arg(u1 + iug) by adding an extra TR- and m,-symmetry-preserving term Heyrq in the TB model, as
schematically shown in Fig. S3(a). (The explicit form of Heyyrq is provided in Appendix. G). Because each surface gap
closing is a Zo TQPT, then the Zs index of the entire slab is changed across the transition, resulting in two phases
with different Z, indices for the whole slab (i.e. the slab as a whole, for varying arg(u; + ius), is or is not a 2D Zs
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TT). Exactly which phase of the slab has nontrivial Zy index is determined by the number of layers, owing to the
nontrivial weak Zy index in the bulk (Fig.S3(a)).

To numerically model this more generic case, we choose appropriate parameter values for the model (Appendix. G)
to split the simultaneous boundary phase transition into two boundary transitions: one at arg(u; + ipe) = 0.97 on
the (100) surface and another at arg(u; + ipg) = —0.97 on the (100) surface. This results in the appearance of two
phases in the slab: one phase that includes arg(uy +1ip2) = 0, and another that includes arg(u; +ius) = 7. As shown
through slab Wilson-loop calculations'® in Fig. S3(b,d), the 5-layer slab is Zs trivial in the arg(pu; + iuz) = 7 phase,
and is nontrivial in the arg(u; + ipns) = 0 phase. On the other hand, Fig. S3(c,e) indicate that the 6-layer slab is Zo
trivial in the arg(p; +ipe) = 0 phase and nontrivial in the arg(u; +ius) = 7 phase. The 5-layer and 6-layer results can
be generalized for all odd-layer and even-layer slabs, respectively, as long as the number of layers is large enough to
avoid any additional layer-dependent gap closings. In general, this is consistent with the early recognition of odd-even
boundary modes in WTIs?*, and with the picture established in Ref. [15] in which a TR-invariant Weyl-CDW phase
can be captured by a stack of 2D TIs whose normal vectors lie parallel to the wavevector @, where the position of
the 2D TT in each cell is set by arg(uy + iuz).

The DPME predicted by the effective action is valid only when the slab is Z, trivial, as the nontrivial Z, index of
the slab necessarily indicates the presence of a gapless helical mode on the side surface, violating the gapped boundary
requirement (i.e., the validity of DPME predicted by the low-energy effective action requires a gapped and symmetry-
preserving boundary). The failure of the effective action can also be seen from the bulk-boundary correspondence.
The bulk-boundary correspondence of axion electrodynamics implies that an unambiguous bulk value of the axion
field (in the units of 27) should be equal to the Hall conductance of every gapped surface (in unit of e?/(27))%. When
one surface undergoes a Zy transition, the valley Hall conductance on that surface changes by e?/(27), while the valley
Hall conductance on the other surface remains constant. As a result, at least on one side of each surface transition,
different surfaces infer different bulk values of the valley axion field, indicating the incapability of the effective action
in predicting the DPME®. The underlying physical reason for the failure of the effective action is that there is a
contribution from the gapless helical mode to the DPME that cannot be captured by the low-energy effective action.
Therefore, in general, it is not always appropriate to set ¢ = 0 in Eq. (B7). Instead, one should choose ¢ such that
the DPME predicted from the low-energy action matches the TB result when the slab is Zs-trivial.

Nevertheless, the discontinuous change of the DMPE should still exist across the gap closing on one surface; the
jump will just contain two contributions in the more realistic case. One contribution arises from the appearance of
an extra gapless helical mode. The other contribution is given by the discontinuous change of the surface valley Hall
conductance (or more directly, the discontinuous change of the strain-induced surface current). The slab configuration
in Fig.S3(a) allows us to demonstrate the second contribution to the DPME jump (Fig.S4), because the periodic
boundary conditions along y and z avoid the contribution from the side-surface helical modes. As long as the effective
action is valid in the slab-Zs-trivial region, the total change of the DPME over the slab-Zs-nontrivial region can still
be predicted. Moreover, in a domain wall structure like Fig. S2(a), the gapless surface domain wall mode still appears
across the gap closing on one surface of the z < 0 side, where the domain wall mode is ezactly the extra gapless helical
mode that corresponds to the change in the slab Z; index on the z < 0 side of the domain wall.

Appendix D: Derivation of Mean-Field CDW Term

In this section, we derive the mean-field CDW term in Eq. (A5). Here, we use the imaginary time and allow the
temperature to be nonzero.
We first convert Eq. (A2) to the imaginary time, resulting in

SO - Z/ 27'(' 4 q a,x lw + azvi(hai)cq,a,a s (Dl)

where ¢ = (w,q), w = (2n + 1)w/pB is the fermionic Matsubara frequency, [dw = (27/8) >, if temperate T" is not

zero, B =1/(kgT), . = (T,7), Vs.0,a f G elxq+ir'k“’acq7a7a, and zqg = wT +q - 7.
We consider two channels of the mteractlon
Sinta = =1 S [ @406 0 W, ) (D2)
and

Sint2 = —92 /d4$ [(@,1#%72,7)(1&;2#%,1,7) + (@,2,-%,1#)(¢l,17_¢z,27+)} ) (D3)
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FIG. S4. The strain-induced bulk magnetization calculated from the realistic slab configuration of Hrg o+ Hrs,cpw + Heztra
(see Fig.S3). The number of layers is chosen to be 20. The two black dashed lines indicate the two surface transitions at
arg(p1 + ipe) = £0.97.

where g1 > 0 and go < 0, and g5 is a perturbation with |g2| ~ 0. The g; term is just a double copy of that used in
Ref. [1]. As shown below, ¢g; accounts for the nonzero CDW magnitudes while go determines their relative phase.

To derive the mean-field CDW term, we first perform the Hubbard-Stratonovich transformation on Sjns 1

2

s = [T [ Doy | [ o (<88 oyl v =il )] o)
" g1 ’ ’
Then, we have

. —so—sm,ﬁfd‘*zza(—M—ﬁzm)wl wa,f—m:(mw;,wa#) e
Z = /Dm*Dm/Dz/JTDwe 7 o+ ’ = /Dm*Dme Smr[m]

(D5)
Now, we perform the mean-field approximation. We neglect the quantum fluctuation of m,(z) and only consider a
classical m,(x) that minimizes Sysp[m], meaning that m,(z) « <77/1La7_1/)m7a,+). Comparing m,(z) with Eq. (A5), we
can define mq(x) = maei(_l)ailQ"’ where m, is the CDW parameter mentioned in main text. Since we only care

about the CDW order parameter that is constant in the bulk of the system, we choose m, to be independent of x.
As a result, we arrive at a simplified Z:

o g - _ lma|?
Z:/DwTDwe—Sq,ntﬂ Zaf(;iw)zlwg,anl((I)wq,a Zaﬁv a1 :e_SMF , (D6)

where G;1(q) = iw+ >, 0iqiT20; + Mo, My = maT00 +miT_00, T+ = (75 £i7,)/2, and V is the total volume of the
system.
Next, we derive Syrr to the first order of go. The go-independent part of Sy, r, labeled as Sysr o, reads

‘maIQ

d4
e SMF0 — IZI/D%D% exp {_ / 7q4¢T7aG;1(q)¢q,a — ﬂVT s (D7)

(2m)
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which gives

Smro = Wz {/ i T logdet G, (q)] — ma2} + const.

= —5]/2{ + [mq|?) — ma2} + const. (D8)

Define m, = |mq|e!?e, then we see that Snrr,o does not depend on ¢,.
For the first order of go, we have

d4 !
Smri = BVg2 Z/ / 9 T(G1 (g)rs00Ga(q ) Ts500)

274
d*q 1 (DY)
=2
BVQ?(m1m2+m1m2 /271'4/27T4 w2+z q +|m1|2)(w/2+Ziqz/'2viz+|m2|2)
= 4pVga|ma||mz| cos(¢r + ¢2) 112 ,

— [ _dl !
where [, = f 2m)* w2+>, v7g7+ma 2"

As a result, we have Syrr = Sparro + Swmr,1 to the first order of go. Next, we minimize Sy,p. First, for ¢,, we have

9
(1 + ¢2)

Since go < 0 and I, > 0, ¢1 + ¢2 = 2nm minimizes Sy;r. The 27 ambiguity will disappear after introducing a gapped
boundary, and a symmetry-preserving boundary would give

$1=—¢2 =g (D11)

SMF:0$SiD(¢1+¢2):0:>¢1 + o =nm . (DlO)

in the bulk. Second, for |m,|, we have

LS 70¢—i+/ i !
Ama| M 29, @2m)*w? + 32, ¢2v? + [mal?

+0(g2) =0, (D12)

resulting in

lvgvyv.| A2 1 Ime|? + A2
- 9711! 32 8x —5|mal*log (W) +O(g2) , (D13)

where w? + 3", ¢?v? < A? is used. The equation for |m,| with v, = v, = v, = 1 matches that in Ref. [1], which
indicates that we need to have a large enough g; to have the nonzero CDW magnitude. The solution to the above
equation has the form

Ima| = |mo| + O(g2) , (D14)

where |my| is independent of go. In the main text, we directly neglect the go in |m,| and choose |m,| = [mg|. Then,
mo = |molel®e.

Appendix E: Incorporating the Effects of Strain

In this section, we discuss the effect of strain on the crystals in details. To discuss strain, we need to introduce the
displacement gradient u;; = 27“_;‘, where u; is the ¢th component of the displacement of the point at r. The strain

tensor is just the symmetric part of the tensor (u;; +u;;)/2, while the anti-symmetric part (u;; —u;;)/2 is the rotation.
By setting the strain to be adiabatic, homogeneous, and infinitesimal, we mean to choose u;; to have these properties.

In the following, we describe the theory for w;;, which contains the strain as a special case. We first discuss the
general formalism for crystals, then the TB model, and at last the low-energy model. Throughout the work, w(t) is
treated as a real fixed background, which acts as a constant under symmetry operators, e.g., Tu(t)T ! = u*(t) = u(t)
for TR symmetry.
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1. General Formalism

We first discuss a generic single-particle Hamiltonian for electrons in a crystal:

2

p
H =
0 2me

+AS (Vo V(x)xp)+V(x), (E1)
where A € R labels the spin-orbit coupling, V.V (z) = i[p, V(x)],

Viz)=> Vi@-R-7,), (E2)
R

R is the lattice vector, and T; labels the sublattice. We adopt the clamped-ion approximation®, and then the ions
exactly follow the homogeneous deformation R+ 7; — (1 + u)(R + ;). With the homogeneous infinitesimal u, the
Hamiltonian becomes

2

Hy = S~ + 7S (VaVu(@) x p) + Va(a) | (E3)
where
Va(@) =) Vile - (1 +u)(R+73) . (E4)
R,i

Hy has the lattice translation symmetry [Hy, Tr] = 0 with Tr = e PR Then, Hy can be rewritten as

H / 'k > chicalho(k)] ¢ / Ak chho(k)e (E5)
= s Gs,G's’ G',s’ — 7o Nd k
0 B2 (27T)d ey k+G, 0 k+ (27.(.)d k'0

where k €1BZ, and G is the reciprocal lattice vector. CL+G’S is the creation operator for |k + G, s), and satisfies
{chicwic st = 2m)%5(k — K )dgedss' . (E6)

Moreover, CL is a vector operator with CL +q.s its the (G, s) component.

In the presence of u, the lattice translation of H,, becomes [H,,Tr,] = 0 with R, = (1 + u)R. As a result, the
reciprocal lattice vectors and Bloch momenta become G, = (1 — u”)G and k, = (1 — u”)k. Then, H, can be
rewritten as

dik
Ho= [ G Y e hleco e (1)
187, (27) G.G 5.5
where > is equivalent to ) 5 since G, has a one-to-one relation to G. Moreover, Hy—o = Ho means that

hy=o(k) = ho(k). The anticommutation relation for c};u L@, reads

1
d d

{ch. 1o it} = (2m)%0(ky — K,)0gardss’ = (2m)*0(k — k/)m%c/&s/ : (E8)
We can define EL,G,S(“) = |det(1 — “T)|1/QCLH+GM5’ and then it has the same anti-commutation relation as Eq. (E6):
{(Thco T e} = (27)"6(k — k' )dgerdss’ . (E9)

As a result, H, can be further re-expressed in terms of ¢ as

dk
H, - / S b (k) (E10)

18z (2m)47F

Comparing Eq. (E5) and Eq. (E10), it is clear that the deformation induces two changes: (i) cL — EL(U), and

(i) ho(k) — hy(k). According to Eq. (E6) and Eq. (E9), CL and EL(u) have the same anti-commutation relations.
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The similarity between them can also be reflected by the equivalent representations furnished for the corresponding
symmetry operators.
For the lattice translation, we have

TRCLTIEI = cLeiik'R , T(lJFU)RELT(_l-li-u)R = E,Tce*ik'R . (E11)
More generally, for a generic space group operator g = {R|t}, the representation furnished by cL reads
gcigi1 = cTRkefiRk'tUg , (E12)

where [Ugjlgrs as = 6gz7RGe_iG/'t(RS)S/S and Rg is the matrix representation of R in the spin subspace. Then, we
can define g, = {R|t, = (1 + w)t} and have

gulh (R uR) gyt = ¢, (w)e Ry, (E13)
For the TR symmetry that acts on the Bloch states, we have
T Tt =c Ur , Teh(u)T ! =2, (u(t)Ur (E14)
where [UT]G’S’,GS = 5@/’,(;(10'3!)5/5.
With these symmetry representations, we can derive the symmetry properties of h, (k) from those of ho(k), which

are useful for the change (ii). Suppose [g, Hy] = 0. Then, we have g,(Hp-1,r)g, " = H, based on Eq.(E1) and
Eq. (E3). As a result, we have

Ugho(k)U} = ho(Rk) , Ughu(k)U} = hpup-1(RE) . (E15)
For TR symmetry, suppose [T, Ho] = 0, and then we have T H, )7 ' = H,), which gives

Urhy(k)US = ho(—k) , Urhl ) (K)UL = hy (<) . (E16)

2. Tight-binding Model

The above formalism in general is hard to deal with analytically. More commonly, we deal with the TB model,
which reads

HTB,O = Z C;%—i-‘riMii/(R + 7 — R/ - Ti/)CR'+T,L~/ (El?)
R,R' i,i’
in the absence of deformation, or reads

Hrpu= Y ¢umirg M1+ 0)(R+7i = R — 1)l uy®ysr,) (E18)
R.Ri7

with deformation. Here ck +r, 18 a vector whose components stand for orbital, spin, etc, and are labeled by 3; as

cTR 475 Note that B; can take different ranges of values for different sublattices. In this work, we approximate
M [(1+u)(R+7; — R — 7)) as'®
6" ud
|6/

M [(14+u)(R+71;— R —7y)| = (1 > Miyy(R+7; — R — i), (E19)

where § = R+ 7; — R’ — T is treated as a column vector. Since the above expression only involves the symmetric
part of u, this only takes in to account the effect of strain. It is reasonable sicne a global rotation of the system cannot
induce any response.

Let us define

C4u)(R+T:),8: ° (E20)

Ly 1
f = k-(R+7;) .t ~t .
i = VN et e )CRJrn,ﬁi » Chyip, (W) = N E e
R R
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with N redefined as the total number of lattice sites. From {cl g+ Cr g1} = OpprOppr, We can derive that c;rm- 5, and

EL 0B have the same anti-commutation relation
169

{Cl,z‘ﬁwck’vi’ﬂé/} - {Elfc,i,ﬁi»gk’vi’vﬂéf} = Ok 0ii 0., - (E21)

With Eq. (E20), the Hamiltonian can be re-expressed as

HTB,O = ZCLhQ(k?)Ck 5 HTB}u = ZELhu(k>Ek (E22)
k k

with

ho(R)is, irgr, = D e AFITTTOR M (AR + 75 — 7)1 (E23)

AR ’

and

[hu(k)]ib’i,i’,@;, _ Z e (ARFTi—Ty)-k [Mii'(<1 + u)(AR + 7 — Ti/»]ﬁiﬁ'./ . (E24)

AR '

Therefore, similar as the general formalism, the strain effect to the TB model includes (i) cL — ETk and (ii) ho(k) —

hy (k) , where CL and EL have the same commutation relation, and h,—o(k) = ho(k).
The similarity also exists for the symmetry properties. First, Eq. (E11) for the lattice translations still holds here.

Second, if [g, Hp] = 0 for a space group operation g, then CTR 1, furnishes a representation of g, i.e.,

; s i 4 o
IRt 9 = CprprtMy” = CRyyr,, My (E25)

with M;Q " the representation of ¢ in the 8 space. The existence of M;gi means i, and 7 are the same kind of atoms
with the same orbitals. Then, Eq. (E12), Eq. (E13), and Eq. (E15) hold here for a different definition of U,:

[Ug]ilﬁl{/ ,i/Bi = 6i’ig [M; L]B:/,Bz . (E26)

Mgli is defined to be zero for i’ and i being different kinds of atoms. Third, if [T, Hy] = 0 for the TR operation T,
then

Tehir, T ' = chir, My (B27)

with M% the representation of 7 in the 3 space, and Eq. (E14) and Eq. (E16) hold here for a different definition of
UTZ

[UTirg1, i8, = disr [MF 1,5, - (E28)

Therefore, the strain effect is formally the same for the general Hamiltonian and the TB model.

3. Low-Energy Model

In this part, we project the general Hamitonian or the TB model to the low energy subspace. We consider a group
of orthonormal vectors v, (k,) that satisfy

ho(ka)va (ko) = Eo(ka)va(ka) , (E29)

where a, « are re-defined to label the valley and energies. We choose v, (k,)’s so that they furnish a representation of
the symmetry group of Hy:

Ugva(ka) = Vo (kar)Ok,, Ri. [Wylara (E30)
if g is a symmetry of Hy, and

U’TU:; (ka) = Vo’ (ka’)(ska/,fka [W7a’]o¢’a (E?)l)
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if 7 is a symmetry of Hy.
Let us define

bj],a,a = C;+kava(ka) ’ bj],a,oc(u) = Ejl+ka (U)Ua(k!a) ’ (E32)

where q only takes a small symmetric neighborhood around k,. As a result, bI; and Z:f] have the same commutation
relation

{bjl,a,ou bq’,a’,a/} = {Eg,a,a7gq’,a’,a/} = (27T)d5(q - q/)aaa’aaa’ 5 (E33)
and the effective Hamiltonian reads
e ddq e e ddq T e 7

Here we use the form for the general Hamiltonian, since the derivation for the TB model is equivalent. Clearly, the
effect of deformation again includes (i) b}; — bL and (i) he'/ (k) — he!f (k) . Furthermore, the symmetry properties
of b, are

guby(R™ uR)g, ' = b, (w)Ug e 111t (E35)
with (U;ff)a,a,,aa = [W;]a,aéka,7Rka6_iRk“'t if g is a symmetry of Hy, and
Tl (u(t) T = b1 (u(t) U5/, (E36)

with (U;ff)a/af,w = W wabk,, —k, if T is a symmetry of Hy. The symmetry properties of by can be derived by
limiting v — 0 in the above expression.

In general, th ! (q) and h¢/7(q) can be derived from ho(q) and h,(q) using the perturbation theory, respectively.
However, this is not always straightforward to be done analytically, so sometimes we derive their form from symmetries.
Note that Hgf 7 and H¢f 1 should have the same symmetry properties as Hy and H,, respectively. Then,we have

Ut g (@ =g (Ra) U e (@)U ) = il (Ra) (E37)
if [g, Ho] = 0, and
U ni (@) (U = hi T (—q) , U 02 (@) (0 = nil (—a) (E38)

if [T, Ho) = 0.
Now we restore the original definition of a, o, and consider the case discussed in the main text. With this scheme
and the following symmetry representations

-1 .
myc;rl,l,amy = Cinyqj,—a(ilay) )
-1 .
myc;rl,Z,amy = Cinyq,l,fa(ilay) ) (ESQ)
TCI],I,QTil = Ciq,Z,a(iO—y) ’
-1 .
TCL,z,aT = CT—q,l,a(wy) )
we can obtain the leading-order electron-strain coupling as
d3q _ -
Hyyy = / (@n) ZEL,CLKOTOO’O + (=) (190.€s + T20y&y + T00:E)|Cq.atizs - (E40)
a
Converting to the field operator ¢; q.q,o and using
hoar [ P4 g
wt,r,a,a == elka’u T/ (27’[’)3 e'd Tct,q,a,a ) (E41)

we can obtain Eq. (A6). Here the low-energy approximation allows us to extend the range of g to R3 and treat a,
as internal indices. Since the strain cannot change the commutation relation of the field operator, the measure of the
functional integral in the partition function does not change with the strain.
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@ (b) G : b (@ :

(e) M «ié\(;é\ UN.

FIG. S5. This figure shows Feynman diagrams that might contribute to the effective action of Eq. (F2) up to the leading
order. The solid line stands for the Fermion propagator Eq. (F3), and the meanings of other lines are labeled in the graph.

Appendix F: More Details on the Low-Energy Theory

In the section, we provide more details on the effective action and the boundary condition of the low-energy theory.

1. Effective Action

In this part, we derive Eq. (A15) from Eq. (A13) and Eq. (A11).

Let us first simplify Eq.(A13). As mentioned in the main text, |m| = |m(r)| equals to a constant |mg| in the
bulk, and then we can define M (r) such that (s.t.) |m(r)| = |mg| + M(r). Since M(r) is constantly zero in the
bulk regardless of the gapped boundary, it cannot contribute to any bulk response, and thus we can neglect it in the
following derivation, simplifying Eq. (A13) to

La =y [i(@+iedy = ide57) = Imole™" |, . (F1)

From the above equation, a generic term in the effective action has a specific nonnegative powers of Ea’ Aq 5, and
d,, labeled as ny, no, and ng, respectively. Among all these terms, the charge response comes from those with ny > 1,
since the functional derivative of the action with respect to A is required to derive the current. We next adopt the
leading order approximation, which consists of three parts. First, since we only consider the currents that are linear
in u,, or A, the terms in the effective action that we are interested in must have n; < 2. Second, we only keep terms
to the linear order of ¢ and @ for simplicity, and then we can simplify Eq. (F1) to

£a = Ea l(a + ieﬂa - iAa,5fY5) - |m0‘ + 1|m0|¢)ary5 wa . (F2)

The first two approximations further require ng < 2 and n3 < 1 and forbid (n1,n2,n3) = (1,2,1),(2,1,1),(2,2,0),(2,2,1).
As a result, we have only eight possible values of (n1,n2,n3) that might have nonzero contribution to the effective
action within the first two approximations, whose Feynman diagrams are summarized in Fig.S5. The third approx-
imation is that since u,, and A are chosen to slowly vary along with ¢ and/or r, we keep at most two space-time
derivatives of them.

In the Feynman diagrams, the fermion propagator reads %S (k) with

S(k) = (k+[mo|)7" (F3)

and the vertices are defined according to Eq. (F2). Note that Eq. (F3) is defined based on a new definition of the
Fourier transformation

d4q iqx
'(/)w,a,oc = / (2,”)46(1 wq,a,a 5 (F4)



21

since this form leaves the measure invariant. The Fourier transformation of /Nlm Ag 5, and @, follows the same rule
as above. In this section, we adopt the real time: z# = (t,r), and define ¢* = (v, q). In the following, we evaluate
each graph. For the derivation, we do not use the dimensional regularization due to the existence of Levi-Civita
symbol, but adopt the classic Adler’s method for the chiral anomaly, which does not choose a regularization scheme
as discussed in Ref. [7 and 8]. Eq. (F2) has effective Lorentz invariance and U(1) gauge invariance, and we preserve it
to all orders of quantum correction.

Before evaluating each diagram, we would like to discuss a subtlety. The U(1) gauge field is added as Oy —
Opn+ieA, () for 1y . According to Eq. (E41), 1, actually corresponds to a fermion at zP" = (¢, 7P") = (¢, (1+u)r).
Therefore, A, (z) is related to the actual physical U(1) gauge field AP (2P"v) as

Ao(x) = APt (14 u)r) , A(z) = (1 +u) AP (, (1 4+ u)r) . (F5)

Nevertheless, we can directly replace A(x) by the physical U(1) gauge field AP"Y(zx) in this work as discussed below.
All current responses can be split into two classes depending on whether the response involves the electron-strain
coupling parameter &; or not. For the response that involves &;, it must at least involve the electron-strain coupling
&u, of power one, which means the strain effect in A(z) (if appears) would make the response non-linear in wu,,.
Since we at most consider the response to the first order of u.., A(x) should be directly replaced by AP"(x) for
the response that involves &;. The &;-independent response would stay unchanged even if the electron-strain coupling
limits to zero. If we keep the strain effect in A(z) for this type of response, a §;-independent strain-induced current
might appear. Such a strain-induced response corresponds to the motions of the electrons that exactly follow the
homogeneous deformation, which is ambiguous at the linear order for the infinitely large system according to Ref. [9]
and thus must be neglected. Therefore, we should also directly replace A(x) by AP"(z) for the response that does
not involve &;. In sum, we can treat A(z) as AP"Y(zx) in our work. In other words, all the strain-induced linear current
responses derived here characterize to what degree the electrons fail to follow the homogeneous deformation, which is
what we should consider according to Ref. [9].

a. A. Term

The contribution of Fig. S5(a) to iSeff,, reads

~ d*k 1 ~ d*k k
_ 4 " —jeyHZ — 4 HAV [ A —
/d xAm,a,#/ (2m)4 Tr { lery iS(k)} 6/d T Az a,u Tr Yy ]/ (2m)* k2 + |mo? 0, (F6)

where we use
Tr [y#1#2..4#"] = 0 for odd n , E7)

and

=0 for odd n . 8
d ek, Ky Ky, f (K for odd F

However, there is a tricky part here. Eq.(F6) is just one way to assign momentum to the graph Fig.S5(a), and
there are infinite many other ways as

- / d*z Ay, / (g:;'fr {167”15’(16 +p)} (F9)

k% — oo

with p independent of k. As Tr[y*S(k)] —— 1/k and we do not choose any regularization scheme, we have

[ d*k Tr [y*S(k)] has UV divergence [d*k1/k. As a result, [ (347])64 Tr[v*S(k+p)| # [ (5147,;4 Tr [y*S(k)] for nonzero
7.8

p, meaning that the expression for Fig.S5(a) is ambiguous”®. This ambiguity only appears for the UV divergence
faster than logrimathiric divergence, which also appears for some other graphs in Fig. S5 as discussed below.
Nevertheless, we can use symmetry and physics to remove this ambiguity for Fig. S5(a). Eq. (F6), if nonzero, breaks
the effective Lorentz invariance and suggests that a nonzero current would exist without any external perturbation.
Therefore, it should be restricted to zero, meaning that Eq. (F6) is the only allowed way of assigning momentum.



22
b. AvaAaj Term

Fig. S5(b) reads

d*q + d*k 1 1
— | = AganA—gasy | o Tr [-S(k —iey")=S(k)(iv'~°)| - F10
[ i AuanAoaase [ e T 180+ (-ier) 1R ") (F10)
With
Tr [5 94" P7°] = —die"P?
Tr [y°y#14#2..4#"] = 0 for an odd number n of v matrices (F11)
Tr [v°#9"] = Tr [/°] =0,
Fig. S5(b) can be simplified to
dtq -~ N
/W@Aq’a’#A,q,a,&y(—éh)s“ p‘sq(;Rp , (F12)
where
d*k k
Ro(a) — / p : F13
D= | @)t Gt aP + ImoP) 2 + o) (1)

and €79 is the Levi-Civita symbol. The divergence of R, is of order k, and thus is ambiguous under the shift of the
k. In general, for any f(k) that of order O(1/k?) for large k2, the ambiguity can be evaluated as”®

/ é&(f(k +p) = f(k) = lim / ‘g;)*j k2 (kp) f (k) , (F14)

where d{251 is the solid angle in the 3+1D space-time manifold and invariant under of the Lorentz transformation.

2
Then, for f,(k) LN k,/k*, such as the integrand of R,, we have

4 w2 i
[ Gt +0) = £ = 155 = 2, (F15)

where we use
[aon =ize [ a0nsibdso) = [ d0eai e (F16)

which can be derived with Wick rotation. Here g, = diag(—1,1,1,1),, is the metric.
Owing to Eq. (F15), the expression of R,(¢) in Eq. (F12) should be

d*k k .
Ry(q) = / 2t (k+ 97 + |m0’|)2)(k2 o) mod k shift , (F17)

after taking into account the ambiguity induced by the momentum shift. Nevertheless, we can evaluate R, up to a

momentum shift. To do so, we need to introduce the widely used trick called Feynman parametrization”:

ol 1
H _ / F, o ) (F18)

/an =(n— 1)!/01 dxq /01 dacg.../ol dx, 6 <—1 +§x1> . (F19)

With this trick, R, becomes

with

1
327r2pp ’

! dl 1, - xq, , )
R,(q) = /0 dx/ ———= mod [ shift = R,(q) = Bo(¢7)q, + (F20)

(2m)* (12 + D)?
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where | = k + zq, D = x¢*> — 22¢* + |mo|?, By = fol dz %ﬁ, p, marks the ambiguity given by the shift of
the momentum, including the change from k to [ in the integral also contributes the momentum shift. The effective
Lorentz in-variance requires R,(Ag) = A ppl R, (q) for Lorentz transformation A. This symmetry requirement imposes
a constraint on the momentum shift of the R,(¢), p, must have the form p, = Bl(qQ)qp, which partially removes the
ambiguity. As a result, we have

%Bl((f) qp - (F21)

R,(q) = |Bo(q®) + o

Substituting the above expression into Eq. (F12), we find Eq. (F12) is zero.

c. Eafba Term

Fig. S5(c) reads

4, 4
B / éﬁf‘lq’ / (ZW’;Tr [1S(k+q><—iew>1S<k><—|mo|w5> . (F22)

Using Eq. (F11), the above expression can be evaluated to zero.

d. ;1'@ ga Term

Fig.S5(d) formally is the same as the loop correction to the photon propagator for quantum electrodynamics’,

which has the form
e? ~ =~
iCoy / d*xF, ., F" (F23)
where Cj is a constant. According to the expression of ﬁa, summing the above expression over a gives
iCpe? / d*zF,, F" (F24)

where the terms that cannot contribute to the charge response have been neglected. Therefore, this term stands for
the trivial correction of the permittivity and permeability inside the material.

e. @agaAaﬁ Terms

Fig. S5 (e) and (f) together give rise to the @agaAa,g, term, which reads

d4ql d4QQ ~ d4k 1 - oo 1 . v 5 1 5
- / (27‘(‘)4 (27T)4AZILG,#quyaﬁ’V(I)qya/(27_(_)4 {TI‘ [is(k"'m)(_le’y )Ts(k)(m/ Y )Ts(k _qQ)(_|m0|’7 )

T $S09(-ier) 506 - a)(-lmab®) Sk + a)0707)] | (F25)

i 1 i

. d4f]1 d4Q2 e v v
= 1/ (277)4 (27T>4€|m0|Aq17ayﬂAq2,a75,v(I)q7a (le - RQM)

where ¢ = —q1 — ¢o,

4
R = / (;17:;4 Tr [S(k 4+ )" S (k)" S(k — q2)7°] (F26)
and
Ry = / (%4 Tr [ Sk + g2)v™7 ()7 S (k — 1)) (F27)
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At large k2, we have

T[Sk + @)y S (k)25 (k — )] ~ O(5) (25)
and
T[Sk + @27y SRSk — )] ~ O() (F29)
where we use
Tr [y#14#2..4#7] =0 for odd n . (F30)

It means R} and Ry" are logarithmically divergent and thus unambiguous under the shift of k£ in the integral.
With the Feynman parametrization (Eq. (F18)), we can derive the expression for Ry and Ry as

v v d4l 4 m v 14 v v 14 v
R =Ry = / ( /ng( | O|)3 (=17 = |mo|*)g"" — 2(Q"qy + Q")) + di'ds — dbai + 201Q — Q° + 1g2)g™"]

2m)4 12+D
(F31)
where Q = x1q1 — x3¢2, D = 1143 + 13¢5 — Q? + |mo|?, and [ = k + Q. We also use
Tr [y#9"777°] = 4(g"" 9*° — 9"°9"° + g"°¢"") and Tr[y'y"] = —4g"" . (F32)

As a result, Eq. (F25) is zero.

I gaAa,sAa,g) Terms

Fig. S5(g) reads

d*qr d*qp ~ d*k 1 sl N .
_/(gﬁ)4 (27T)4A_’h—(Z2yaaﬂA(I1,a,5,VAQ2,a,5,p/WTI‘ LS(I‘G‘H]O(W Y );S(k)(WPV )Ts(k—%)(—lew)

d*qr d*qp ~
= 76/ (27T)4 (27T)4A—Q1—qzyaMA!h7(1757VA!127G,571)U511:52 )

(F33)
where
uvp _ 1 d'k 1
Usia» = 5 2n) (k,q1,0,—q2) + (1 < @2,p © V) , (F34)
and
G (k,p1,p2,p3) = Tr [S(k 4 p1)y" 7S (k + p2)v°y"S(k + ps)y*"] (F35)
Since f5?(k,p1,p2,ps3) is of O(1/k®) order as
, 2o Tr[yVHEAY fery?
1P (k, pryp2, ps) —— b %136 )y (F36)
the shift of & in the integral of f;"”(k, ¢1,¢2) causes ambiguity as
/ &'k [f" (k + p,p1,p2, p3) — f177 (K, p1, 2. p3)] = L (59" + g +p"g"") . (F37)
(27T)4 b b b ) ) 247_(_2
Here we use
[ b iks 102) = [ dSh0ab b FO2) 37 (900905 + 905 + 90500 (F38)

and

YA ' =297 (F39)
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Then, we can evaluate the integral of f{;"”(k,p1,p2,p3) up to a shift of integration variable:

&k
/(27’(’)4 5p(kaplap23p3)

dfl Te[y* (=] + @, + [mo)v* (I — @y + Imo))¥ (1 + Q5 + Imo|)]
- fan | @) EENCEY S

mod [ shift

4
= [ 47 [ Gt (2P Qs — Qi Q)+ 7@+ Q1 + Q) +9(Qu + Q1 — Qo)

+4mo|*[¢"" (Q3 — Q1 — Q2)” + g"*(—Q3 + Q1 — @2)” + ¢"*(Q3 + Q1 + Q2)"]} + O(p*) mod ! shift
(F40)

where
3 3 3
I=k+> api, D= g} — (x1q1 + 22g2 + 73q3)° + [mo* , Qi = _ wipi — p; , (F41)
i=1 i=1 i=1

and the Taylor expansion with respect to the p; is used for the last equality.
Substitute the p; = ¢q1, p2 = 0, and p3 = —¢o in the above equation and use

we arrive at

d*k dl 1 4
HVP (. 0. — — —Z12(gMv (2 P PP (_a1 — 2g5)Y vp(_ Iz
/(%)4 U Pk, q1,0, —q2) /(%)4 (12+|m0|2)3{ 3 (9" 2q1 + q2)” + g"° (=q1 — 2¢2)" + 9" (—q1 + q2)"")

8 .
+§\mo|2(gw(Q1 +2q2)” + 9" (—q2 — 2%)")} + O(¢®) mod 1 shift
(F43)

where the leading order term would vanish after symmetrizing by q; <+ ¢2 and v <> p. We can neglect the O(q?®)
terms in the above equation since the leading order approximation allows at most two space-time derivatives on the
fields, meaning that we only need to consider the terms up to ¢? order. Then, since Eq. (F37) indicates that Eq. (F34)
only holds up to a shift in integration variable, we have

v i v n= v
Uilte = 520" 9" + 19" +09"") (F44)

where p* labels the total ambiguity, and p* can depend on g; or gz but must be invariant under ¢; <> ¢». This
ambiguity is removed by the U(1) gauge invariance (Ward identity) that requires

(—a1 — @) Ui, =0, (F45)

q1,92

which further requires that p should be set to zero. As a result, we conclude that Fig. S5(g) can be neglected within
the leading-order approximation.

g. AagaAa,5 term

Fig. S5(h) reads

d4q1 d4QQ ~ ~ d4k 1 .o 1 . 1 - p. 5
- / (27)4 (2ﬁ)4Aqua,quz,a,uA—ql—q2,a,57p/(277)4Tr [iS(k+q1)(le'y )Ts(k)(*le’Y )TS(k —q2)(iv"y°)

d*qi d*qa ~ ~
. 2 1 q2
=1e / (271_)4 (27_‘_)4 Ath7a7#Aq2ﬁayVA*Q1*q2,¢l-,57PVqP1“,jqp2 ’

(F46)
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where
i Z 5[ R oo ) (F47)
Q17qz_2 (271_)4fv ,q1,0,—q2) + (g1 <> @2, p <> V),
and
10 (k,p1.p2,ps) = Tr [V°S(k + p1)y" Sk + p2)y”S(k + g3)7”] - (F48)

Since f{;"?(k,p1,p2,p3) decays as 1/k? for large k? as

Koo Tr[y Ky Ky k"]

5Vp(k7p17p27p3) ]fﬁ 5 (F49)
its integral is ambiguous as
d4]€ uvp uvp 1 pvpd
o) L7 (k+p,p1,p2,p3) = fo (ks p1, p2, p3)] = —5ps (F50)
where Eq. (F11) and Eq. (F38) are used. It means Eq. (F47) holds up to a shift of momentum.
Now we evaluate the integral of fI"”(k,p1,p2, p3):
Ak
/(27T)4 \l;p(kaplap%p?))
il T [V (=1 + @y + =1+ @y + (=T + Qs+ P
:/ng/ v [V (=1 + @y + Imo)y* (=1 + @y + Imol)y” (=1 + @5 + [mo])7”] mod 1 shift
(2m)4 (12 + D)3
—/dF/ P s [(Qy 4+ Qs+ Qa)s + (@1 — Qs+ Qa)slmol?] +O(F) mod Lshite
= 3 (2m)3 (12 + [mol?)? 1 2 3)55 1 2 3)s|Mo p

1 2
= @5“”’)65(291 — 2ps 4+ p3)s + O(p*) mod [ shift

=04 O(p®) mod I shift ,

where the first equality uses Eq. (F18) and Eq. (F41), the second equality uses Eq. (F11) and the Tyler expansions
with respect to p;, the third equality uses Eq. (F42) and

/ d*l 1 Wick Rotation / ; 'l 1 _ 1 (F52)
R (m)i P+ Dy 520D

and the last equality uses Eq. (F50). Substituting p1 = ¢1, p2 = 0 and p3 = —¢2 into the above equation and neglect
O(q?) terms according to the leading order approximation, we can derive the expression of V from Eq. (F47)as

wp _ 1 jwps
Vara = ga€""ps » (F53)

where ps should depend on ¢i,¢s and changes its sign under ¢; <> ¢2. Then, in general ps = ¢1,5C1(q1,¢2) +
¢2,6C2(q1, q2), where Ca2(ga2,q1) = —C1(q1, g2). Again, the ambiguity is removed by the U(1) gauge invariance

Vi = iV, =0, (F54)

41,92 q1:92

which requires C; = Cy = 0. Eventually, we know Fig. S5(h) is negligible within the leading order approximation.

h. Za /Ta o, Term

Fig. S5(i) reads

d4ql d4QQ ~ ~ d4k 1 - oon 1 . 1 5
- | GGt A s [ g T [is<k+ql><m )= 5(k)(=ie7”) =S (k = a2)(~Imol?)

[ d'q d'q -
- 71/ (27‘1’)4 (27'(')4Aql,a-,#AfIzﬂ,V(I)*ql*qz,ae?|m0‘Tuy(qlvq2) )

(F55)
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where
" 1 d*k "
T"(q1,q2) = 5 | m=gfr (Byq1,0,—q2) + (n < v,q1 < q2) (F56)
2] (2m)
and
J77 (kyp1,pa,p3) = Tr [S(k + pi)y*S(k + p2)v"S(k +p3)’Y5] . (F57)
Since
P2k p1,p2,ps) = O(1/KY) (F58)

the integral of fr has at most logarithmic divergence, and thus is unambiguous under the shift of integration variable.
Then, we can evaluate the integral

4
/(d ];4fT (k,p1,p2,p3)

d4lTr (=1 + @, + mo) v (=1 + @, + [moD)y” (=1 + @, + [mo|)7®
[ 2 0, a1+ @y bl (< + @+ o)

(F59)

d4l
/ 0F, / T Mol (e Q) Qs — Qap@as — QapQus) + O

+[mol?)

TR D1,pP2,5 + P2,pP3,6 + P3,pP1,5) + O
7r2|m0| ( P. P 3P, ) ( )

where the first equality uses Eq. (F18) and Eq. (F41), the second equality uses Eq. (F11) and the Tyler expansion with
respect to p;, and the third equality uses [ dF, 1 =1.
Substituting p; = q1, p2 = 0, and p3 = —go and neglecting the O(¢?) terms, we have

T (q1,q2) = — eMP g1 g5 (F60)

872|mo]

which means the leading-order contribution from Fig. S5(i) to the effective action has the form of the axion term:
/ d*z <1> € P Fy s Fu s - (F61)

Only this term contains nontrivial contribution to the leading-order linear response.

i. Restoring Fermi Velocities

As shown above, only Fig. S5(d) and (i) have nonzero contribution to the leading-order linear response. Fig. S5(d)
only gives the correction to the permittivity and permeability in the material and thus is trivial. The only nontrivial
leading-order linear response comes from Fig. S5(i), which gives Eq. (A15).

Note that the following transformation is used to derive Eq. (A7) and Eq. (A13),

Ty = TV 5 Qi = 43/ Vi, Ka,ai = Fa,ai/Vis

F62
A — Ai/viawa,a — |”Uzvyvz|71/2wa,a . ( )
Then, we can perform the inverse transformation on Eq. (A15) to restore the Fermi velocities.
As a result, Eq. (A10) becomes
B = (—1)" e, (F63)
a ev Y

Y

Eq. (A17) becomes

0, = (—1)* *sgn(v,v,v,)0 , (F64)
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Eq. (A19) becomes
2

e
YHa= (—1)asgn(vxvyvz)2gz— . (F65)

™ 2T

Eq. (A20) becomes

Seffrau.. = sgn(vzvy0,) by /dtdBT(¢ +Q-r)u..B, , (F66)
" 4r2v,
Eq. (A24) becomes
djrE,i e §
Xizz = Ol = Sgn(vwvyvz)ﬁi[Q X ey]i ) (F67)
and Eq. (A27) becomes
2 gbulk
Mbulk - _ iea EPse (F68)

2 2w ¢

J.  Massless Limit

The derivation here suggests that the axion term comes from i|mg|®41,7°1, term, while the Aa757u1/_1@'y”’y51/_) has
zero contribution. This seems to contradict the fact that Aa’g,,uiﬁav“'y‘%wa in the |mg| = 0 case should account for the
axion term of the chiral anomaly. The reason for this seeming contradiction is that the Taylor expansion with respect
to the momentum of A,/A, 5/®, that we perform above is invalid in the |my| — 0 limit. In another word, the method
used here does not have the proper |mg| — 0 limit and thus cannot restore the massless chiral anomaly. However, we
still adopt this method since it can reproduce the previous experimentally-verified results’® and the results derived
above are verified by the TB model as discussed in Appendix. G.

k. Momentum-Cutoff Correction to Eq. (F55)

The nontrivial contribution to the leading order response is given by Eq. (F55). In the above, we have derived the
response without imposing a finite momentum cutoff. In this part, we will impose a momentum cutoff |k| < A in
Eq. (F55) to discuss the possible correction. A here is different from that in Appendix. D.

The key quantity in Eq. (F55) is T#"(q1, g2), which reads

1
T (g1, q2) = 51" (@ @2) + (0 & vian < q2) (F69)
where
nv d4k n v 5
I"(q1,q2) = WTT [S(k + qu"S(k)v"S(k — q2)7°] - (F70)
With Eq. (F11), we have
d*k —4ie?"" q1 40,5
1" (q1,q2) = |m / £ . F71
(01202 =170l | oy (kv )7 + moP Y02 + o P)( — 4207 + mol?) )
Performing the Wick rotation and neglecting the O(¢?®) order since A is a slow field, we arrive at
Y - [mol
I (q1, q2) = 4P —/ d|k k2/dk -
fan6a) =42y AR R G
(F72)
— pudv 1 1 1
=€ q1,p492,5

82 (I 1 1)3/2 fmol
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(a) Gapped (b) (c) Gapless
Bulk  Boundary Vacuum I Bulk  Boundary Vacuum
' | | m(m) } b }
/%—_~\‘\ Re(m)
. ! x ik
. <o 7 . Im(m)
T Mo Re(m)ﬁ
mmo) ey Re(mo)l———~/
i 0 —
° Xp | x| |x| increases Xp | x|

FIG. S6. (a) shows the spacial dependence of m in Eq. (F74) for a slab configuration with boundaries perpendicular to z.
Both Im(m) and Re(m) are smooth and monotonic functions of |z|. (b) shows the spatial dependence of the phase ¢ for (a).
Owing to the monotonicity of Im(m), the ¢o should take values in (—m,7) and the continuous ¢ cannot take the path that
passes £7 as |z| increases. (c) shows the spatial dependence of m for Im(mo) = 0 and Re(mo) < 0, where a gapless mode
appears at the boundary.

As a result, the corresponding terms in the action reads

R S T S 1+0(|m°|2) ot o, (F73)
(|n}\02‘2 +1)3/2 3072 a a,pvia,pd A2 3272 a a,uvta,pd 5

2
implying that imposing a momentum cutoff A would lead to a O(%) correction to the response coefficient of

Eq. (A14).

In the above derivation, we use Eq. (A13), in which the momentum origin of the fermion field is typically not at
the Weyl point. However, the order of magnitude of the derived correction to the response coefficient will be left
invariant under a shift of the origin to the Weyl points, since such a shift can only change the forms of A, 5 and @,
and therefore cannot affect the form of the response coefficient according to Eq. (F73).

2. A Symmetry Preserving Boundary Condition

In this part, we present a symmetry-preserving boundary condition that can realize the boundary TQPT. We
consider a slab sample with open boundary perpendicular to = and thickness 2z, i.e., |z| < zp, while the momenta
along y and z are kept as good quantum numbers. For the discussion of the boundary condition, we can omit the
gauge field since it has no effect on the boundary condition. Moreover, we can also neglect strain since we choose it to
be homogeneous in the entire space, meaning that the difference between the material and vacuum is solely accounted
for by the spatial dependence of the CDW order parameters. We choose the boundary to preserve the TR and mirror
symmetries, and thereby we may focus on one valley since the other one is related by the TR symmetry. In this case,
we can freely rotate the fermion bases to cancel the p, and Q terms in Eq. (A7), leaving us

Lo=1, |id— |m|e*i<*1>“’1¢75] Da - (F74)

As mentioned in the main text, m equals to a constant mg deep in the bulk of the sample, i.e., m(|z| = 0) = my;
the vacuum outside the sample is approximated as a Dirac fermion with infinitely large real mass for each valley, i.e.,
Re[m(|z| — 00)] — oo and Im[m(]z| — o0)] = 0. Between these two limits, we choose both Re[m] and Im[m] to be
smooth and monotonic for simplicity (see Fig. S6(a) for an example), and thus |m| is always continuous.

Owing to Im[m(|z| — o0)] = 0, we can always set ¢(|x| — o0) = 0 for the vacuum. Furthermore, we always try to
choose a continuous ¢. When Im[m(|z| = 0)] = Im[my] # 0, the monotonicity requires Im[m| cannot take zero values
for finite |z|. As aresult, a continuous ¢ can only take values in (—m, 7) and thus requires ¢(|z| = 0) = arg(mg) = ¢o to
only take values in (—m, ), since ¢ otherwise must pass + as |z| increases and breaks the monotonicity of Im[m].(See
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e

1 A

FIG. S7. (a) shows the lattice of the TB model without CDW Eq. (G3). This is a cubic lattice with lattice constant ap and
there are two sublattices in one unit cell. (b) demonstrates the choice of the unit cell for the TB model with CDW. Now the
unit cell contains four sublattices.

Fig.S6(b).) When Im[mg] = 0, the monotonicity requires Im[m(]z|)] = 0 for any = and ¢ must be a step function
with ¢(|z| < xp) = nm with n odd and ¢(|x| > xp) = 0. This discontinuity of ¢ for Im[mgy] = 0 comes from the
gapless boundary mode given by the real mass domain wall Re[mg] < 0 and Re[m(|z| — 00)] = 400, as well as the
vanishing Im[m] = 0, as shown in Fig. S6(c). When ¢o # 7 (e.g., Fig. S6(a)), the nonvanishing Im[m] guarantees the
boundary to be gapped and makes sure that ¢ is continuous. Since the derivation of the response from the effective
action is only valid when the system is gapped everywhere and ¢ is continuous, Eq. (A27) is only valid for ¢g # m,
which gives us a uniform strain induced magnetization deep in the bulk of the system. If we keep Re[mg] < 0 and
tune Im[mg] from 0~ to 0T, ¢g should jump from —m + 0" to 7 + 07, leading to a jump of bulk magnetization. This
jump is induced by the gap closing at the boundary of the system, while the bulk of the system stay gapped.

In the above discussion, we choose smooth monotonic functions for m. The existence of the gapless boundary mode
for each valley and the magnetization jump is stable against any symmetry-preserving perturbation, as long as the two
valleys are well defined. It is because the gapless mode for one valley on one surface is a Weyl point in the (gy, ¢-, ¢o)
space, meaning that the perturbations can only shift the appearance of the gapless mode and the magnetization jump
to other values of ¢¢ instead of removing them. It coincides with the fact that the gap closing only needs 1 fine-tuning
parameter.

Appendix G: Details on TB Model

In this part, we build a TB model to reproduce the results derived from the effective action.

1. Without CDW

We first consider the case without CDW. The model is built on a square lattice with lattice constant set to ag, and
each lattice site contains two sub-lattice atoms, one at 7; = (0,0, 0) and the other at 79 = (0,0,1/2)ag, as shown in
Fig. S7(a). We put a spinful s orbital at 71 and a spinful p, orbital at T2, and the bases read |R + 7;, s) with s =1
the spin index. According to the Fourier transformation

1 .
i _ i(R+7;)k .t
Ck,i,s - § :6 CRJrTi,s ’ (Gl)
VN “F

the representations of the symmetry operations read
mycgmyt = el (—ir0y) T Tt = (i) | (G2)

where c}[{ ;.5 18 the creation operator for [R+ 7;,s), and 7 and o label the sublattice and spin indices, respectively.
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With certain nearest-neighbor hopping terms, we choose the following symmetry-allowed form for the strained TB
model:

Hrp., = ZCLhTB,u(k)Ck: ) (G3)
k

1
hrpu(k) = w [di7,00 + daTyoo + dsTyoy + daTyo, + dsTyos] (G4)

where the k dependence of d’s is implied, the strain-induced redefinition of ¢ discussed in Appendix. E is implied,
and
di =no — 1+ cos(kzag) + na cos(kyag) + (1 — uzz) cos(k.ap)

do = (1 — ng ) sin(kyao) cos(k.ao/2)

=(1- uzz) sin(k.ao/2) (G5)
=(1- )cos(kxao) sin(k.ao/2)
(

1— 7)n1 cos(k.ao/2) cos(kyao) + (

u;z )ns cos(k.ag/2) cos(kzap) ,

where u,, stands for the normal strain along z. Hrp is just Hrp, with u,, = 0. Eigenenergies take the form

i\/d% +d3 + (\/d3 + d3 £ |ds])?, and we consider half filling, resulting in the gapless condition dy = d3 = \/d3 + d5 —

For concreteness, we choose
ng=-—v2 m =1 ny=2 n3=—-1. (G6)

Then, without u,, = 0, the gapless points exist at k = (£n/2,+7/4,0)/ag, and the zero-energy eigenvectors at
= (7/2,7/4,0) read
vy = e®/3(1,-1,-1,1)T/2
g T (GT)
vy =e /81, -1,1,-1)T/2 .
The zero-energy eigenvectors at the three other gapless points are related by symmetries to realize Eq. (E39). In
general, the expression of v; and v allows an arbitrary global U(1) factor, i.e.

vl = V1%, vy — vee'? (G8)

which can alter the projection of CDW in the following.

2. With CDW

The CDW-like term that we add in the TB model is shown in Eq. (B4), where
My = [—cos(k,a0/2)Tyo0 + T.04] sin(kyao) , (G9)
and
My = [~ cos(k,ag/2)Ty00 + T200]/V2 . (G10)

The CDW term couples Weyl points that are separated by (m,0,0)/ag, which is commensurate. Therefore, we can
double the unit cell along x by defining

_t _ i
CR k! KL ie = CRy+igao,kl, k. (G11)

with R}, = 2" ag, i, = 0,1, and I, an integer, to exploit the reduced lattice translation symmetry. It means that the
new lattice constants are a), = 2ao, a; = ao,a,, = ag, as shown in Fig. S7(b). Using &;, to label the Bloch momentum

conjugate to R/, and defining k' = (k’ k! k.), we can re-write the CDW term as

x) Vyr Vz

Hrpcpw = ZEL/hCDW )Crr = ch/ ppy sin(kyaz, /2) My (K, kL) + pop Ma(ky, kL)] ek (G12)
k/
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p’s are Pauli matrices for new index 1,2 introduced by the doubling the unit cell,

! / 1
iRl k! =1
ck, = e ke o, ) (G13)
v 2 i /2
and N’ = N, /2.
The previous Hrp, can also be rewritten with ¢ as
HTB,u - Z EL/ETB,u(kI)Ek' ) (G14)
K, oy ks
where
- 1
hrpu(k') = — {po [(no — 14 nycos(kyay) + (1 — uz.) cos(klal))m.00 + da(k')7y00 + ds(K') 004
Uy
+(1— ?) 1 cos(k a’,/2) cos(kya,)Ty0, (G15)
+cos(klal./2)py [TZJO +( u;z ysin(klal /2)Tp0, + (1 — ugz )% cos(k;a;/2)7yom} } :
Then, the total Hamiltonian reads Hrp = Hrp,u + Hre,cpow-
When po = 0, the model has an effective m, symmetry
pulhrpu(Ky, k') + hopw (K, K )pe = hrp (=K, K') + hopw (—k;, K ) - (G16)
3. Low-Energy Projection
Suppose [Hrp o,chv] = Eclv, then we have [Hrg.,, EL,:k@] = Eeclo with o = (v7,07)T//2. Therefore, at
k' = (m/al,m/(4a},),0), we can choose zero-energy eigenvectors for Hpp o with Eq. (G6) as
1 (v 1 (v 1 T.O0V] 1 TL00V5
v = R R 1 T R 1 A (G17)

_\/§ U1 V2 Vg _\/E —T,00V] V2 —T,00V5

where the form of v} and v are determined by symmetries. By projecting the whole Hamiltonian Hrp to them, we
have the following low-energy model to the leading order of g and u.,

& V24s + 2igy + S p + ipip 0
\/§Qw - QIQy + %uzz _% 0 M1 + 1//"2
p1 — i 0 *qu (7\/5) 4z — 2iQy + %fuzz
0 M1 — 1M2 (_\/i) qz + 21%/ + %uzz %

(G18)
The U(1) freedom Eq.(G8) can only rotate py + ipg to (1 + ipg)e 2%, Compared with Eq. (A2), Eq. (A5), and
Eq. (A6), we can get the parameter values listed in Eq. (B6), Eq. (B12), and Eq. (B7).

4. Calculation of the 2D Layered Currents

As discussed in the main text, the strained-induced current distribution like Fig3(a) is calculated for a slab config-
uration of Hyrp with the open-boundary condition along z, labeled as

lab _
Hpg = 5 Ck/ o, Iestab ky,kz,uzz)ck;,k; . (G19)
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Here EL, w includes the layer index EL, o i is With 17 =1,...,20, and
N NN
[htan (K, K. uz2)], = § elllenlez)acks ! [hrpu(K) + hopw (k)] ! (G20)
stabl\fys Bzr Bzz /1y 0 N/ m ikl al,/2 o o—ikal, /2

H3'b s effectively a 2D system (with two well-defined momenta), and thus we can calculate its 2D piezoelectric
coefficient according to

oD d2k/
Xizz = —6/(%)2 Z Fk;,u” w50 (G21)
neE occupied ==
with
FI:L;,uzz = (1) (8k§Vn,k;’k;,uu) Ou.. Vi, Kkl uss — (ki < usz) (G22)
with V;,, Kl kL @ eigenvector of hszab(ky, k., u..). We can rewrite the expression into the Kubo formula form as
. 1
Z F/lz7uzz - Z (_1)mvjak; hSlameV'rIlauzthlaan - (k; &~ uzz) =Tr []:k;,uzz] 5
ne€ occupied ne occupied,me empty n m
(G23)
where
. 1
fk£7uzz = Z (—l)m(vnvg)ak; hslab(vmvgl)auzzhslab + h.C. . (G24)

ne€ occupied,me empty

As a result, the expression of x?2 (Eq. (B13)) can be rewritten as

oD d2k_/
Xizz = —e/m T [Pt uen] oo - (G25)

The above form allows us to project the total piezoelectric constant into different layers as

dK'
(1) = /WTY [Plfw}—kg,uzz]uzzﬁo , (G26)
where
[Pl v, =00 a0, 0 Lsxs - (G27)
Clearly,
Xi = Z X2 (1) (G28)

=1
where N is chosen to be 20 in our numerical calculations. Since the total piezoelectric current of the slab reads
]ED ot = XzzzDz'&zz ) (G29)
the 2D current for each layer should read

Pl,) = X220 )i - (G30)
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5. An Extra Term That Splits the Simultaneous Boundary Transitions

The extra term H.zirq in the TB model that mentioned above has the form:

Herirg = ch/ sin(ka,)poT. 0% (G31)

where we choose ny = 0.2 for the numerical calculation. Heyirq preserves the TR and m, symmetries, as well as the
effective m, symmetry at puo = 0.
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