Supporting Information: Elucidation of the Hydrogen Evolution Reaction on a Photochemical Molecular Device

Miftahussurur Hamidi Putra,[†] Alexander K. Mengele,[‡] Benedikt Bagemihl,[‡] Sven Rau,[‡] Michael Busch,[†],¶,§ and Axel Groß*,[†],∥

†Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany ‡Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, 89081 Ulm, Germany

¶Division of Materials Science, Department of Engineering Sciences and Mathematics,

Luleå University of Technology, 971 87 Luleå, Sweden

§Wallenberg Initiative Materials Science for Sustainability (WISE), Luleå University of Technology, 971 87 Luleå, Sweden

|| Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany

E-mail: axel.gross@uni-ulm.de

S1 Methodology for Calculating pK_a

To measure the capability of the intermediates to react with a proton, we calculate here the pK_a using the methodology that was developed by Busch and coworkers. ^{1–3} The approach is based on a thermodynamic cycle that represents acid dissociation as a sequence of proton-

coupled electron transfer (PCET) oxidation steps.

$$A-H \longrightarrow A \cdot + H^+ + e^- \tag{S1}$$

and an electron transfer (eT) reduction reaction in the solvent of interest, here is acetonitrile.

$$A \cdot + e^- \longrightarrow A^-$$
 (S2)

To calculate the electrochemical potential of the electron transfer (eT) step, one needs information about the (effective) absolute potential ($E_{abs,eff}(SHE)$) that links the absolute reaction energy to the standard hydrogen electrode (SHE) by using equation.

$$E_{\text{abs,eff}}(\text{SHE}) = -nF[0.5G(H_2) + G(A^-) - G(A-H) - \Delta G(\text{Diss.})]$$
 (S3)

Here, n represents the number of transferred electrons (n=1), F stands for the Faraday constant, and $G(H_2)$, $G(A^-)$, and G(A-H) refer to the total Gibbs free energies of hydrogen, the reference acid, and its corresponding base, respectively. These values are obtained from calculations assuming the solvent in which the experimental measurement has been conducted (typically water). Finally, $\Delta G(\text{Diss.})$ is the experimental Gibbs free energy derived from an experimental pK_a measurement in H₂O:

$$\Delta G(\text{Diss.}) = RT[pKa(\text{ref.})] \ln 10$$
 (S4)

with pKa(ref.) here the reference pK_a value from the experimental result. In this work, we use pK_a of formic acid (pKa = 3.77^4) on water as reference.

Then, leveraging the effective absolute potential, the Gibbs Free energy of the (eT) reduction step ($\Delta G(\text{ET})$) is then determined using equation S5:

$$\Delta G(ET) = G(A^{-}) - G(A \cdot) + \frac{E_{abs,eff}(SHE)}{nF}$$
 (S5)

This method relies on the absolute potential in water. Thus, it will predict the potential versus the SHE in water, despite using the solvation model parameters of the non-aqueous solvent of interest.

This is opposed to the redox potential of the PCET oxidation step ($\Delta G(\text{PCET})$) which is computed using the computational normal hydrogen electrode.⁵ This method uses H₂ in the gas phase as a reference.

$$\Delta G(PCET) = G(A \cdot) + 0.5G(H_2) - G(A-H) - RT \ln[H^+]$$
(S6)

The term " $RT \ln([H^+])$ " is derived from the Nernst equation and accounts for the pH dependence of PCET steps. When considering standard conditions (pH = 0), this term equals zero. As the solvent affects the system exclusively through the selected solvation model, the prediction of PCET steps is developed in relation to the Standard Hydrogen Electrode (SHE) in the solvent of interest. Consequently, the Born-Haber cycle, which connects the PCET and (eT) steps with the acid dissociation reaction ($\Delta G(\text{Diss.})$), is no longer solely determined by the sum of the energetics of the electrochemical steps. Instead, it requires an adjustment through a conversion factor to account for the disparities in proton solvation energy between water and the solvent of interest (referred to as "SolvX"). This correction aligns both reactions on the same reference scale in equation S7.

$$\Delta G(\text{Diss.}) = \Delta G(\text{eT}) + \Delta G(\text{PCET}) + \Delta G_{\text{conv.}}^{\text{SHE,SolvX}}$$
 (S7)

The difference between the reference solvent of the SHE can be exploited to compute the (effective) proton solvation energy in the solvent of interest ("SolvX") via equation S8:

$$\Delta G_{\text{conv.}}^{\text{SHE;SolvX}} = G(A - H; \text{SolvX}) - 0.5G(H_2) - G(A^-; \text{SolvX}) - \frac{E_{\text{abs,eff}}(\text{SHE})}{F}$$
(S8)

and equation S9:

$$G_{\text{eff}}^{\text{SolvX}}(\text{H}^+) = 0.6G(\text{H}_2) + \frac{E_{\text{abs,eff}}(\text{SHE})}{F} - \Delta G_{\text{conv.}}^{\text{SHE;SolvX}}$$
 (S9)

Here, G(A - H; SolvX) and G(A; SolvX) correspond to the total Gibbs free energy of the reference acid from equation S3 in the considered solvent, while $\Delta G_{\text{conv.}}^{\text{SHE;SolvX}}$ is the conversion factor between different solvents. The obtained effective proton solvation energy can then be used to predict the pK_a in the solvent of interest. In this work, we obtained the proton solvation energy -11.19 eV (experiment -11.06 eV^{6,7}). Then, the calculated pK_a is determined by this relation ^{1–3}

$$pK_a(calc.) = 0.75 pK_a(DFT) + 3.2.$$
 (S10)

Here, we examined pK_a values for protonation of water, triethylamine (NEt₃), and acetonitrile in acetonitrile. Our DFT calculations revealed that the protonated water (H₃O⁺) and acetonitrile (MeCNH⁺) had remarkably low pK_a values of -5.4 and -0.8, respectively, making them hindered protonation sites. In contrast, NEt₃H⁺ displayed a high pK_a of 17.0 (exp. 18.8⁸), indicating a strong propensity for proton bonding compared to water and acetonitrile. It means, for the photocatalytic process on [(tbbpy)₂Ru(tpphz)PtI₂]²⁺ (**RuPtI**₂; tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tpphz = tetrapyrido[3,2-a: 2', 3' - c: 3''''-h: 2''', 3'''-j]phenazine), the pK_a value of the proton bound to the catalyst side of **RuPtI**₂ must exceed the pK_a of NEt₃H⁺.

S2 Mulliken charge and Spin Density

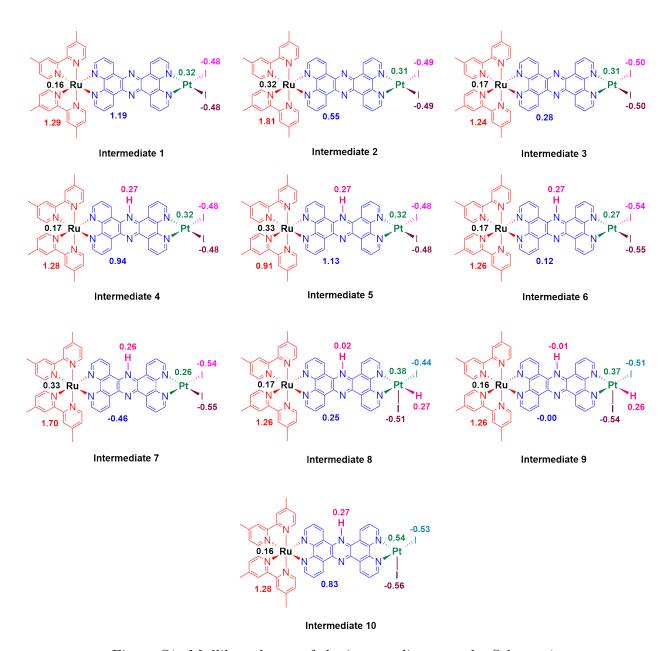


Figure S1: Mulliken charge of the intermediates on the Scheme 1.

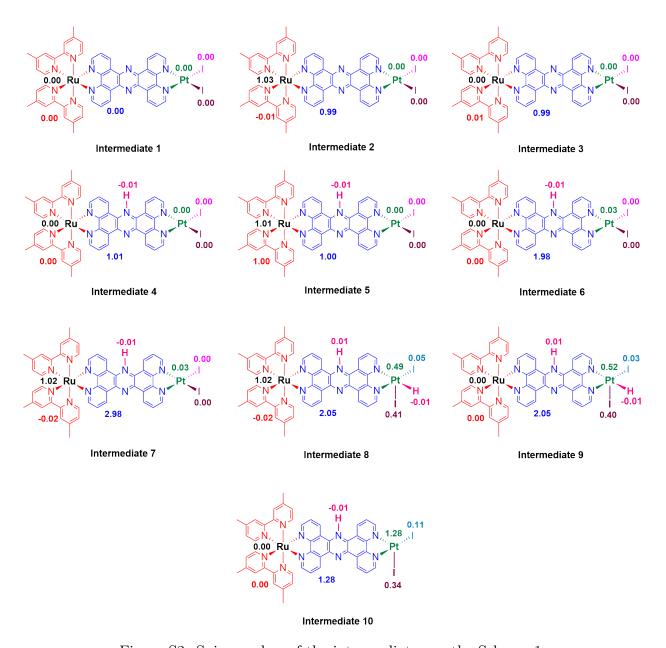
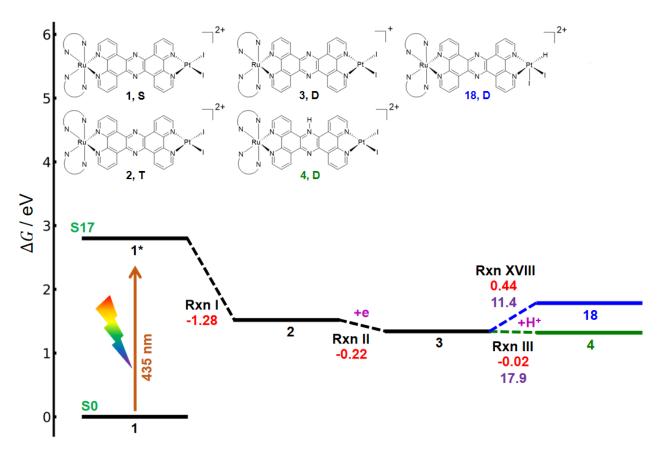
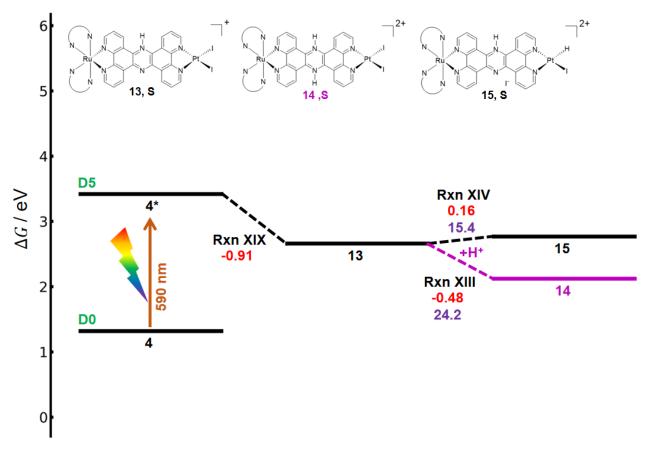
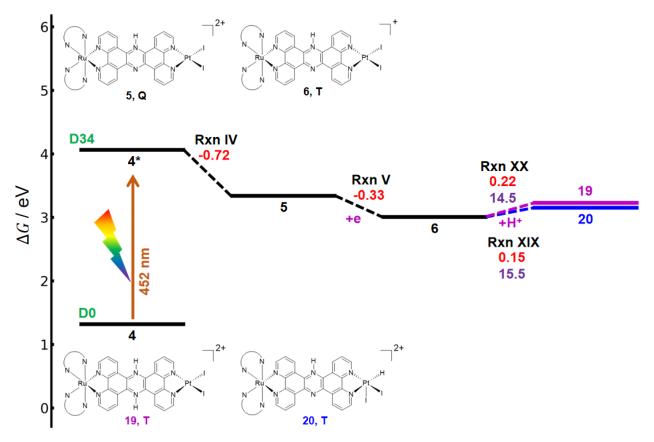
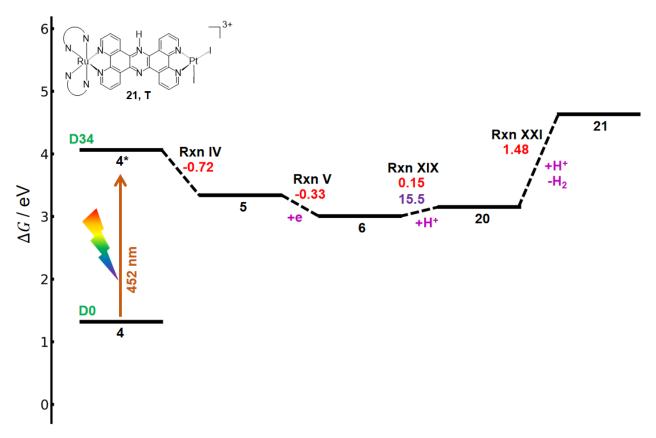
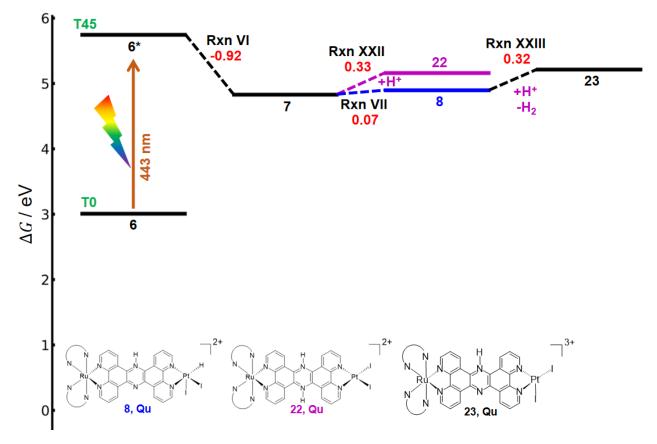
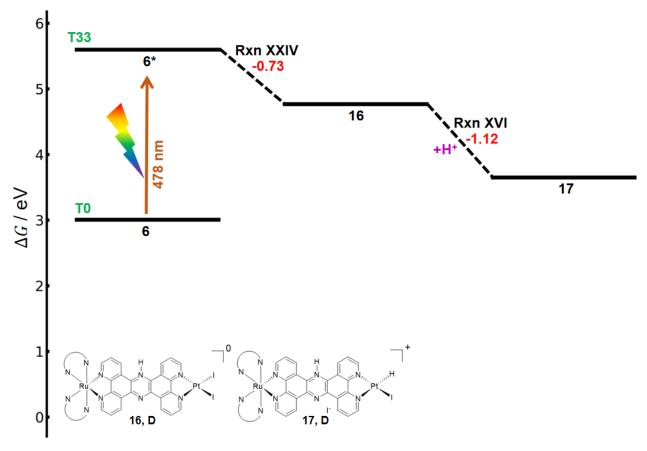




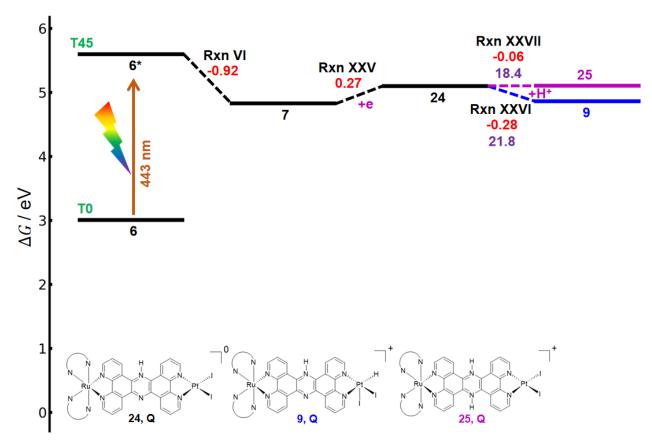
Figure S2: Spin number of the intermediates on the Scheme 1.

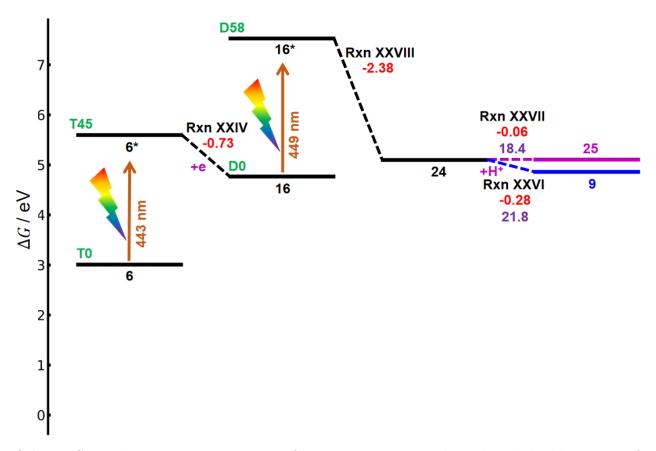

S3 The Reaction Energetics

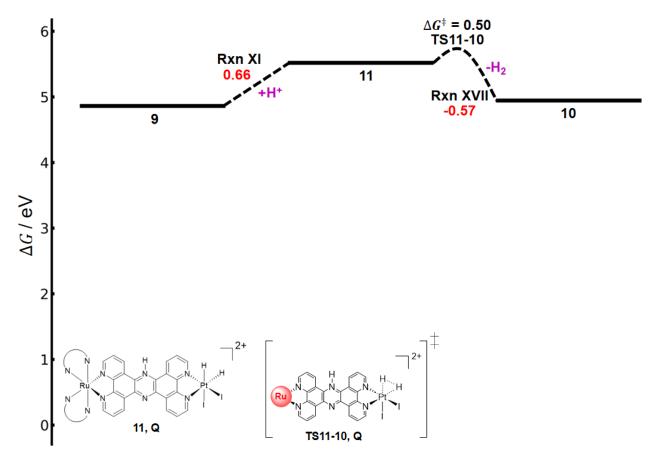

Scheme S1: The reaction energetics on singly reduced doublet state of \mathbf{RuPtI}_2 . The number of intermediates and their spin state are written below the molecules with S = singlet, T = triplet, D = doublet. This pK_a calculation is applied to the protonation on the bridging ligand and Platinum catalyst. According to our calculation, the protonation occurs only on the tpphz since the pK_a has a larger value than the pK_a of $HNEt_3^+$ ($pK_a = 17.6$). Here, the transition state for Rxn III is not displayed and already shown on the manuscript.

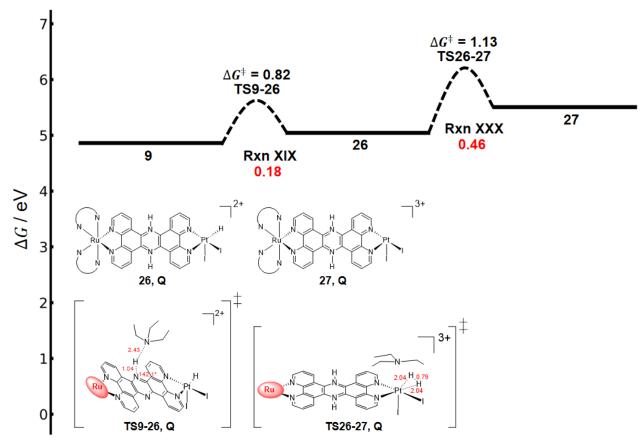

Scheme S2: The reaction energetics of protonation on doubly reduced singlet state of \mathbf{RuPtI}_2 . The number of intermediates and their spin state are written below the molecules with S = singlet, D = doublet, and L = loss of I⁻ ligand. According to our calculation, the second protonation on the bridge has pK_a much larger than pK_a value of $HNEt_3^+$. In addition, protonation on the Pt-catalyst leads to the release of iodide ligand.


Scheme S3: The reaction energetics of protonation on doubly reduced triplet state of \mathbf{RuPtI}_2 . The number of intermediates and their spin state are written below the molecules with T = triplet, D = doublet, and Q = quartet. This calculation is applied to the second protonation on the bridging ligand and first protonation on Pt-catalyst. From our calculation, the pK_a of protonation on both sites are still lower than pK_a value of HNEt₃⁺ (pK_a = 17.6). Since the pK_a difference is around 2-3 units, therefore the intermediate 19 and 20 may be observed in minor amounts.


Scheme S4: The reaction energetics plot of the hydrogen production process from doubly reduced triplet state of \mathbf{RuPtI}_2 . The formation of hydrogen in this figure follows the Volmer-Heyrovsky path. The number of intermediates and their spin state are written below the molecules with T = triplet. According to our calculation, the free energy of hydrogen production is relatively high at a value of 1.48 eV. Therefore, the two-fold reduction process is not effective for hydrogen production.


Scheme S5: The reaction energetics plot of the hydrogen production process from doubly reduced quintet state of \mathbf{RuPtI}_2 . The formation of hydrogen in this figure follows the Volmer-Heyrovsky path. The number of intermediates and their spin state are written below the molecules with T = triplet and Qu = quintet. Here, the transition state for Rxn VII is not displayed and already shown on the manuscript.


Scheme S6: The reaction energetics of protonation on triply reduced doublet state of $\mathbf{RuPtI_2}$. The number of intermediates and their spin state are written below the molecules with T = triplet and D = doublet. According to our calculation, the protonation on Pt-catalyst yields the iodide ligand loss.


Scheme S7: The reaction energetics of protonation on triply reduced quartet state of \mathbf{RuPtI}_2 . The number of intermediates and their spin state are written below the molecules with T = triplet, Q = quartet, and Qu = quintet. This calculation is applied to the second protonation on the bridging ligand and first protonation on Pt-catalyst. From our calculation, the pK_a of protonation on both sites are higher than pK_a value of $HNEt_3^+$ ($pK_a = 17.6$). Since the pK_a of formation intermediate $\mathbf{9}$ is three pK_a units higher than the pK_a of formation intermediate $\mathbf{25}$, therefore the deactivation process will be slower than the photocatalytic hydrogen evolution reaction.

Scheme S8: The reaction energetics of protonation on triply reduced doublet state of \mathbf{RuPtI}_2 . The number of intermediates and their spin state are written below the molecules with T = triplet and D = doublet. According to our calculation, there is also an alternative due to fast intersystem crossing (ISC) of the \mathbf{RuPtI}_2 that can avoid the ligand loss.

Scheme S9: The reaction energetics plot of hydrogen production process from triply reduced quartet state of \mathbf{RuPtI}_2 . The formation of hydrogen in this figure follows the Volmer-Tafel path. The number of intermediates and their spin state are written below the molecules with $\mathbf{Q} = \mathbf{quartet}$.

Scheme S10: The reaction energetics plot of deactivation of $\mathbf{RuPtI_2}$ by fully protonated of the bridge on intermediate $\mathbf{9}$ and hydrogen production of the fully bridge protonated $\mathbf{RuPtI_2}$. The number of intermediates and their spin state are written below the molecules with $\mathbf{Q} = \mathbf{quartet}$.

S4 Important Excitation States

S4.1 Intermediate 1

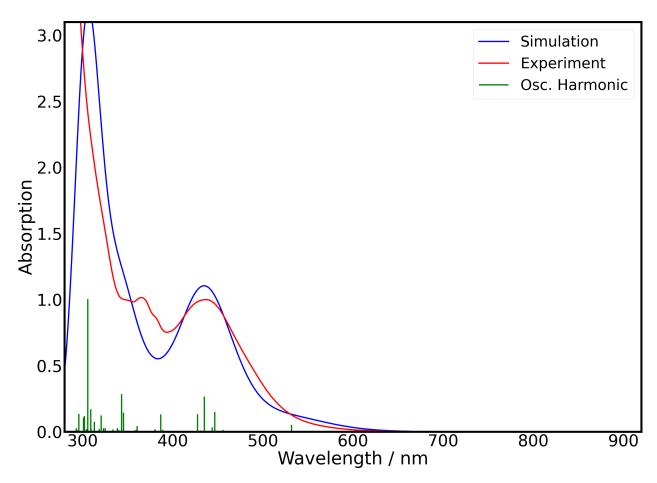


Figure S3: Absorption spectrum of intermediate 1.

Table S1: Molecular orbital transition of notable singlet-singlet excitation state from TDDFT result on Intermediate $\bf 1$. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
S2	$236 \rightarrow 239$		95.82	2.33	531.78	0.0534
S13	$236 \rightarrow 242$		59.81	2.78	446.78	0.1491
	$236 \rightarrow 243$	and the second	31.72			
S17	233 → 239		19.97	2.85	435.04	0.2676
517	$236 \rightarrow 243$	and the second	29.67			
	$237 \rightarrow 244$		32.52			
	$236 \rightarrow 242$		10.07			
S20	$236 \rightarrow 244$		57.67	2.90	427.64	0.1330
	$237 \rightarrow 243$		39.09			
S33	233 → 241		80.20	3.21	386.72	0.1314
	$235 \rightarrow 240$		13.58			

Table S2: Molecular orbital transition of notable singlet-triplet excitation state from TDDFT result on Intermediate 1. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
T1	$238 \rightarrow 239$		67.78	2.11	588.81	0.0000
	$238 \rightarrow 242$		22.80			
Т6	$235 \rightarrow 245$		85.79	2.33	531.61	0.0000
Т7	$238 \rightarrow 244$		74.48	2.40	516.95	0.0000
T22	$235 \rightarrow 239$	2000	34.77	2.75	449.50	0.0000
	$235 \rightarrow 241$		16.27			
T43	$238 \rightarrow 245$		99.94	3.36	368.48	0.0000

S4.2 Intermediate 3

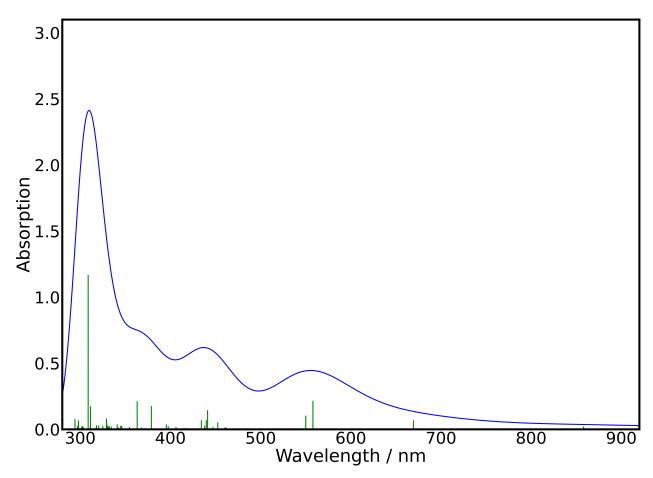


Figure S4: Absorption spectrum of intermediate 3.

Table S3: Molecular orbital transition of notable excitation state from TDDFT result on Intermediate 3. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
D6	$239A \rightarrow 245A$	3000	99.67	1.19	1043.43	0.0000
D8	$239A \rightarrow 247A$		97.27	1.85	669.44	0.0674
D10	239A → 249A		39.63	2.22	557.96	0.2169
	$239A \rightarrow 251A$	39866	55.91			
D11	239A → 249A		59.21	2.25	550.06	0.1041
	239A → 251A	3000	39.37			
D35	$237A \rightarrow 244A$		18.42	2.81	441.16	0.1450
	$237B \rightarrow 239B$	A CONTRACTOR OF THE PARTY OF TH	18.20			
	237B → 241B		15.29			
D76	238A → 245A		98.28	3.38	367.22	0.0000

S4.3 Intermediate 4

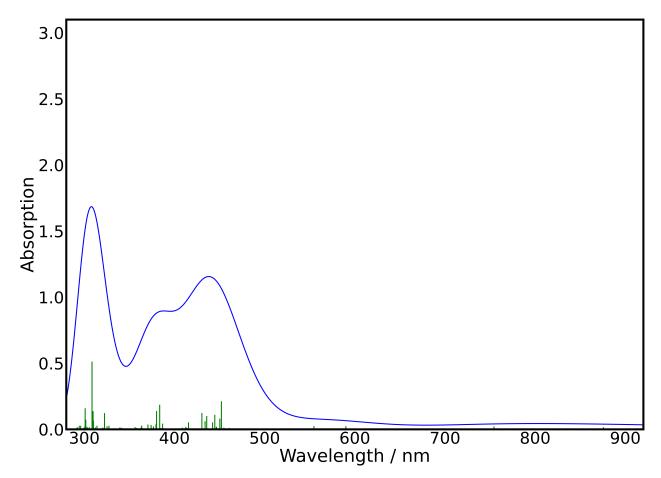


Figure S5: Absorption spectrum of intermediate 4.

Table S4: Molecular orbital transition of notable excitation state from TDDFT result on Intermediate 4. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
D5	239A → 246A		74.64	2.10	590.02	0.0241
D7	$239A \rightarrow 245A$	3000	98.43	2.17	571.99	0.0000
D9	$236B \rightarrow 239B$		72.39	2.24	554.63	0.0246
D34	$236A \rightarrow 242A$		15.94	2.74	452.06	0.2127
	$236B \rightarrow 241B$		10.88			
	236B → 242B		22.10			
D35	$236A \rightarrow 244A$	The state of the s	15.53	2.76	450.27	0.0811
	237A → 243A	A STATE OF THE PROPERTY OF THE	14.81			
	237B → 243B	A CONTRACTOR OF THE PROPERTY O	11.33			
D86	238A → 245A	, A Contracting	99.15	3.37	367.89	0.0000

S4.4 Intermediate 6

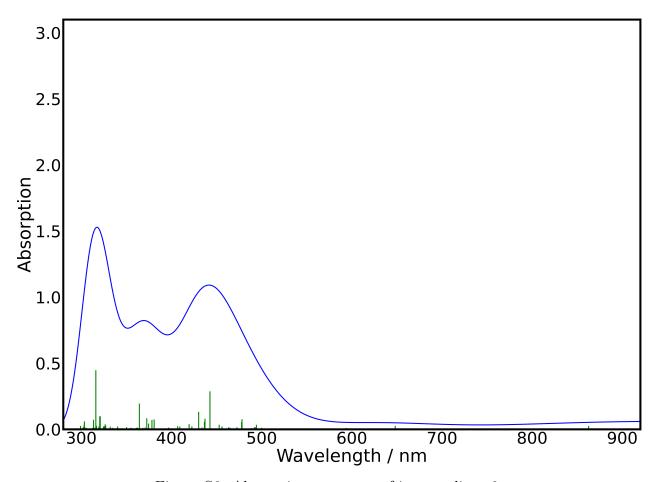


Figure S6: Absorption spectrum of intermediate 6.

Table S5: Molecular orbital transition of notable excitation state from TDDFT result on Intermediate 6. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
Т2	240A → 245A		98.13	0.81	1530.43	0.0000
T18	239A → 245A	366 6	98.03	2.30	539.30	0.0000
T33	237A → 241A		16.46	2.59	478.21	0.0769
	237A → 242A		10.09			
	239A → 247A		40.60			
T45	233B → 239B		38.55	2.80	442.68	0.2876
	237B → 241B		10.00			
T47	238B → 243B		21.25	2.84	437.19	0.0811
T50	237A → 241A		21.64	2.88	430.18	0.1324
	237A → 242A		16.28			
	237A → 244A		18.88			
T136	$238A \rightarrow 245A$	A CONTRACTOR OF THE PARTY OF TH	99.84	3.76	330.14	0.0000

S4.5 Intermediate 7

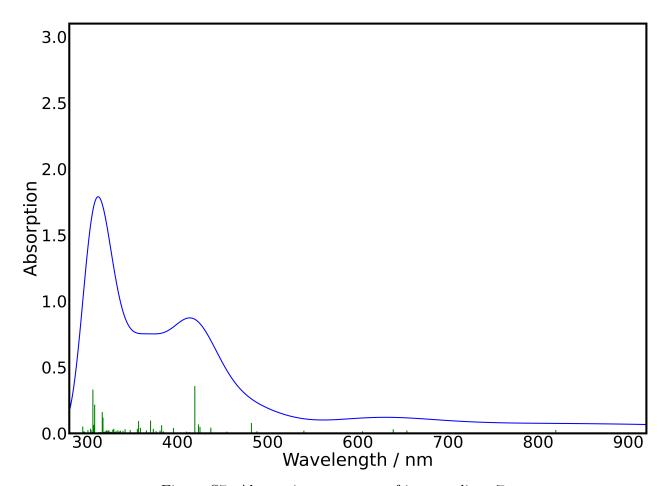


Figure S7: Absorption spectrum of intermediate 7.

Table S6: Molecular orbital transition of notable excitation state from TDDFT result on Intermediate 7. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
Qu8	241A → 246A	A STATE OF THE STA	97.79	0.88	1414.59	0.0000
Qu24	240A → 246A		95.11	1.96	633.97	0.0000
Qu30	$241A \rightarrow 253A$		34.90	1.94	639.34	0.0306
	241A → 254A		49.87			
Qu37	239A → 246A	· Property of the second	97.26	2.43	509.81	0.0000
Qu47	240A → 255A		19.09	2.57	482.00	0.0783
	$240A \rightarrow 256A$		46.73			
Qu60	239A → 252A		34.82	2.96	419.22	0.3576
	239A → 253A		32.78			

S4.6 Intermediate 13

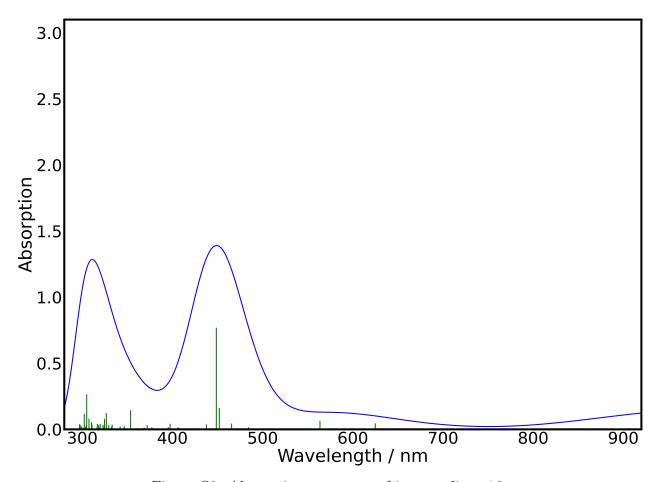


Figure S8: Absorption spectrum of intermediate 13.

Table S7: Molecular orbital transition of notable excitation state from TDDFT result on intermediate 13. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
S1	$239 \rightarrow 240$		98.80	1.07	1154.36	0.0238
S2	$239 \rightarrow 242$		35.09	1.23	1010.48	0.0947
	$239 \rightarrow 243$		62.61			
S17	$236 \rightarrow 241$		55.78	2.74	451.94	0.1619
	$237 \rightarrow 242$		23.12			
S18	$236 \rightarrow 242$		14.77	2.76	448.69	0.7694
	$239 \rightarrow 251$		66.40			

S4.7 Intermediate 16

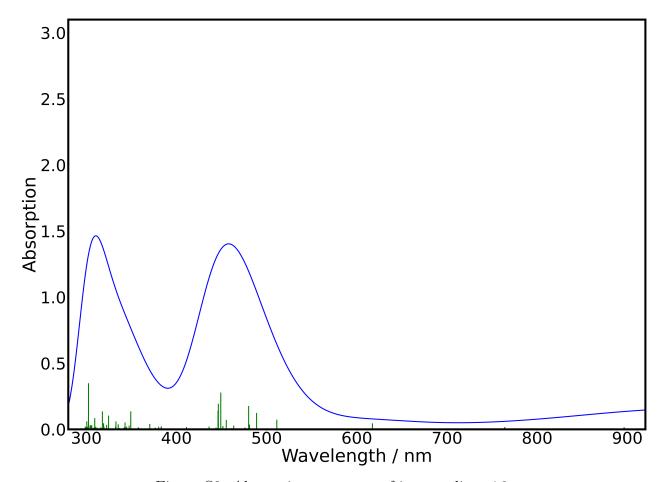


Figure S9: Absorption spectrum of intermediate 16.

Table S8: Molecular orbital transition of notable excitation state from TDDFT result on intermediate 16. The direction of electron excitation is from red to green.

State	Transition	Orbital Transition	%	VEE (eV)	λ (nm)	f
D7	240A → 244A		99.89	0.86	1434.92	0.0000
D41	237A → 242A		12.88	2.54	488.86	0.1241
	237A → 245A	$A \rightarrow 245A \qquad 14.65$				
	236B → 242B		15.71			
D45	$236A \rightarrow 245A$		12.11	2.58	480.04	0.1767
	240A → 254A		34.94			
	240A → 256A	OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUM	13.31			
D58	$236B \rightarrow 240B$		20.91	2.76	449.12	0.2786
D59	236A → 241A		13.97	2.78	446.41	0.1939
	236A → 243A		26.55			
	239A → 249A		11.68			
D60	236B → 240B		48.25	2.78	446.09	0.1393

S5 Coordinate of Intermediates

All optimized equilibrium structures of all intermediates can be found via the open repository Zenodo https://doi.org/10.5281/zenodo.10457987. 9

References

- (1) Busch, M.; Ahlberg, E.; Ahlberg, E.; Laasonen, K. How to Predict the p K_a of Any Compound in Any Solvent. ACS Omega 2022, 7, 17369–17383.
- (2) Busch, M.; Ahlberg, E.; Laasonen, K. Universal Trends between Acid Dissociation Constants in Protic and Aprotic Solvents. *Chem. Eur. J.* **2022**, *28*.
- (3) Busch, M.; Ahlberg, E.; Laasonen, K. From absolute potentials to a generalized computational standard hydrogen electrode for aqueous and non-aqueous solvents. *Phys. Chem. Chem. Phys.* **2021**, *23*, 11727–11737.
- (4) Rumble, J., Ed. *CRC handbook of chemistry and physics*, 104th ed.; CRC Handbook of Chemistry and Physics; CRC Press: London, England, 2023.
- (5) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
- (6) Muckerman, J. T.; Skone, J. H.; Ning, M.; Wasada-Tsutsui, Y. Toward the accurate calculation of pKa values in water and acetonitrile. *Biochim. Biophys. Acta* 2013, 1827, 882–891.
- (7) Rossini, E.; Knapp, E.-W. Proton solvation in protic and aprotic solvents. *J. Comput. Chem.* **2016**, *37*, 1082–1091.

- (8) Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.; Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. European Journal of Organic Chemistry 2019, 2019, 6735–6748.
- (9) Putra, M. H.; Rau, S.; Groß, A.; Busch, M. The Relaxed Geometry of Intermediates from Photocatalytic Hydrogen Evolution Reaction of RuPtI2 Photocatalyst; Zenodo, 2024; https://doi.org/10.5281/zenodo.10457987.