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S1. PROGRAMMABLE TOPOLECTRICAL CIRCUIT PLATFORM CON-
STRUCTION

A. Mapping the Hamiltonian to circuit Laplacian

The key point of a topolectrical circuit is that one can fully map the tight-binding Hamilto-
nian in condensed matter physics to circuit Laplacians (admittance matrices) [1]. The large
variety of electrical elements and variable connection modes allows the researchers to realize
a wide variety of topological states, some of which are extremely challenging to observe in
condensed matter systems. In particular, the off-site hoppings and on-site potentials host
generous freedoms in circuits, such as the strength, direction, and dimension, which enable
us to introduce interactions between two arbitrary nodes and control the on-site energy for
each node.

According to Kirchhoff’s laws, the response of an electrical circuit can be described by
the equation of motion:

d d?

Ela = Cabdt2% +L b%) (S]->

where I, is the current flowing out of node a and V}, is the electrical potential at node b. C,,
and L, are the capacitance and conductance between nodes a and b, respectively. When

we apply an alternating voltage V (t) = V(0)e™" to the circuit, Eq. (S1) yields:

Ia = Z (w)Cab + - Lab) Z Jab %7 (82>

b

where J(w) is defined as the circuit Laplacian and w is the frequency. C and L are the
Laplacian matrices of the capacitance and inverse inductance, respectively. The diagonal
and off-diagonal elements represent self-admittance via a certain node and mutual admit-
tance between two nodes. We use w for steady-state analysis of the circuit and obtain an
adiabatic continuum of spectra j(w) corresponding to J(w). As the capacitance and in-
ductance explicitly depend on it, the frequency w of the driving voltage is a central tuning
parameter of topolectrical circuits. In the programmable circuit design, the off-site hopping

terms are proportionally mapped to the off-diagonal element of a Hamiltonian H (i, j) by



linking capacitance CEr,r/ = Kk X H(i,7), and the on-site potentials V' represented by diago-
nal elements of Hamiltonian are also proportionally mapped to the circuit by tailoring the
on-site capacitance so that the condition Cy, = k x H(i,1) is fulfilled. A special example
is the case at the central frequency w., where the parallel resonance results in the on-site
potential equaling zero, and the diagonal terms in the circuit Laplacian and Hamiltonian

are all zero. The relationship between J and H is:
J =iwkH. (S4)

In this way, the topolectrical circuit can fully reflect the topological characteristics that a

certain Hamiltonian decides.

B. Programmable on-site and off-site terms design

Based on the mapping from Hamiltonian to circuit Laplacian, engineering the on-site poten-
tials and off-site hopping terms can contribute to tuning the capacitance or inductance of
the elements at the vortex and edge (connection) positions of the circuit. Normally, tunable
capacitance is more practical to realize than inductance. In our circuit design, the varactor
diodes are used to provide variable capacitance. The detailed circuit units for off-site and

on-site capacitance are shown in Fig. S1.
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FIG. S1. Circuit configuration of variable capacitance. (a) Off-site capacitance unit. (b)

On-site capacitance unit.

For off-site capacitance, varactor diode (SKYWORKS, SMV 1702-011LF) is in serial with
a 1.5 nF £5% ceramic capacitor C; (MuRata, GCM1885C2A152JA16D). The serial ceramic
capacitor is used to separate the bias voltage signal from other unit cells and tune the

fluctuation range of capacitance. For on-site capacitance, a Hyperabrupt Junction Tuning



Varactor diode (SKYWORKS, SMV 1470-004LF) with two diodes back-to-back connected
in the package is externally shunted on PCB, then in series with the 10 puF + 10% ceramic
capacitor Cy (MuRata, GRM21BR61H106KE43L). Control voltage Veoniror is swept by a high
precision programmable digital synthetic power supply from 0V to 10V. The capacitance-
voltage calibration curve is shown in Fig. S2. The tunable range is [10 pF, 100 pF] for

off-site capacitance, and [18 pF, 240 pF] for on-site capacitance.
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FIG. S2. Capacitance calibration curves for off-site and on-site terms. (a) Off-site hopping

term. (b) on-site term.

C. The realization of deep learning empowered programmable topolectrical

circuits

In this work, the fundamental framework of the whole programmable topolectrical circuit
is a honeycomb-like circuit lattice with a triangular geometry. Our prototype has a scale
N =9, which includes 100 sites distributed in triangular geometry, and 135 edge connections
(hoppings), i.e., 100 on-site terms and 135 off-site terms in the Laplacian.

A four-layer PCB board with topological connections, signal +, signal -, and a grounded
shielding layer is designed. An in-house 256-channel programmable digital synthetic power
supply is connected to each varactor diode to provide the control voltage. The minimum
voltage step can reach 0.15 mV. An in-house library is constituted to build the bridge
between hardware driving and the interface of the GUI and deep-learning framework, so

that the hardware and software can cooperate closely. Our board is shown in Fig. S3. The



bird’s view of the whole system is shown in Fig. S4.
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FIG. S4. The bird’s view of the whole system configuration.



D. Extension of off-site hopping unit to realize negative and complex values

Enabling all forms of couplings—allowing the hopping to be tuned through both positive
and negative values, and even to complex values—would provide the most complete univer-
sality of the platform. However, constrained by current electronic components and practical
engineering considerations, realizing completely arbitrary interaction coupling forms is still
very challenging. In the following, we give some extension variable-unit designs to achieve

more general couplings, including the realization of negative and complex values.

1) Realization of positive and negative-valued hopping

To realize positive-negative valued hopping within a passive-device regime, we designed
a unit, as shown in Fig. Sba: between two nodes A and B, we connect in parallel the
variable capacitor used in the main text and an inductor. Since an inductor is equivalent to
a negative capacitance in the effective low-frequency description, one can choose appropriate
values such that the effective hopping can be tuned across positive and negative values.

The operating principle of the module can be derived as follows. Within the framework
of topolectrical circuit theory (Supplementary information S1.A), the Hamiltonian H of the

target lattice and the circuit Laplacian J(w) are related by:

H xiJ(w), (Sh)
where, J is
J(w) = Nap(w) + dapWa(w),
v " i (S6)
ab(w) = 1wl + WLab
thus,
1
H, — :
ab X W (Cab W2Lab) <S7>

Here, N, and Wy, denote the off-diagonal and diagonal terms of the admittance (Lapla-
cian) matrix, respectively. H,, represents the corresponding hopping term in the Hamilto-
nian. By tuning the capacitance Cy,, the value of H,, can be continuously varied, sweeping
from positive, through zero, to negative values. We use Murata LXRW0Y V201 as a vari-
able capacitance element to provide the separate capacitance and bias voltage. Using the

impedance analyzer, we implement different control voltages on such a hopping unit and
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FIG. S5. Hopping unit for positive and negative value (a) The circuit design of hopping unit.

(b) The measured effective capacitance with the tuning control voltage at the central frequency.

measure the capacitance. The experiment measured the effective capacitance with the tun-

ing control voltage shown in Fig.

across zero to the negative region.

S5b, which clearly shows the tuning range from positive

As a proof of concept, we supplement a generic programmable topolectrical circuit built

from this unit. As shown in Fig. S6, the circuit comprises three nodes A, B, and C. Each

pair of nodes is connected by the programmable hopping unit, and each node is connected

to ground through an inductance and a compensation capacitance.

To further demonstrate its programmability, we implement custom-defined function

curves to different hopping units tu, tae, and t,., which connect the nodes (A, B), (A, C),

and (B, C). Without loss of generality, we implement the function as:

tar(m,n) = p; cos

tac(m,n) = p; cos

tpe(m,n) = py cos

V3 N 3
—n cos| =m
2 P2 2 )

3 V3 3 3V3
—3m + Tn) + po cos (Zm + Tn) : (S8)
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Control
Three-nodes system :

FIG. S6. A circuit demo with positive and negative tunable hopping value. (a) The
schematic of the system with three nodes labeled by A, B and C, tu, tee, and t,. represent the
hopping value connecting the nodes (A, B), (A, C), and (B, C). (b) The picture of the fabricated

PCB with complete circuit elements.

where p; ,ps are tunable control parameters for system evolution and m ,n are independent
variable for the functions. Considering the circuit is reciprocal, the Hamiltonian of such a

three-point system can be written as:

0 tap tac
H(m,n)= [ty 0 t |- (S9)

tac toe 0
As the demonstration, we arbitrarily select the system parameters (p;, p2) = (-0.28, -
0.72). We fix the value of m or n and sweep the other variable from —7 to 7. Without loss
of generality, we arbitrarily select n = w/4 or m = —m /2. We continuously load each hopping
configuration onto the circuit and experimentally measure the circuit Green’s function, so
as to get the Laplacian. To demonstrate the accuracy of the programmable hopping term,
we show the comparison between the theoretical value and the measured value: the hopping
values of t,p, t4c, and t., and the eigen-spectrum of such a three-point system. The results are
shown in Fig. S7 below. It can be observed that for arbitrarily selected circuit parameters,
the three hopping terms on each side, and the related eigen-spectrum are very precisely
alignment between the designed result and measured result. And the hopping values are

contentiously varied across positive and negative values.
By changing another system parameters (p;, p2) = (-0.5, -0.5). We also fix the value of

m or n and sweep the other variable from —m to m. We select n = —m or m = 7/3, and
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FIG. S7. The comparison between theoretical and experimentally measured hopping
values eigen-spectrum for (pi, p2) = (-0.28, -0.72). (a) When variable n is fixed at 7/4 and
sweeping m from —7 to 7. (b) When variable m is fixed at —7/2 and sweeping n from —m to .

Points in the experimental curves are measured data.

sweeping the variable n from —m to w. The result is shown in Fig. S8. It can also show high

consistency. In summary, it fully shows the programmable capability of hopping terms.

2) Realization of complex-valued hopping

Going further, we are trying to realize arbitrary complex-valued hoppings for a controlled
phase and preserve Hermiticity (i.e., Hy,, = H,). In the current topolectrical circuit system,
according to the mapping in Eq. S5, capacitance or inductance contributes to the real part
of hopping. As a result, the imaginary part of the hopping requires resistive elements.

Add an effective resistor R,, between node A and node B, the off-site term of the admit-

tance matrix J(w) in Eq. S6 becomes

1

N, = —iwCyp —
p(w) iwCyp o

(S10)

Based on the previously discussed correspondence between the Laplacian and the
Hamiltonian, we can accordingly establish a proportional mapping relationship between
the hopping-related parameters. For convenience, we define the complex hopping term
H,, = u + iv, where u and v are the real and imaginary parts. Considering the hopping

term, we have:
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FIG. S8. The comparison between theory and experimentally measured hopping values
eigen-spectrum for (p1, p2) = (-0.5, -0.5). (a) When variable n is fixed at —7 and sweeping
m from —7 to 7. (b) When variable m is fixed at 7/3 and sweeping n from —7 to 7. Points in the

experimental curves are measured data.

. 1 .
i —iwCy — R “—u+ v, (S11)

Rab

therefore, to realize complex hopping while maintaining the hermitian of Hamiltonian HT =
H requires v + iv and u — iv for H,, and Hy,, namely, the resistance R, should fulfill
non-reciprocal condition R, = —Rp,.

Passive reciprocal L/C/R networks cannot provide such antisymmetric coupling phases;
active components like operational amplifier or analog multiplexer (or magneto-optic compo-
nents) must therefore be introduced, which greatly increases the difficulty of the experimental
implementation and increases the cost of the platform.

We present here a design for general complex hopping. As shown in Fig. S9, without loss
of generality, we consider the coupling between two nodes A and B. The same as that already
shown in the main manuscript, a reciprocal variable capacitor is connected between A and

B to supply the real part of the hopping. In parallel, we construct a negative-impedance
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converter (NIC) using an operational amplifier and connect a resistor R, between A and
B, which provides non-reciprocal resistance.
As shown in the lower part of Fig.S9, considering the virtual-short and virtual-open

characteristics of an ideal operational amplifier, we have

(V;z - V;)a) (V;l - %)
Iin = 5 Iou = 5 S12
R, ! R (512)
so that .
Lin = =5 (Va = Vi),
1 1 (S13)
Iout - ﬁ(‘/:z - ‘/b)
When R; = Rs, we have
1
Iin - __(‘/;L - V;)) = _Iou 5
R t (S14)

Roy = —R = —Riq.

From the equations, one can find that the effective resistance from A to B is — R, while
from B to A is +R, thereby realizing the non-reciprocal resistance part. The resulting
complex hopping provided by this functional unit is of the form Cy, — i/(wR4), where
the variable capacitor Cy, and the resistor Ry, provide independent control of the real and
imaginary parts.

In practical realization(Fig. S10), the variable resistor R,, can be implemented with an
R-2R ladder programmable resistor (e.g., Analog Devices, AD5270), offering 2 digitized
levels and a resistance upper limit up to 100 kS, sufficient for most topological models.
Non-reciprocal resistance is realized by a practical operational amplifier (Analog Devices,
LT1363). For the circuit stability, two feedback resistors and capacitors Ry, Ry = 1k and
C1,Cy = 100pF are utilized.

As demonstration, we realize a complex hopping term /¢ (i.e., cos(n/6) + isin(r/6) =
0.866 + 0.5¢) between node A and node B. Extra grounded inductance, capacitance, and
resistance at A and B are compensated so that the operating frequency is 200 kHz. The
tunable components are set as C,, = 68.9pF and R, = 20k(). We use LTspice to compute

the voltages and currents, and compute the circuit Green’s function as:

3 —0.0003 + 0.00281 —5.0147 + 8.6696 1
G=1x10"x
4.9842 4 8.65631 —0.0239 + 0.32511
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Node A O O NodeB

; (NIC)

FIG. S9. Hopping unit realizing complex value interaction. Comprising the parallel of a

tunable capacitor and a non-reciprocal resistor enabled by a negative impedance converter.

From which we obtain the Hamiltonian, for clarity, we omit the constant percentage

coefficient that is identical in all nodes. Given H as:

—0.0325 — 0.00231  0.8676 + 0.4996 1
0.8643 — 0.49991 —0.0003 — 0.00001

The diagonal terms are onsite potentials, which are near zero at the central frequency. The
hopping terms are non-reciprocal, and the complex values are quite precise to target e/,
the deviation is only 0.12%. Small discrepancies arise from the op-amp and parasitic effects.
im/6

/6 the simulated

Using the same procedure, we can vary the hopping term from e/ to e
results are shown in Fig. S11. Dots indicate the simulated hopping data result.

With this hopping unit introducing nonreciprocal complex couplings, topolectrical circuits
can further emulate condensed-matter models that require breaking time-reversal symmetry,
such as the Haldane model, thereby increasing the universality of our system. However,
because the module uses active components, it introduces significant challenges for the
system’s complexity and stability. Here we model the feasibility of such a hopping unit, and

we will continue to optimize the module and implement it for network architecture in future
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FIG. S10. The schematic of practical hopping unit design. C,; and R, are the tunable

capacitor and resistor that decide the real and imaginary part of the hopping term. Operation

amplifier L'T1363 is utilized to provide the active characteristic, and extra components serve as

feedback to maintain the stability of the circuit.
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FIG. S11. Hopping term phase in the range [7/6, 77 /6] plotted in the complex plane.

work.

It should be noted that these advanced hopping units are modular upgrades. They can be

integrated by upgrading and replacing the existing programmable units, leaving the DLPTC

architecture, Al control stack, and the scientific conclusions entirely unaffected.
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S2. HIGHER-ORDER TOPOLOGICAL INSULATOR WITHOUT GLOBAL
SYMMETRY ON PTC PLATFORM

A. The pictures of the ground states and analysis in two extreme couplings
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FIG. S12. Ground states in HOTI: (a) t; =0,t2 =1. (b) t2 =0,t; = 1.

To analyze the topological properties, we tune the weak coupling coefficient to zero. While
this process is adiabatic (i.e., the band gap remains open and the topological invariants
remain the same), it provides a way to a direct understanding of the topological states.
Figure S12a shows the case t; = 0,t; = 1, and Fig. S12b shows the case t; = 0,¢; = 1. In
case (a), monomers, trimers, and hexamers exist [2], and the system has seven energy levels
E € {0,+1,+1.5, £2}. Monomers at the corner and trimers at the edge position contribute
to the £ = 0 level, constituting the bound corner in the edge continuum (BEIEC) state.
It means that the corner states are observed to reside within the edge band. Hexamers,
contributing the energy levels ' = £1, £2, constitute the bulk state. The energy at the £ =
+1.5 level, the modes are exclusively located in trimers at the edge boundary, constituting
the edge modes. In case (b), monomers and dimers exist, and the system has only three
energy levels E € {0, +1}. Monomers, contributing zero-level energy, all situate at the edge
boundary and signify the presence of edge modes. Dimers, contributing to the £ = +1
levels, encompass two corner BIC modes alongside most bulk modes. Figs. S13, S14, S15,
and S16 show the degenerated modes which energy F € {0,+1,4+1.5, £2} of case(a). Figs.
S17, and S18 show the degenerated modes which energy E € {0, £1} of case(b).
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B. Theory of HOTIs without global symmetry

To illustrate the novel topological phase transition, the theory in [3-5] analyzes the distribu-
tion of the Wannier centers and explains the topological origin of HOTIs via the fractional
charges (“filling anomaly” in the terminology of solid-state physics). Usually, topologically
phases of HOTIs are associated with the unit cells of a periodic lattice with global symme-
try, while the truncation of the lattice keeps the number of unit cells as an integer. The
occurrence of fractional charges can be visualized by integrating the local density of states

in the occupied band per unit cell, as confirmed by the calculation of the density of states.

In the Figs. S19al-3, the Wannier centers are located in topologically trivial positions,
the associated mode density is restricted to the unit cell, and no fractional charge can
arise when the lattice is truncated. In the Figs. S19b1-3, the edge Wannier centers are
located in the topologically nontrivial positions, the associated mode density is distributed
differently in the boundary unit cells, and the fractional charge occurs when the lattice is
truncated. Thus, in HOTIs with global symmetry containing an integer number of unit
cells, the topological phase transition can be controlled by the dimerization of the intracell
(t1) and intercell () coupling strengths, resulting in a topological phase with corner modes

at to > t; and a trivial phase corresponding to ty < t;.

In contrast, we present an HOTI without global symmetry, which contains a structure
with complete and incomplete unit cells, and show that the higher-order topologically pro-
tected mechanism exists in it in both t, > t; and ¢, < t; regimes. Unlike HOTIs with global
symmetry, where the topological nontrivial phase only occurs at t5 > ¢;, in HOTIs without
global symmetry, boundary states are found both at t, < ¢; and t5 > t;. There is still a
transition point t, = t;, which distinguishes between case I and case II phases, which are

shown in Figure 2 of the main manuscript.

Figures S19c1 and d1 show the positions of the Wannier centers. In case I, the Wannier
centers are located at the topologically trivial positions (centers of the unit cells), while
truncation leads to the appearance of fractional Wannier centers in the corners and at the
edges of the lattice. In case II, the Wannier centers are located at the topologically non-
trivial positions (boundaries of the unit cells), while truncation leads to the appearance
of fractional Wannier centers only at the edges of the lattice. This implies that even if

the truncation occurs through the interior of several unit cells, there is still a topologically
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protected mechanism supporting the existence of localized modes.

al b1 ci di

Bulk Wannier Center Edge Wannier Center Edge Fractional Wannier Center  Edge Fractional Wannier Center

ove
#55 G

Corner Fractional Wannier Center

a2 b2 c2 d2
YaN AN

AR e
0 Q@@ @@@@@ Z}QQQ
@Y2rm) (5t %)% LSRR

a3 b3 e c3 ) d3 1
a @ © 1/6 °
» o6, 2 e
» ° « 1' 02:30
7 © 1 1
° =) =) o o
: oS0 2B ¢ 2 o 12 e :1%
b b 12 ® 12 1 o o _ o ©
1 1 o [ ] ° /] [J [J 56 _ ® _5/6
[ ] ® 1 ° 1 1 [} - [ ] [ ] A ()
. 2 0 oo @ . 1 e%e ' e%e!
® ® @ 23 _ ® 23 @ 172 o 1 o 72 e 1 o 1 °
a 1 o 1 . @ y [ ] o [ ] p [ ] A [ ] I © 1 1 ° ° ° )
1 1/2 1 ° ° ° ° °
1 1 0 %o 0" 0" 1 1 1 0284 ® o564 ® ¢234
- - - €] - - o 1 e 4 s 4 e 4
1/6 1/2 1/2 1/6

FIG. S19. Schematic representation of the concept of fractional Wannier center, dis-
tributions of mode density, and corresponding fractional charges. (a,b) The concept of
Wannier centers, distributions of mode density, and corresponding fractional charges in topological
trivial phase (t2 < t1) and topological nontrivial phase (t3 > ¢1) in HOTIs with global symmetry.
(c,d) The concept of Wannier centers, distributions of mode density, and corresponding fractional

charges in case I (t2 < t;) and case II (t2 > ¢1) in HOTIs without global symmetry.

To generalize the concept of fractional charge, we consider the incomplete unit cells as
if they were complete, with completely filled additional imaginary vacant areas. In Fig.
S19c¢3, the fractional charges for corner zones and edge zones are given by 1/6 and 1/2,

respectively. In Fig. S19d3, the fractional charges for edge zones are equal to 2/3 and 5/6.
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C. Phase transition diagram via M = t;/(t; + t3)

In case I of the last section, the topological system is reduced to a set of isolated hexagons
in the bulk region and a set of monomers, trimers at the boundary, while it is reduced to a
set of isolated dimers in the bulk region and a set of monomers at the boundary for case (b).
These ground states contribute different system states in topological systems, corresponding
to M =0 and M = 1. When M € (0,1), modes are varied and phase transitions happen.
The system Hamiltonian of each condition M has 100 eigenmodes with lots of degenerated
eigenenergies, labeled from mode 1 to mode 100 by sorting the eigenenergies from low to
high. When M is increased from 0 to 1, case(a) is gradually transformed to case(b). The
edge states observed in case(a) have transformed into bulk states in case(b). Notably, two
specific edge states, designated as mode 17 and mode 84, have transitioned into corner states,
which subsequently become corner-bound states in the continuum (Corner BIC), as labeled
on the lines with a gradient ramp. Furthermore, the BCIEC states that with zero energy are
transitioned into edge states. It can be observed that, divided by the t1/(¢; +t3) = 0.5, there
are phase transitions that happen. Figures S20, S21, and S22 illustrate the HOTI phase
transition of the edge states to bulk states. Note that among them, mode 17 in Fig. S21,
is the transition of edge state to corner BIC state. Figure S23 shows the phase transition
from edge states to bulk states, and Fig. S24 shows the phase transition from BCIEC states

to edge states.

D. Circuit implementation of HOTIs without global symmetry

Considering the Hamiltonian and circuit parameter, the capacitance for weaker coupling is
set to 30 pF and the strong coupling is set to 90 pF so that the hopping parameters can
be transitioned from t; : to = 1 :3 to t; : t = 3 : 1 (M from 0.25 to 0.75). The on-site
capacitance is also precisely configured to make all on-site potentials identical. The central

frequency is tuned to 265.26 kHz.
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FIG. S20. Phase transition from edge state to bulk state: mode 13-15.
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FIG. S21. Phase transition from edge state to bulk state: mode 16-18.
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FIG. S22. Phase transition from edge state to bulk state: mode 19-21.
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FIG. S23. Phase transition from edge states to bulk states: mode summation of de-

generate mode 13-21.
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E. Calculation of the filling anomaly using the density of states

To calculate the filling anomaly, we use the retarded Green function Gr(E) = lim._,o+ (E +
ie — H)™', where H is the Hamiltonian. Gr(F) defines as a meromorphic function of the
parameter E . We define Gg (r,r'; E) = (r |Ggr(E)|r’) with r denoting the position. The
local density of states is given by p,(E) = —IImGg(r,r; E) with the normalization factor
a = —Im [ Ggr(r,r; E)dE. The local density of states corresponding to the filling factors E,
and FEj is:

Ep

pr(Ea, By) = —lIm Ggr(r,1; E)dE. (S15)

(07 Ea

In a circuit, the current I, flowing into site r at frequency f follows Kirchhoff’s law:
L= Jow(2nf)Vy, (S16)

where V. is the voltage at site /. Considering that the ratio of the coupling capacitors

equals the ratio of the coupling constants in the tight-binding model, we have:
J(Zﬂ'fo) = 127Tf0C’1H. (817)

We calculate the filling anomaly by plugging H = ImJ (27 f) into Equation S15. In the
circuit parameters, the impedance is dominated by the smallest eigenvalue j, (A, w) of J(\, w)
at a given frequency and maps to the local density of states (LDOS) in the tight-binding
model. In this way, by measuring the impedance curve in the frequency range, we can derive

the LDOS of the system.

S3. FLAT-BANDS AND LANDAU LEVELS ON PTC PLATFORM
A. Circuit implementation of all-band-flat model

To realize all-band-flat (ABF) on our PTC platform, we precisely control the coupling
strengths. For the model scale N = 9, the gradient proportion of hopping terms is var-
ied from /1 to V9. Considering the circuit characteristics, the minimum intensity unit
of hopping terms is selected to 30 pF, and all hopping terms are programmed to pre-
cisely control the coupling strengths to realize all-band-flat (ABF) on our PTC platform
for 30x(y/n = V1,...,4/9) pF. The grounded inductances in parallel with all sites are
identical to 1.5 mH. The capacitance of on-site potential terms is also finely controlled so

that the total capacitance on each site remains identical to 196.96 pF.



29

B. Simulated and measured DOS spectra with parasite parameter

Simulation can perform circuit components with no parasitic parameters. An ideal LC
resonator constituted by capacitors and inductors without any parasite parameters and
no resistance has an almost infinite quality factor, which induces a J-function shape-like
resonance peak. With a very narrow bandwidth and almost infinite impedance, it needs a
very high simulation resolution to capture the resonance peak. As a result, we demonstrate
two cases in simulation: I) a model with small enough parasite parameters, to keep the finite
quality factor, and illustrate all phenomena that the theoretical model predicted; IT) a model
with actual parasite parameters in device components, to compare with the experimental
result.

The impedance curves at each node are calculated and summarized to derive the over-
all impedance spectrum, indicating the DOS spectrum, as shown in Fig. S25. From the
impedance spectrum in case I, all 19 bands can be observed. However, due to the spectrum
broadening caused by inevitable parasite parameters (Equivalent Series Resistance, Equiv-
alent Series Inductance) of capacitors and inductors, partial peaks at the lower frequency
side overlap.

The impedance curves at each node of simulation cases I, II, and experimental measure-
ment are shown below. We show only 22 characteristic nodes, and the remaining nodes have
a rotation symmetry with respect to the geometry, so their value is identical to one of the

22 nodes. The selected region and its site labels are shown in Fig. S26.
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FIG. S27. The simulated impedance curves in case I.
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FIG. S28. The simulated impedance curves in case II.
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FIG. S29. The experimental impedance curves.
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C. Mode distribution for different Landau levels

As can be observed in the mode distribution (Fig. S30), the pattern of the zeroth Landau
level My shows anomalous parity, manifesting as nonzero LDOS only in the sub-lattice at
Node A. For the higher-order Landau level from M; to Mj, we observe that the mode
functions spread from the center to the edges when mode order increases, and then shrink
to the center when continuously increasing from M5 to Mg. During this ”breathing” process,
their spatial distributions remain C5 symmetry with respect to the center of the lattice [6].

Especially, there are many distinctive characteristics in these modes. For example, on
My, the eigenmodes on the A sites have high weights in the three corners of the lattice, while
for Mg, the three edges are preferred. The 8th Landau level Mg has an annulus distribution
with zero intensity in the center, and the My Landau level, which contains only one mode,
is localized near the center. The distinctive distributions of the Landau levels give us an
additional controlling knob to selectively excite a Landau level at specific positions of the

lattice.
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S4. DEEP-LEARNING EMPOWERED PROGRAMMABLE ANDERSON
LOCALIZATION

A. Physics-informed data screening method for high-performance localiza-

tion

The tight-binding model, which can fully describe the topological properties and determine
wave functions, serves as the physical engine to calculate the physical characteristics (local-
ization performance, etc.) of a Hamiltonian.

As we discussed in the article, the system is described by G = [rand(V), E], where rand (V)
represents the on-site random disorder terms. In the circuit platform, the wave function dis-
tribution can be detected using the grounded impedance distribution at a certain excitation

frequency. The impedance on each point £ can be written as:

74 = L [ (R)P

Jm

(S18)

meaning that it is decided by all wave-functions 1,,(k) at point k, and weighted by the
inversion of eigenvalue j,,. It is dominated by the wave function with the smallest eigenvalue
(Jm =~ 0) [7]. The phenomenon of Anderson localization indicates that energy is primarily
concentrated in small regions of a physical system. This is evidenced by the impedance peak
observed in the corresponding small region.

To provide a quantitative indicator of localization degree for physics screening, the inverse

participation ratio (IPR) parameter is introduced [8]:

R = i O 19)
(S P

where 9(r;) is the wave function of certain modes under randomly disordered onsite terms.
Here it can be derived by the weighted all eigenmodes as Eq. (S18), or approximated by
using the eigenmodes with the smallest eigenvalue instead.

The physics-informed data screening method utilizes the provided physics-graph infor-
mation to filter vertex value vectors that satisfy the criteria for localization mode alignment
with the IPR constraints, localization position, and intensity specifications. The implemen-
tation of the physics-informed data screening process is delineated below, as Eq. (S20). For

a set of randomly generated disorder vectors denoted as rand(V), the method first solves
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the Hamiltonian using the TBM method to obtain the wave function (7). Subsequently, it
identifies the position of the maximum of ¢ (r) and calculates the IPR value based on Eq.
S19. Then, by filtering the vectors, it retains only those with IPR > threshold that match
the target localization position, as depicted in Fig. S31a.

Y

S
2

N | T

Randomly sample V = (V}, V4, ..., Vigo) ~ U(— ),

Subject to [¢(r), E] = eig[H + diag(Vector)], (S20)

IPR > threshold,
arg max (|w(7“)]2) = Target Position.

By searching the solution space with a large amount of rand(V), the derived Vigection is
used as training data and fed into the neural network. We filter the results with IPR >
0.3, therefore, the intensity of the center point of the localized region I .., is also large
enough for information encoding. Under such localization strength, the process from a
random vector to a certain localized position becomes a multiple-to-one mapping. Due to
the selection of random disorder value being infinite, there will be an infinite number of
solutions for each localized position (Fig. S31b).

For example, a collection of these random disorder vectors converges on the same localized
site position ’30’. By circuit simulation and implementing the parameters to the PTC
platform, the results can be observed that the energy is precisely localized to the designed
position, shown in Fig. S31c, which also matches well with the simulation result. The

Anderson localization position is used as an information label for the dataset.

B. Symmetry-enhancement for training dataset preparation

Data augmentation is an effective methodology employed in the preparation of training
datasets [9], aimed at artificially increasing both the size and diversity of the dataset by
creating modified versions of existing data. This approach enhances the performance and
generalization capabilities of the deep learning models. It holds particular significance for
topological structures whose topological features are well known to be constrained (and in
certain instances determined) by the inherent symmetry properties. Based on the physics
symmetry of our system, the minimum area without repetition is shown in the origin of Fig.

S32. We have the following data transforms:
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FIG. S31. Data screening method for dataset preparation and validation of localization
phenomenon. (a) Data screening pipeline. Using the physics-graph information and constraint
conditions, data that can induce suitable physics characteristics can be screened. (b) The phe-
nomenon that infinite solutions can be made for each localized position label, so that Anderson
Hash function can be established. (c) Simulation and experiment results for localization on label

"30°.

1. Axis symmetry: There are three kinds of axis symmetry that are rotated by 120°,
as the Axis symmetries 1, 2, and 3 in Fig. S32. When disorder data are exchanged
along such an axis symmetry, the localized mode and the site label are also exchanged

through axis symmetry.

2. Rotation symmetry: There are two kinds of rotation when the disorder data is rotated
by 120°, the localized mode, and the site label are also exchanged through rotation

symmetry.

By combining the two kinds of data transformation, the original dataset is enhanced to six
times of original number, from 120000 to 720000. Such data argumentation can enhance the
learning capability of neural networks by introducing the intrinsic symmetry of topological

graphs.
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FIG. S32. Data argumentation process. Three-axis symmetries and two rotation symmetries

are included.

C. The physics-graph-informed convolution neural network classifier design

and optimization

The most commonly used neural network is the fully connected neural network (FCNN) [10],
also known as the Multi-Layer Perception (MLP). Although it can theoretically approximate
arbitrary functions given a sufficiently large network, its performance in our physics system
is inadequate. Specifically, the disorder on-site vector rand(V) needs to be flattened before
being transmitted into the FCNN. Such input data does not incorporate any graph-related
or connectivity information, leading to a loss of essential physical information during the

data input phase.

To address such drawbacks, we develop the physics-graph-informed convolutional neural
network (PGI-CNN) in this article. The disorder vector rand(V) is combined with physics-
graph information, meaning that the connection information is taken into consideration.
The rand(V) as a 1x 100 vector transformed into a 19 x 19 2D-matrix relabeling and filling
in coordinates (Fig. S33a), thereby embedding the physics-graph information into the data,
with adjacent sites separated by a unit matrix element. Fig. S33b and S33c illustrate the
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Fully-connected deep neural network classifier and Physics-graph-informed CNN classifier.
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FIG. S33. The comparison of structural data between Fully-connected deep neural
networks classifier and physics-graph-informed CNN classifier. (a) The graph informa-
tion embedding process from 1x100 1D line-shape data to structural 19x19 2D data. The data
is mapped to the corresponding positions with identical labels in a 2D matrix, and the remaining
positions are kept as zero. (b) Fully-connected deep neural network classifier with 1D line-shape

data input. (c) Physics-graph-informed CNN classifier with structural data input.

Theoretically, increasing the depth of a network is expected to improve performance.
However, it will consume more computational resources and increase the time consumption.
A suitable network scale can maintain the balance between network performance and re-
source consumption. The Adaptive Moment Estimation (Adam) optimizer [11] is used to
optimize the network parameters, employing a learning rate of 0.001 and a weight decay
rate of 0.001. The dropout method [12] is applied to the hidden layers of both FCNN and
PGI-CNN to mitigate overfitting, with a dropout probability of p = 0.5. The results are

shown in Fig. S34. Initially, a common CNN framework is introduced by using a pooling
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layer after each convolution layer. With a three-layer CNN, the cross-entropy loss is defined

as:
C
L=-Y ylog(@), (S21)
=1

which is decreased to 0.5, and the test accuracy finally increased to approximately 80%.
With error correction checks (ECC) mechanism, such accuracy can ensure the data integrity,
indicating that the classifier operates effectively within this structure. However, by removing
the pooling layer after the first convolution layer while maintaining the subsequent layers,
the loss can be as low as 0.15, and the predicted accuracy on arbitrary test data can be
up to approximately 95%, which is quite a high value. This improvement is attributed to
the first convolution layer functioning as a tight-binding Hamiltonian. A pooling layer after
a functioning layer would compromise some physical information. However, the following
convolution layer only functions as further feature extraction, so that the pooling layer can
reduce the resource consumption while keeping high accuracy.

We also increase the network scale to four-layer PGI-CNN and five-layer PGI-CNN;, the
results are shown in Fig. S34c and S34d. It can be observed that the accuracy of test data
is slightly higher than 95%. It means that a three-layer PGI-CNN can achieve the balance
between performance and resource consumption. In our work, a three-layer PGI-CNN is

utilized.

D. The performance comparison between normal neural network architec-

tures and PGI-CNN

Making the network deeper can increase the accuracy, but will multiply the computing and
memory costs. The current network balances accuracy and computation cost. It should be
emphasized that good accuracy derives from the physics-graph-informed mapping between
the graph structure hardware and the neural network architecture. For comparison, we also
construct a full-connected neural network (FCNN) with more neurons for the same dataset,
and a common convolutional neural network (CNN) to deal with the data. Results are shown
in Fig. S35 and S36. It can be observed that the network with one hidden layer (total of
three layers) and dropout probability of 0.5 to avoid over-fitting can achieve an accuracy
of approximately 65% on test data (Fig. S35a). Such accuracy makes it difficult for the

ECC check algorithm to completely restore the correct information. However, by increasing



42

a 3 . . : - . . - v . 85 b,
96
25 1= 12 y
Loss o
Test Acouracy | | ;. 4 Loss
2 Train Accuracy h Test Accuracy 92
. ’V\(WJ Train Accuracy
\M/\I \‘w 170 < 08 | et =
2 @ W =
215 \)V\ V‘ s 8 f 8
| 5 .3 / S
8 06N 3
< &
1H a
60 041 184
2 55 02
0 . \ , , , , \ \ . 50 ol . . . . \ \ \ \ .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Epoch Epoch
C 6 r r T T - - T - - ‘ 10 d
14 18
95
e ae N P 16 MM_——_—_—
10 J Loss Loss
P RISV Test Accuracy 14 Test Accuracy | |
'~ Train Accuracy Train Accuracy 90
"W 90 = 12 Q
g | E i :
808 g & 1 85 &
&%) s 3 <
3 3
06 85 & 0.8 2
06
0.4
0.4 )
f 179
02| 55l
S S — | o S W e e |
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Epoch Epoch

FIG. S34. Training result and network optimization trial of PGI-CNN classifier. (a)
3-CNN layers with max pooling layer after first convolution layer. (b) 3-CNN layers without a max
pooling layer after the first convolution layer, which could extract physics graph information (c)
4-CNN layers with a max pooling layer after the first convolution layer. (d) 5-CNN layers with a

max pooling layer after the first convolution layer.

the hidden layers to two layers, the accuracy of test data is even decreased to 45% (Fig.
S35b). The dataset may not be sufficient to support the network, and there is over-fitting
that further degrades the performance. Figures S35¢ and S35d show the FCNN with one
hidden layer and two hidden layers, but without a dropout mechanism. It can be observed
that the over-fitting is more serious, so that the accuracy on the training dataset can be
much higher due to the strong fitting capability of FCNN. The accuracy of the test data
set is so poor that even the ECC check algorithm cannot ensure the data integrity when
it is used for an information encryption application. Moreover, if we reshape the data to a
10x10 two-dimensional matrix, and use a convolution neural network to deal with it, the
performance becomes even worse than FCNN, and the accuracy decreases from 65% to less

than 45%. It is because the mechanism drops some connections among different sites, which
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FIG. S35. Training result and network optimization trial of fully connected neural
network. (a) 3-layer network (1-hidden layer with dropout layer (p=0.5)). (b) 4-layer network
(2-hidden layer with dropout layer (p=0.5)). (c) 3-layer network (1-hidden layer without a dropout

layer). (c) 4-layer network (2-hidden layer without dropout layer).

further breaks the data correlation. It is obvious that without the participation of physics
features, it can hardly obtain the effective feature extraction capability by relying only on

pure common neural network learning due to the random disorder-induced localization.

E. Deep-learning model-driven localization characteristic analysis

With the help of the PGI-CNN classifier, we can fast label the random disorder data that
can induce strong localization to find out their localized position, so that the characteristic

of Anderson localization on such systems can be analyzed through statistical results.

A large number of random numbers with different seeds are sampled to evaluate the local-
ization effect. Each time, the localized central positions are recorded to make the statistics.
We provide the statistical results for relatively smaller and larger disorder strengths. When

the disorder strength S = 5, the disordered strength of on-site terms is in the range of [-2.5,
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S=10.

2.5]. It can be observed that the localized position is almost at sites 1, 10, and 55, which
indicates the three vertices at the three corners of the triangle geometry. Such positions
are the corner of topology, which intrinsically promotes localization. For a weaker disorder
strength, only the three positions can have localization, and their localized probability is
approximately identical if the number of statistics is large enough. By increasing the disor-

der strength, the position capable of effective localization is also increased. When S = 10,
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it can be observed that all positions of the system can have localization, shown in Fig. S37.

F. The Physics-graph-informed diffusion model (PGI-diffusion)

This diffusion model is a conditional generative model based on a U-Net backbone, designed
to generate target data distributions by progressively denoising inputs through a sequence
of reversible transformations [13]. When designing the network basis, physics-graph infor-
mation, including the topological connection graph and tight-binding rules, is embedded.

The network structure is listed below.

The PGI-diffusion Network Architecture

ResBlock (channels, cond_dim):
Input: feature map x, condition vector cond
h = Mish( GroupNorm( Conv2d(x, channels, kernel=3, padding=1) ) )

cond_proj = Linear(cond, output_dim=channels)

cond_proj reshape(cond_proj) // shape to [B, channels, 1, 1]

h =h + cond_proj

h Mish( GroupNorm( Conv2d(h, channels, kernel=3, padding=1) ) )

Output: x + h

UNet (in_channels=2, out_channels=1, base_channels, cond_dim, label_dim,
Filter):

Input: x, time embedding t_emb, labels

cond_time = Linear (t_emb)

cond_label = (labels provided) Embedding+Linear (labels)
cond = cond_time + cond_label

//--- Encoder (Downsampling) ---

x1 = Mish( Conv2d(x, out_channels = base_channels,

kernel=3, padding=1) )

x1

ResBlock (base_channels, cond_dim) (x1, cond)
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x2

x2

x3

x3

x4

x4

//-

x4 _

x5

x5

x5

x5

x6

x6

x6

X6 _

x7

x7

Mish( Conv2d(x1l, out_channels = base_channelsx*2,

kernel=3, stride=2, padding=1) )

ResBlock(base_channels*2, cond_dim) (x2, cond)

Mish( Conv2d(x2, out_channels = base_channelsx*4,

kernel=3, stride=2, padding=1) )

ResBlock(base_channels*4, cond_dim) (x3, cond)

Mish( Conv2d(x3, out_channels = base_channels*8,

kernel=3, stride=2, padding=1) )

ResBlock (base_channels*8, cond_dim) (x4, cond)

-- Decoder (Upsampling) ---

up = Upsample (x4, target_size = size(x3))

Concatenate (x4_up, x3)

=1) )
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= Mish( Conv2d (x5, out_channels = base_channels*4, kernel=3,
padding=1) )
= ResBlock(base_channels*4, cond_dim) (x5, cond)
_up = Upsample(x5, target_size = size(x2))
= Concatenate (x5_up, x2)
= Mish( Conv2d(x6, out_channels = base_channels*2, kernel=3,
padding=1) )
= ResBlock(base_channels*2, cond_dim) (x6, cond)
up = Upsample(x6, target_size = size(xl))
= Concatenate (x6_up, x1)
= Mish( Conv2d(x7, out_channels = base_channels, kernel=3, padding
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x7 = ResBlock(base_channels, cond_dim) (x7, cond)

out = Conv2d(x7, out_channels = out_channels, kernel=1)

The core training process and inference process include:
Forward Diffusion Process. The forward process gradually transforms a clean data
sample 7y € R into a noisy version z; over t = 1,...,T steps by incrementally adding

Gaussian noise. At any given time step ¢, the noisy sample is generated as:
xt:\/dtl’o—f—\/l—@tE, €NN<O,[>, (822)

where the cumulative noise scaling factor is defined by:

t
oy = Has, with o, =1— f,. (523)

s=1
Here, (B, denotes a predefined noise schedule. At ¢t = 0, we have ay = 1 and no noise is

added, while for large ¢ the sample z; becomes increasingly dominated by noise.

v-prediction Parameterization. Instead of directly predicting the noise €, we adopt

the v-prediction formulation. In this setup, an auxiliary variable v is defined as [14]:
v=+/ase—1—a; . (S24)

The model is then trained to predict v from the noisy observation z; and the time step
t. This reparameterization has been found to yield improved training stability as well as

enhanced sample quality.

Training Objective. The model is optimized by minimizing the mean squared error
between the true v, derived from Equation (S24), and the network prediction vg(zy,t). The

loss function is given by:

L=E,. [Hv — U@(;Ct,t)Hl} ) (S25)

This objective directly encourages accurate predictions of v, which in turn facilitates effective

reconstruction of the clean data.

Classifier-Free Guidance. For conditional generation tasks, we employ classifier-free
guidance to enhance sample fidelity [15]. During training, the conditioning label y is ran-

domly dropped with a predefined probability (i.e., replaced with a null token, denoted by
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). Consequently, the neural network learns both conditional vg(zy,¢,y) and unconditional
vg(xy, t, D) predictions. At inference time, the guided prediction is computed as:
69(1'1?7 ta y) = U@(l‘ta t7 Q) + Y [U@(.It, t7 y) - UG(IIH tv @)] 3 (826>

where v (often greater than 1) is the guidance scale that controls the strength of the condi-
tioning. This formulation effectively steers the sampling process towards the desired condi-

tional distribution while retaining robustness from the unconditional model.

Data Reconstruction and Reverse Diffusion. Once a prediction vy (x4, t) is available,

the clean data zy can be reconstructed from x; using the inversion formula:
To =\ Qt Ty — 1— . (827)

The reverse (denoising) process is modeled as a Markov chain of Gaussian transitions. Specif-

ically, the transition probability from step ¢ to t — 1 is given by:

pois | w) =N (zs; polen ), o71), ($28)

where the neural network outputs both the mean pg(x;,t) and the variance o2. These
parameters guide the iterative denoising from a state of nearly pure noise back to a high-

fidelity .
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FIG. S38. The training loss with PGI-DDPM training process.

Figure S39 illustrates data produced by the fully trained PGI-DDPM model. For visu-
alization, we selected 11 labels and randomly generated 10 samples for each. The resulting
distributions are remarkably diverse, showing that the mapping from labels to samples is

far from a simple one-to-one correspondence.



FIG. S39. Image-visualization of generated data by PGI-diffusion model. Eleven different
localization position labels are randomly selected, and in each label, ten different samples are

demonstrated.

G. Generative capabilities of the PGI-diffusion model and data analysis

Through training, the PGI-Diffusion model effectively acquires the salient features required
to capture Anderson localization in complex physical systems. Leveraging supervision from
labeled data, it further learns to map and delineate the regions of the high-dimensional
parameter space occupied by the disorder-strength vectors corresponding to each localized

position in the physical model. At generation process, the model takes two inputs: the
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label of the target localized position and a random noise vector with the same shape as
the disorder strength vector, as shown in Fig. S40. Using the embedding of this random
noise vector as an index, the model samples within the high-dimensional parameter space
to continuously generate disorder strength vectors that satisfy the given label constraint.
The relationship between the localized position and the generated results is ”one-to-many”.
However, for any given input pair of the required localized position and random vector, the
model’s output is "one-to-one” intrinsically. The arbitrarily chosen, unconstrained random

noise vectors serve to control and diversify the generated samples.

Many to many

“One to One”
Noise vector Generated data

FIG. S40. The explanation of the “one-to-many” capability of generative models that
generate multiple disorder strength vectors from a single label. The model takes two
inputs: the label of the target localized position and a random noise vector with the same shape
as the disorder strength vector. Using the embedding of this random noise vector as an index,
the model samples within the high-dimensional parameter space to continuously generate disorder
strength vectors that satisfy the given label constraint. The arbitrarily chosen, unconstrained

random noise vectors serve to control and diversify the generated samples.

In the following, we present evidence that the data produced by this Al model are not
simply training samples output by using a random seed to sample from the dataset as a one-
to-many mechanism. Instead, they are genuinely generated in accordance with the system’s
physical principles (namely, precisely realizing controlled Anderson localization) and are

entirely new parameter vectors different from those seen during training—truly achieving
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exploratory generation over the vast entropy space.
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FIG. S41. Statistical validation results for the similarity between the model-generated
disorder strength data and the data in all training datasets. 5500 samples are uniformly
generated for all localization positions. (a) The statistical results of L1 distance. The value falls
within 200260, with a minimum of 203, which means that each generated state is at least 203
away from the test set (given that we have 100 points, the average per-point distance exceeds 2).
(b) The statistical results of cosine similarity. The value ranges from 0.428 to 0.573, indicating
that the generated samples differ from those in the dataset. (c) The statistical results of hamming
distance. The value is distributed between 74 and 83, indicating that there are at least 74 points

whose values differ by more than 0.5 between the generated dataset and the existing data.

We analyzed 5,500 effectively localized generated samples. For each sample, we adopt
three representative metrics for measuring the similarity between generated sample and all
720,000 samples in training dataset, including L1 distance (the sum of absolute differences
across components between two vectors in a high-dimensional space; smaller values indicate
greater similarity), cosine similarity (the degree of directional or distributional-shape simi-
larity between two vectors; larger values indicate greater similarity), and Hamming distance
(the number of positions at which the corresponding components differ; smaller values indi-
cate greater similarity). We compare the generated data with all the training data to assess
their similarity.

Both the generated data and the training set lie within the range [-5, 5|. The statistical
results are shown in Fig. S41. The L1 distances fall within 200-260, with a minimum of
203, which means that each generated state is at least 203 away from the test set (given that

we have 100 points, the average per-point distance exceeds 2). The cosine similarity ranges
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from 0.428 to 0.573, indicating that the generated samples differ from those in the existing
dataset. The Hamming distance is distributed between 74 and 83, indicating that there
are at least 74 points whose values differ by more than 0.5 between the generated dataset
and the existing data. These results show that our model produces entirely new states that
are distinct from the existing data; as verified by the tight-binding model, they still realize
Anderson localization at the prescribed position. This indicates that the model’s generative

domain has expanded into a vast entropy space.

Importantly, this model is not confined to reproducing disorder patterns from the training
dataset. It can generate physically valid, previously unseen configurations that still satisfy

the required localization properties.

H. The cVAE-based generative network design and optimization

A conditional Variational Autoencoder (cVAE) is a type of generative model that can gen-
erate specific and controlled data outputs [16]. The key point of a ¢VAE is its ability to
incorporate conditional information into decoder networks, enabling it to learn a more nu-
anced representation of the data. One of the primary advantages of cVAEs is their ability to
generate data that adheres closely to desired conditions, making them useful in applications

where specific attributes are required.

Similar to the PGI-diffusion model, we also introduce the PGI mechanism into the clas-
sical cVAE to construct a PGI-cVAE network and use it for the controllable Anderson
Localization generation. As Fig. S42 shows, it incorporates a PGI-CNN for encoding and a
standard CNN for decoding. The encoder processes all input data and maps them in a latent
space, represented by a distribution N(u, o) and characterized by the mean (u) and vari-
ance (o) of the distribution. During the generation procedure, a sample vector (z1,...2,) is
randomly drawn from this distribution and concatenated with the embedded label condition
(¢1,...c,). This composite vector is then input into the decoder to reconstruct the output
data rand(V'). With varying network weights and output layers, the encoder is utilized to
transform the disorder parameter space to a Gaussian-like distribution. For the decoder de-
sign, sampled data from the latent space is used in conjunction with the embedded labels as
network input. The deconvolution layer and leaky-ReLU activation function [17] are utilized

for the sampling process. This reconstruction is influenced by the probabilistic nature of
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the sampling process, which enables the model to generate diverse outputs while adhering
to the specified conditions. To build the loss function, meaning absolute error (MAE) (Eq.
S30) and Kullback-Leibler divergence (KLD) (Eq. S29) work synergistically to regularize

both the error of each disorder vector and the data distribution.
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FIG. S42. The cVAE-based generative network architecture.

The cVAE Network Architecture

Encoder:

Convolution(in_channel=1, out_channel=256, kernel=3x3, stride=1,
padding=1)

BatchNorm

LeakyRelLU

Convolution(in_channel=256, out_channel=512, kernel=3x3, stride=1,
padding=1)

BatchNorm

LeakyRelU

MaxPooling

Convolution(in_channel=512, out_channel=1024, kernel=3x3, stride=1,
padding=1)

BatchNorm

LeakyRelLU

MaxPooling

Linear (input=36864, output=1024)

BatchNorm
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LeakyReLU

Latent Space:
fc_mu: Linear (input=1024, output=100)

fc_logvar: Linear (input=1024, output=100)

Decoder:
Linear (input=200, output=1024)
BatchNormld
LeakyRelU
Linear (input=1024, output=36864)
BatchNormld

LeakyRelLU

54

Deconvolution(in_channel=1024, out_channel=512, kernel=3x3, stride=2,

padding=1)

BatchNorm

LeakyRelLU

Deconvolution(in_channel=512, out_channel=256, kernel=3x3, stride=2,
padding=1)

BatchNorm

LeakyReLU

Deconvolution(in_channel=256, out_channel=1, kernel=3x3, stride=1,

padding=2)

For comparison, we have listed different loss functions to regularize numerical error,

including the mean squared error (MSE) (Eq. S31), mean absolute error (MAE) (Eq. S30),

together with the KLLD as the overall loss function. The Adam optimizer is employed for

optimization, with a learning rate of 0.001 and no weight decay. The ¢VAE network did

not utilize the dropout method. The training results are shown in Fig. S43. Based on the

result, we select the MAE loss to construct the final loss function.
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FIG. S43. The training result with different loss functions. (a) MAE loss. (b) MSE loss.

To visualize the training and test process, we reshape the generated data by the ¢cVAE
in each epoch in Fig. S44. Compared with the original disorder data, in the initial several
epochs, the data at each site have small disorder characteristics, after 20 epochs, their
distribution is similar to the original data, and at the final epoch, their characteristics are
almost the same as the original data.

As a result, we show the complete generated disorder result for all 100 labels. The
correctness of labels is examined by TBM. As shown in Fig. S45 demonstrated in 2.5D
and 2D versions. From Fig. S45a the unexpected data that localized to other positions are
shown, which is trivial. From Fig. S45b, the correctness of all sites is higher than 81%,
which is high enough for information cryptography.



Original Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 10 Epoch 20 Epoch 50 Epoch100  Epoch 500

FIG. S44. Image of the network’s output data during the training process. It can be
observed that with the epoch increasing, the distributions are rapidly shifted from uniform to the

target feature.
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FIG. S45. The confusion matrix of the generated result. (a) Complete confusion matrix.

(b) The correctness of each label.
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I. More data results of arbitrary position localization

In this section, we show the theoretical and experimental results with different disorder
strengths. When the disorder strength is increased, energy can be localized from certain
boundaries that are easy to localize, to arbitrary positions in the whole PTC.

With relatively small disorder strength (the onsite disorder strength S = 5), localization
can only happen on three corner points, as shown in Fig. S46. By increasing the disorder
strength to S = 8, it can easily localize to all corner points and edge points, but the inner
bulk position needs precise screening, as depicted in Fig. S47. By increasing the disorder
strength to S = 10, it can easily localize to arbitrary positions including corner points, edge
points, and bulk points, as depicted in Fig. S48.

However, the distribution of the remaining small amount of energy deviates from the
simulated results. Because the remaining energy functions like a higher-order small quantity,
which is very sensitive to the parasite parameters of the circuit components. The simulation
can only give the parameter fluctuation at the statistical level, but the unique fluctuation for
each component in a real experiment. By overlapping a series of wave functions for certain
localized positions and taking the average, only the central position will be enhanced, which
has high consistency between simulation and experiment. However, due to the generated
vector leading to a high localization rate, once a threshold is determined, the central position
for a single time is very stable no matter in simulation or experiment. Such a phenomenon
inspires us to a unique physics-informed hash-based probabilistic information encryption
method, in which the clear local points can function as the coordinates for the information

space.
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FIG. S46. The simulated and experimental Anderson localization by different disorder

parameters with disorder strength S = 5.The localization can only happen on three corner

points.
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FIG. S47. The simulated and experimental Anderson localization by different disorder

parameters with disorder strength S = 8.
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FIG. S48. The simulated and experimental Anderson localization by different disorder

parameters with disorder strength S = 10.



62

S5. ANDERSON HASH-BASED PROBABILISTIC INFORMATION EN-
CRYPTION USING CONTROLLABLE ANDERSON LOCALIZATION

A. Anderson localization analysis with all disorder degree of freedom

Only on-site disorder: [rand(V), E]

For only on-site disorder, at low disorder strength, the energy is hardly focused, and the
average IPR approaches zero. From the wave function, it can be observed that energy is
distributed in almost all sites. With the increase of disorder strength, the maximum IPR
and average IPR increase rapidly. When disorder strength is larger than 10, the maximum
IPR approximately approaches 1, demonstrating that in this region, parameters for strong
enough localization can be found. However, the average IPR is about 0.4, which means
that there still exist many alternatives with relatively low localization. To increase the
optimization efficiency, consciously increase the disorder strength, and the average IPR
gradually increases, but the growth rate tends to flatten. It means that after the disorder
strength is over 40, it will not bring further advantages for localization. At low disorder
strength, energy cannot be focused on any site. By increasing the disorder strength, the
three corners first get strong localization, then the edge region, and the bulk. With strong
disorder strength, almost all sites can easily get the localized solution.

Only off-site disorder: [V, rand(E)]

In the modulation type G = [V,rand(F)], i.e., only the off-site hopping is randomly
disordered. In this case, we keep the on-site potentials to zero. Due to the on-site terms
being identical, there is a series of degenerate eigenmodes that exist with zero eigenenergy.
It can be observed that increasing the disorder strength can enlarge the fluctuation range of
eigenenergy, but the modes with non-zero eigenenergy all have low IPR. All modes with high
IPR are in the zero-energy region. It means that such Anderson localization will concentrate
on multiple sites simultaneously, as Fig. S49 shows. This phenomenon makes one random
vector mapped to multiple uncertainty labels. Such "multiple to multiple” mapping violates
the Hash definition, thus making it difficult for encryption applications. Moreover, energy
focusing on multiple points will lower the intensity of each localized point, which will further
decrease the signal-to-noise (SNR) of the information. Fig. S49a is the statistical results by
taking the average quantity of eigenmodes of [V, rand(F)], it can be observed that the three

corner points are still the easiest to localize. The actual modes for different [V, rand(E)] are
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FIG. S49. Mode distribution with multiple points localization. (a) Summation of statistical

results. (b) random sampling, summation of E=O0.

exemplified in Fig. S49b, which illustrates that the energy is randomly localized to multiple

points of the system, and the localized positions are uncontrollable.
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B. Additional simulation and experimental data for encryption

Utilizing the programmable circuit system, we simulate and experimentally verify the frame-
work above. In the message figure shown in Fig. S50, the pixels labeled in the green region
are experimentally demonstrated, and the pixels labeled in the blue region are simulated.
As illustrated, 1 x 100 random vectors are generated for transmitting, the information is
loaded onto the hardware, and the measured results show that the information is precisely
extracted through the system. We have completely verified all points with the y-axis at
disorder strengths S = 8, 9, and 10 by experiment, and all remaining points by simulation,
as shown in Figs. S51-S57 (To clarify, for simulation, only part of the data points on rows
with disorder strength S = 11, 13, and 19 are shown). Both simulation and experiment
show high consistency and fidelity. All the demonstrations illustrate that this framework is

a feasible way to encrypt and transmit information accurately.

a b 1
20 {111
-g) EE Coordinator
s B Simulation encoding
o .
g i
— 1}
3" L
2 91\, 87,82, 76, 69, 61
(2] .
a Experiment A 81 XX
1
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Anderson localization position 55 7

FIG. S50. The whole message by experiment and simulation. (a) The experimental and

simulation verification results. (b) The position labels for coordinate encoding.
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Disorder strength S=10

5 T T T T T T T T T T
T TN AT | Ll
S, L . . A L J : .
= T T T
%0.5
2, w ‘ .

0 20 40 60 80 100

Serial number

1y Mty
S TN P TR

°

L TR

Litbell. I I[I|| | .7
60 80

100

°

bt oA

Intensity (a.u) yaiue
&

°
°
8

Serial number

,_:5 ll T T T T T T T T T
EDPIFI" "llll_|||||||||||I||IIIII.I:||n1rII|'|InF|JLIr|I“|||r,JIII,Wl
£ R | A o L 1
5% : : : : .
§'05
Bl |'| Ll | i
[ 20 40 60 80 100
Serial number
~5 T T T T T T T T T
Foght ]||'|J||'1'.'".'l.|'p'|1| iy I“I|I|['IIIIJJI|I
N LR I A L L |
; 1 T T T T
s
205
ot o dud Lot g
] 20 40 60 80 100
Serial number

FIG. S53. Experiment localization points with disorder strength S = 10.

.
L3
ote®
.
o® '
° '3
79"y
.
o®
oo
.
., .
0,0 0
.
oSt etetet
* »
.
14
*
e
o*
Jo 0
P .
.
* o®e®

Value (a.u)
& =)

ey

T i Py o

40 60
Serial number

i

5
1

Intensity (a.u.)
o
S

°
°
8

Value (a.u.)

Intensity (a.u.)
o
5

°

et desa ||| IL..

20 40 60 80 100
Serial number

At e

°

Value (a.u.)
& =)

Intensity (a.u.)
P
5

AR ETITINN A I 1.
0 20 60 80 100
Serial number
~ 5 T T T T T T T
: 11l
:
2 0
FY

ey

Intensity (a.u.)
o
s

[ ) A

80 100

]I vl IIIEJD

[ 20 40

°

Serial number

Ay i

|| il 1 ol 11 | [
20

40 60 80 100
Serial number

Value (a.u)
& o

ey

Intensity (a.u.)
o
S

o
°

66



Disorder strength S=11

ot o oo

b

il M

Fhutt A g

gy )

et P e 4

Serial number

FIG. S54. Simulation localization points with disorder strength S = 11.

A i

it il oA
. |

P ey

gWWMWWﬂﬁ%ﬁfﬁww
?i = - pos 's‘u m;
§ |
o e I

i

31
4
205
]

z

£
)

67



In(ens\ty(a,uv) Value ()

e (a.u)

Intensity (.U /a1y

e (au)

Intensity (a..) /g1,

e (a.u)

Intensity (8. vaige (a.u) Intensity (2.) vaige (a.u) Intensity (2.4) /a1y

e (a.u)

Intensity (a.u.) y/),

e (au)

Intensity (a..) /g1,

Disorder strength S=13

%W#%WWMW%MM G A e 1 i 0
L i I i i il
fhﬂn i MMWMHﬂfﬁw i ) a1 1
w “ ot “ o - ; w .‘o “ “ w
Sl M e
Mgt Ul gyl et S A il
i b PN 3| AR ALY
ot e b PN | W AR
L L N T
. . . 5 - : ; o . o -

FIG. S55. Simulation localization points with disorder strength S = 13.



Disorder strength $=19 (1)

O Y e

L £
£, ‘ A ‘ ‘ A £, ‘ ‘ ‘ . s
o 20 40 60 80 100 o 20 40 60 80 100
Serial number Serial number
10 T T T T T T T T 10 r T T T T T T T T T
3 3
s I Ao : Ty il
0 of
s { T § oty W
e E
w0 LY B LS B s R 0 PP B SR b ket L M L L
1 T T T T T = T T T T
s
r Zo5[ B
z
8
.. 2 0

Intensity (a.u.)

ORI TR LTS e
i e A

o5 (P
o It ggjllll"h.llflllll""'Il'l'l”""'“"fmf“'lr"’l'll'l'"I""l'Il

n L P = L L L n
60 80 100 [ 20 40 60 80

Intensity (a.u.) Val

FIG. S56. Simulation localization points with disorder strength S =19 part 1.



Disorder strength $=19 (2)

B UL L Y
wfw% ol w T
AR it
}wwwﬂfﬂaﬁ%wmﬁw | wwnw?ﬂrﬁ;wwﬁ:
wwmwww ww' HM% i fw'

FIG. S57. Simulation localization points with disorder strength S =19 part 2.



71

C. Discussion on the extension of Anderson hash-based probabilistic encryp-

tion framework

Because the Hash map generation process is based on Anderson Localization, which is
a random disorder-induced physics effect, its feature is hardly captured or extracted by
contemporary software-based algorithms such as deep neural networks. By this means, the
physics-informed encryption can significantly increase information safety. In addition to the
encryption framework presented in the article, we also provide several advanced encryption

frameworks that leverage higher-dimensional encoding to augment information capacity.

The topology graph-based consensus Hash map can be modified from static to dynamic
by implementing the modulation G = [rand(V),rand(E)]. In this way, the random disorder
rand(E) of the physics system can be dynamically changed, so that the topology graph
is changed as the hopping strengths are changed. In this scenario, only when one random
disorder rand(V) that encodes a character is paired with the unique graph structure rand(E),
the conditions are fulfilled and the information can be decrypted. By this means, the rand(E)
functions as dynamic physics uncloneable functions (PUFs). The encryption process is shown

in Fig. S58.

Plaintext figure Random topology graph key Physics graph PTC
rand(E) G=[rand(V),rand(E)] hardware
. I I l I key3
key2 KI.
I
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FIG. S58. Extended encryption framework with dynamic tuning rand(E). In this
framework, the rand(E) decides the topological graph, thus would master the final localization
state and position together with rand(V). Only when they are paired, the information can be

decrypted.



72

D. Extension application scenario using Anderson-based probabilistic en-

cryption framework

To further elucidate the application of the generative capability, we hereby propose another
application scenario example. Anti-counterfeiting and traceability of products are long-
standing priorities in commercial activities. Across disciplines, researchers have explored
methods such as fluorescence-based material tagging, blockchain-based anti-counterfeiting,
and even using physical unclonable functions (PUFs) as product anti-counterfeiting codes.
However, even PUF-based approaches typically require recording all the anti-counterfeiting
codes on the product into a database first. Later, authenticity is determined by querying the
database for a match or checking the records’ existence. The more products generated, the
database is larger, which has a higher probability of failure. Leveraging the properties of an
Anderson-localized system, we propose a new anti-counterfeiting mechanism, as illustrated in
the schematic Fig. S59. On the manufacturer side, they encode information to be embedded
(such as product type and sales/distribution channels) and map it onto node-position labels
of the physical system. Using nodes as identifiers, together with a product-specific, randomly
generated number sequence as a seed, the generative model produces an encrypted vector,
which is printed on the product as an anti-counterfeiting code. Because the entropy space of
such anti-counterfeiting code is extremely large (about 2'2®), there can hardly be identical
code generated whatever large number of products used. The products are transported
and finally reach end users through various distribution channels. When authentication or
traceability is required at the end user side, the user submits the product’s anti-counterfeiting
code via a messaging interface to an authentication agency, which loads the information
onto the manufacturer-provided hardware system. From the physical response (localization
characterization and spatial position), the system determines authenticity and returns it to

the consumer along with ancillary information such as the distribution channel.
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Verification | ==

ages Anderson-physics characteristics and an Al-enhanced generative model. (a)
Anti-counterfeiting code preparation. The manufacturer encodes information to be embedded
(such as product type and sales/distribution channels) and maps it onto node-position labels of
the physical system. Using nodes as identifier inputs, together with a product-specific random
seed, the generative model produces an encrypted vector, which is printed on the product as an
anti-counterfeiting code. (b) Supply-chain product distribution. The products are transported
and finally reach end users through various distribution channels. (c¢) Authentication Process. The
user submits the product’s anti-counterfeiting code via a messaging interface to an authentication
agency, which loads the information onto the manufacturer-provided hardware system. From the
physical response (localization characterization and spatial position), the system determines au-
thenticity and returns it to the consumer along with ancillary information such as the distribution

channel.
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S6. DLPTC-BASED MESSAGE ENCRYPTION SYSTEM AND SECURITY
PERFORMANCE ANALYSIS

Based on DLPTC system and a hash-based probability encryption framework, we proposed
a practical encryption system for ASCII messages. The complete graphical user interface
(GUI) of the whole system is shown in Fig. S60. Using the programmable to master
encryption and decryption, we successfully share the message "HelloWorld” and ASCII art
"Penrose triangle’.

In the following, we provide a security analysis framework that models the proposed
cryptographic mechanism and conducts the security performance analysis.

The encryption process in this system employs a series of disordered random number
vectors as the ciphertext (in the demo, a 1x100 random array). At the transmitter side,
the ciphertext vector is combined with a consensus graph (i.e., the topological structure of
connections among nodes) to map the plaintext to the labels of individual nodes, thereby
generating the ciphertext. At the receiver side, the consensus graph data is used to extract
the physical features from the random vector ciphertext, which in turn allows the recovery
of the plaintext information. Thus, the consensus graph described in the system functions
as the secret key (in the demo, a 1x135 vector). According to the analysis of the Anderson
localization phenomenon, both the ciphertext and the key are continuous variables whose
ranges are limited by the practical implementation of the system. The overall security is

jointly determined by the ciphertext and the key.

A. Security and Stealthiness of Ciphertext and Key

The ciphertext and key are jointly generated by the physical topology graph system. Their
generation processes are identical, as they are derived from random number sampling and
share the same distribution properties. Here, they are analyzed together. For clarity, we
focus on presenting the characteristics of the ciphertext. Security ensures that ciphertext and
keys do not leak any meaningful information, making it impossible for attackers to infer the
original data through statistical analysis, machine learning, or other methods. Stealthiness
guarantees that ciphertext and keys are statistically indistinguishable from random numbers,
preventing any identifiable patterns or features that could be classified or recognized. As a

result, even if an adversary obtains a large set of ciphertext samples, they cannot differentiate
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FIG. S60. Graphical user interface (GUI) of the proposed information encryption

system.
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between encoded information and random noise through statistical analysis.

e Security-Randomness

The system encodes information by harnessing the physical randomness generated by
Anderson localization. The results are a series of random disorder vectors, whose random-
ness ensures that no useful statistical clues are provided to an attacker, thus satisfying the
requirements for semantic security. To verify this property, we performed comprehensive
statistical analyses on the generated ciphertext data (using approximately 600,000 samples)
and compared it with a random array that carries no encoded information. The specific

analyses include the following:
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FIG. S61. The histogram and boxplot of internal correlation detection. (a) Pearson
correlation coefficient. (b) Spearman correlation coefficient. (c) Kendall correlation coefficient. (d)

Mutual information coefficient.

We extracted a large number of samples corresponding to (i) the same plaintext (i.e.,
the same node label), (ii) different plaintexts, and (iii) random plaintexts. For
each group of data, we computed the Pearson correlation coefficient, Spearman correlation
coefficient, Kendall correlation coefficient, and Mutual information coefficient. These four
metrics respectively quantify the linear dependency, monotonic relationship, rank correla-
tion, and spatial structural characteristics of the data. As can be seen from the histogram
and boxplot of the Pearson correlation coefficients in Fig. S61a, the probability density
features, main distribution positions, and ranges for the same plaintext, different plaintexts,
and random numerical samples almost coincide. Similar conclusions were obtained from the

analyses based on the Spearman, Kendall, and cross-correlation coefficients (see Figs. S61b
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FIG. S62. P-tests on statistically significant correlations. (a) KS-test. (b) Wilcoxon Rank-
sum test. S means a sample with the same label, D means a sample with a different label, and R

means a pure random sample without information carried.

To further quantify these results, we performed the KS-test and Wilcoxon Rank-sum
test on all four indicators (results shown in Fig. S62). All p-values far exceed the preset
significance level (e.g., 0.05), indicating that no statistically significant correlations exist

among the data.
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FIG. S63. Uniform distribution test between data with labels and random data. (a) JS

divergence test. (b) Hellinger distance test.

e Stealthiness-featureless and uniform in distribution
We can use the Jensen—Shannon divergence (J-S divergence) and Hellinger distance to
quantify the difference between a sample distribution and an ideal uniform distribution.

The J-S divergence is a symmetric, smoothed measure of similarity between two probability
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distributions, constructed based on the Kullback—Leibler divergence (K-L divergence). Due
to factors such as finite samples and discretization estimation errors, when the computed
value is very close (for example, between 0.01 and 0.1), we usually consider the sample
distribution to be nearly identical to a uniform distribution. The Hellinger distance is a
measurement, of the distance between two probability distributions. Generally speaking,
if the Hellinger distance is less than 0.1 or 0.2, the sample distribution is considered to
be very close to uniform. After computation (results shown in Fig. S63), our generated
information-containing samples and the uniform random numbers (without information)
exhibit J-S divergences on the order of 10™* and Hellinger distances on the order of 0.02
across all labels, which confirms that the statistical distribution of the ciphertext space

almost perfectly coincides with that of an ideal random model.

These results indicate that even if the plaintext distribution is relatively discrete, once it
is encrypted into random disorder vectors, the resulting ciphertext exhibits no discernible

statistical difference from pure random noise.

B. Resistance to Brute-Force and Heuristic Clustering Attacks

When the entropy space of the system is sufficiently large, an adversary—even with certain
prior knowledge—cannot effectively reconstruct or classify the data in a targeted manner.
The search space remains resistant to traditional statistical methods or machine learning
techniques. If classification or clustering accuracy is only equivalent to random guessing, it

indicates that the system has not leaked any additional information.
e Entropy Quantification Analysis

We discuss the possible values of the random-number ciphertext and keys. In theory, the
number of bits in the random numbers constituting the ciphertext and key can be infinitely
increased; however, due to the fact that the physical state relies on actual hardware systems
for data read-out, the available effective dimensionality is limited. For the Anderson system
described in the paper, taking the baseline value of an edge as 1 (20pF), the allowable
fluctuating range for the key is between [-5, 5. With a maximum voltage precision of 16
bits for continuous adjustment, the average quantization precision is approximately 10/2'6.
Considering the response precision of the varactor diode, its variable precision is about 0.005,

which we conservatively estimate with an upper bound of 0.01. If each unit is assumed to
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vary independently, the maximum ciphertext entropy that the hardware supported would be
100 x log,(1000) = 996 bits. For the key (i.e., the variation of the edges), since its large-scale
disorder can be equivalently regarded as a proportional scaling of the ciphertext’s variation
range, we only need to consider the smallest non-repeating increment, that is, within the
range [0.5, 2|. Considering the varactor’s response precision, which is about 0.01, if each unit
is assumed to vary independently, the maximum key entropy that the hardware supported
would be 135 X log,(150) ~ 976 bits.

When applied to our topological graph, the physical constraints caused a variation of
0.01 in precision, or a single-point variation does not significantly affect the localized state;
therefore, it can be considered that when the ciphertext changes by an amount of 0.01, the
plaintext remains unchanged — that is, they encode the same information. Consequently,
we further analyzed the effective entropy of the system. Using the Monte Carlo method, we
sampled 600,000 instances and computed the lower bound of the disorder change required to
trigger a localization shift when 50% of the node values have altered. For the ciphertext, the
average threshold was 0.096, and for the key, the average threshold was 0.083. To estimate
the lower bound, we uniformly approximate it to be on the order of 0.1.

Under such constraints, the effective ciphertext entropy quantification problem is equiv-
alent to the following: In a 100-dimensional space [—5,5], for any two vectors V, and V7,
if more than 50% of their node values differ by more than 0.1, then the two vectors are
considered independent. The total number of independent vectors in the space is defined
as Mina. The continuous space [—5,5] is discretized at intervals of 0.1 to form the set
A ={-4.95,-4.85,...,4.85,4.95}.

Each vector is composed of 100 elements (with each dimension taking only one value
from A). Thus, the total number of independent vectors is equivalent to constructing an n-
dimensional, g-ary (n = 100, ¢ = 100) coding problem with a Hamming distance greater than
d (with d = 51). Moreover, to ensure that the overall vector follows a uniform distribution,
the constructed code should follow Constant Composition Code (CCC) constraint [18], with
the requirement that each symbol appears exactly [n/q| = 1 time. Suppose that a randomly
chosen vector = € A" satisfies the CCC constraint (i.e., for each symbol a; € A, it appears

n; times). Then, the total number of available vectors as follows:

(832)
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Substituting n = 100, we obtain log,(|Tp|) ~ 524.7 bits. Within this space, we further
estimate the number of independent vectors based on the Hamming upper bound and the
Gilbert—Varshamov lower bound [19, 20]. First, we construct Hamming balls with radii
rr = [(d—1)/2] and ry =d— 1, and compute the number of vectors located within a
Hamming distance at most r from a given center z. For the reference vector x, the volume

of the Hamming ball is defined as:
V(r)={y € Tr : du(z,y) <r}, (S33)

where dy(x,y) denotes the Hamming distance between z and any candidate independent
vector y. Because directly enumerating the size of V(r) is computationally intractable, we
employ an importance sampling method to estimate V(r). Fixing z, we generate perturbed
vectors y from |Tp| through a series of pairwise exchange operations, while ensuring that

the generated codewords still belong to Tp. For a given k swaps, the total number of ways

Nyay = (2’;) (;Z)!l . (S34)

We sample the number of swap pairs, k, from a proposal probability distribution, i.e., with

to generate a perturbation is:

the geometric distribution p (1 — p)*, the sample weight is [21]:
Nway ‘
p(1—p)*

After performing Ngumple samples, the weighted proportion of samples satistying dy (z,y) < r

(935)

w; =

1s:
Zzz'vzs?mple w; H{dg(x,y;) <}

Nsample
doimi T w

where 1{dy(z,y;) < r} is the indicator function that equals 1 if dy(z,y;) < r and 0 other-

p(r) = : (536)

wise. Since p(r) represents the probability that a randomly selected vector (from the CCC

space) has a Hamming distance at most 7, the volume of the Hamming ball is:
V(r) = To| x plr). (337)

Based on this, we use the Hamming upper bound and the Gilbert—Varshamov lower bound
from coding theory to estimate the order of magnitude of the problem. Using a radius of

r1 = |(d —1)/2] to estimate the Hamming upper bound gives:

Tl TRl 1

P 0 = Tl o) ~ ) 55
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Similarly, using a radius of ro = d—1 to estimate the Gilbert—Varshamov lower bound gives:

TPl Tel 1
Vi(ra)  |Te[-p(r2)  p(r2)

Using the importance sampling method with 10° sampling numbers, for the ciphertext

LB(Mina) (539)

within [—5, 5], the upper bound on the ciphertext entropy is log, [UB(Mi,q)] bits, and the
lower bound is log, [LB(M;,q)] bits.

For the key, there are 135 edge connections, and each connection can take values in the
range [0.5,2]. This is equivalent to constructing a g-ary Constant Composition Code with
n=135 dimensions and q=15, and a Hamming distance greater than [0.5 x 135] = 68. Using
the same method, one can estimate the upper bound and lower bound of the key entropy.
Here we show the value on different scales in S64. It can be seen that under scale N =9,
the entropy value of ciphertext and key can reach approximately 128 bits. And they increase
faster as the scale increases. At N = 20, it can be over 500 bits, which is far more than the

current software-based algorithm.
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FIG. S64. The hardware supported entropy and the physics system supported entropy

estimation (a) The ciphertext entropy. (b) The key entropy.

It is important to note that this estimate is rather conservative:

1. The discrete set A = {—4.95, —4.85,...,4.85,4.95} is clearly much smaller than the

actual continuous space available in [—5, 5].

2. Even if the Hamming distance between two vectors is less than 51, there is still a
nonzero probability that the plaintext will change (for example, two vectors with
a Hamming distance of 20 may still represent independent ciphertexts/keys); this

possibility is not taken into account in the above computation.
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3. The Constant Composition Code requirement here mandates that each symbol ap-
pears exactly once, whereas a uniformly random distribution may not satisty the CCC
constraint, which may lead to an underestimation. Thus, our estimate is very conser-

vative.

e Attack Models and Performance Evaluation

The core idea behind the ciphertext’s resistance to attacks is that even if an attacker
knows that the random disorder vectors map to a limited set of 100 node labels, they would
be forced to resort to random guessing (with a success probability of 1% per node) in the
absence of additional information. The entropy is large enough so that a brute-force attack
is almost impossible. As a result, we give two machine learning based heuristic attacks.

Figure S65a illustrates the result of Uniform Manifold Approximation and Projection
(UMAP) for dimensionality reduction and visualization on the generated data. UMAP ap-
proximates the local relationships in high-dimensional data as a graph structure and then
maps this graph into a lower-dimensional space through an optimization process, thereby
facilitating feature analysis. It can be observed that for any displayed label, the correspond-
ing data are uniformly dispersed in the 2D space, and samples with the same label do not
exhibit a clustering tendency.

Next, we assume that the plaintext consists of 100 classes. We attempt to attack the
relationship between plaintext and ciphertext by first capturing the underlying distribution
from the ciphertext via unsupervised learning and then recovering the plaintext labels using
a matching algorithm. Initially, a Gaussian Mixture Model (GMM) is applied to the cipher-
text samples to perform clustering. The model provides a "soft” clustering outcome, that
is, a probability for each data point belonging to each cluster. At this stage, a cost matrix
is constructed where the cost represents the error or inconsistency incurred when match-
ing different clusters to the plaintext labels. By employing the Hungarian algorithm (also
known as the Kuhn-Munkres algorithm), we solve this minimum-cost assignment problem
to obtain the optimal correspondence between the GMM clustering results and the plaintext
labels. With this optimal matching, mapping the GMM-assigned labels to the corresponding
plaintext labels allows us to preliminarily restore the correspondence between plaintext and
ciphertext in the encryption system. The outcome of this attack is shown in Figs S65b and

S65c. The 100 clusters each contain a nearly uniform number of samples, and the predicted
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accuracy is only 1.65%, which is close to the random guessing accuracy of 1%. This indicates

that no feature correlation between the data and the plaintext has been extracted.
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FIG. S65. Dimensionality reduction and heuristic clustering attack. (a) UMAP dimen-
sionality reduction and visualization for samples. (b) GMM clustering results on all labels. (c)

Confusion matrix of the predicted labels.

Subsequently, we further enhanced the attack process by training an unsupervised autoen-
coder that reduces the input samples to a 50-dimensional latent space while automatically
extracting features. After the network converges, clustering analysis is performed on the
latent space using the same GMM combined with the Hungarian algorithm. The results,
presented in Fig. S66, yield a classification accuracy of 1.66%, which is consistent with
the previous result of 1.65% obtained directly from feature extraction. This further demon-
strates that no additional information could be derived, and the feature correlation between

the data and the plaintext remains unattainable.

These results indicate that the system exhibits robust resistance to brute-

force and heuristic clustering attacks.
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FIG. S66. Dimensionality reduction and heuristic clustering attack. (a) The pipeline
and training process of the autoencoder. (b) The reconstruction results produced by the trained
autoencoder. (c¢) GMM clustering results on all labels. (d) Confusion matrix of the predicted

labels.

In summary, considering the dimensions of randomness, entropy space, and resistance to

brute-force and heuristic clustering attacks, our system exhibits excellent security.

C. Flexible and Scalable Security Enhancement Mechanism

e Dynamic Consensus Mechanism

The system is capable of employing a dynamic consensus graph as the key. This is
based on the fully programmable nature of our DLPTC system and the impact shown in
Fig. 4 of the main manuscript, where variations in rand(E) (i.e., changes in the consensus
graph) influence the state and position of Anderson localization. By regulating rand(E) to

achieve dynamic key management, each individual or group of ciphertexts is protected by an
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independent dynamic key. Consequently, even if an attacker intercepts a single ciphertext,
breaking it remains extremely difficult because the attacker faces a one-time key protecting
only a brief message. This design offers clear forward secrecy, providing strong theoretical
support for key security:.

e Expansion of the Graph Scale

In the current demo system (N=9), the consensus graph comprises 100 nodes. We fur-
ther studied the impact of enlarging the lattice scale on system security. For instance, when
N=15, the number of nodes increases to 256; when N=20, the number reaches 441. The con-
sensus graph scale increases, the overall system security is further enhanced, and the number

of possible mappings that an attacker would have to search exhaustively also increases.

e Ciphertext Diffusion Coding

Currently, the mapping space for the plaintext is limited to 100 node labels, restricting
the plaintext’s entropy. To address this, plaintext group diffusion coding can be applied
such that a slight change in the plaintext affects the entire group’s encoding result. In
this scenario, the whole group is regarded as a single message, and its entropy reflects the
product of the coding possibilities within the group. This method effectively increases the
entropy of both the plaintext and the ciphertext, providing additional security assurance for

the system.

e Enhanced Circuit System Design

The adjustable range of the present circuit system limits the analysis of the entropy space;
however, on an advanced circuit system platform with a larger adjustable range, the entropy
spaces of both the ciphertext and the key can be further expanded, thereby enhancing the

overall security of the system.

e Entropy Loss and Semantic Security

Although in theory, some loss of entropy occurs when mapping from a random ciphertext
with infinite entropy to a plaintext with a finite state space, such a nonlinear mapping is an
inherent aspect of encryption function design. As long as the mapping is noninvertible to
an attacker who does not possess the key and the ciphertext is statistically indistinguishable
from pure random noise (thus satisfying semantic security requirements), the entropy loss

does not present a security risk.
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The main conclusions are summarized as follows:

1. Security and Stealthiness of Ciphertext and Key: Through statistical anal-
ysis of the Pearson, Spearman, and Kendall correlation coefficients, as well as the
mutual information coefficient, and accompanying K-tests, we demonstrate that the
probability—density features, primary distribution loci, and value ranges for identical
plaintexts, different plaintexts, and random data virtually coincide. No statistically
significant correlations are detected. Furthermore, tests based on the Jensen—Shannon
divergence and the Hellinger distance confirm that these distributions are statistically

indistinguishable from those of pure random numbers.

2. Resistance to Brute-Force and Heuristic Clustering Attacks: By means of
quantitative entropy analysis, the system’s effective entropy for both ciphertext and
key already exceeds 128 bits at scale N = 9. As the system scale increases, entropy
grows rapidly, reaching approximately 1000 bits at N = 20-—thereby ensuring robust
security margins. In addition, dimensionality-reduction and self-supervised clustering
attacks (e.g., autoencoder-based attacks) show that even with known-class priors,
classification accuracy remains no better than random guessing, so that it can effec-

tively resist the attacks.

3. Strong Scalability: We discuss several mechanisms—Dynamic Consensus, Graph-
Scale Expansion, and Ciphertext Diffusion Coding—that can be employed to further

elevate the system’s performance and security as the network grows.

In summary, the encryption system constructed based on physical randomness and a dy-
namic consensus mechanism demonstrates high security in terms of ciphertext randomness,
resistance to brute-force and heuristic clustering attacks, and key security. As a laboratory
demo, the system performs well in experimental settings; however, for commercial crypto-
graphic applications, further enhancements in key distribution, side-channel protection, and

other aspects are necessary.
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