Model Equations used in this paper.
Support Vector Machine (SVM)
The decision boundary is defined by:
f(x) = sign(w · φ(x) + b)

Where:
- w: Weight vector.
- φ(x): Kernel function mapping input x to a higher-dimensional space (e.g., linear, polynomial, RBF).
- b: Bias term.

Hyperparameters include:
- C: Regularization parameter.
- Kernel parameters (e.g., γ for RBF kernel).
Logistic Regression
For binary classification, the logistic model is:
P(y = 1 | x) = 1 / (1 + e^-(w · x + b))

Where:
- w: Weight vector.
- x: Input features.
- b: Bias term.

For multiclass classification, the one-vs-rest approach can be used.
Decision Tree
The model partitions the feature space based on decision rules of the form:
Split criterion: maximize gain (e.g., Gini Index or Information Gain).

Predictions are made by traversing the tree to a leaf node, which provides the class label.
Random Forest
Random Forest aggregates predictions from multiple decision trees:
ŷ = mode(ŷ1, ŷ2, ..., ŷn)

Where:
- ŷi: Prediction from the i-th tree.
- Trees are trained on bootstrapped datasets with random subsets of features.
Elastic Net Regularization
Elastic Net minimizes the following loss:
Loss = ||y - Xw||² + λ1||w||₁ + λ2||w||₂²

Where:
- ||y - Xw||²: Residual sum of squares.
- ||w||₁: L1 penalty (Lasso).
- ||w||₂²: L2 penalty (Ridge).
- λ1, λ2: Regularization parameters.
Gradient Boosting (XGBoost)
Gradient Boosting minimizes a loss function iteratively:
ŷ(t) = ŷ(t-1) + η · hₜ(x)

Where:
- ŷ(t): Model prediction at iteration t.
- hₜ(x): Base learner (decision tree) at iteration t.
- η: Learning rate.

Objective function:
Loss = Σ[ℓ(yi, ŷi)] + ΣΩ(hₖ)
Where Ω is a regularization term.
k-Nearest Neighbors (k-NN)
Classification is based on:
ŷ = mode(y1, y2, ..., yₖ)

Where:
- y1, y2, ..., yₖ: Labels of the k nearest neighbors in the feature space.

Distance metric:
d(xi, xj) = ||xi - xj||₂
Naive Bayes
Classification is based on Bayes' theorem:
P(y | x) ∝ P(y) ΠP(xi | y)

Where:
- P(y): Prior probability of class y.
- P(xi | y): Likelihood of feature xi given class y.

Assumes feature independence:
P(x | y) = ΠP(xi | y)
