Supplementary Information

Efficient catalytic upcycling of polyester and polycarbonate plastics using NNN-based iron catalyst

Chu et al.

Table of contents

1. General information	. 3
2. Synthesis of the catalyst	. 3
3. General procedure for transfer hydrogenation of esters	. 3
4. General procedure for catalytic methanolysis/hydrogenative depolymerization of polyester	ſ
and polycarbonate plastics	. 3
5. General procedure for autoclave reactions	. 4
6. Characterization data for hydrogenation products	. 4
7. NMR spectra of the products	. 9

1. General information

All manipulations were done under a N₂ atmosphere using standard Schlenk line techniques or in a glovebox, unless otherwise stated. The reaction gas hydrogen (5.0) was supplied by Feiyuan and used without further purification. All reagents were purchased from Sigma-Aldrich, TCI or Acros and used without further purification. Methanol, toluene, and THF, were purified using a Glass Contour solvent purification system consisting of a neutral alumina, copper catalyst, and activated molecular sieves, then passed through an in-line, 2 µm filter immediately before being dispensed. CDCl₃ were dried over CaH₂ and purified by vacuum transfer. NMR spectra were recorded on Bruker Avance 500 spectrometer in NMR tubes at room temperature. ¹H and ¹³C NMR chemical shifts are referenced to the proton signal of the deuterated solvent. MS (HRMS) measured with ThermoFisher Q-Exactive Mass Spectrometer.

2. Synthesis of the catalyst

Bis(pyridin-2-ylmethyl)amine (199 mg, 1 mmol) and FeCl₂ (125 mg, 1 mmol) were added to a Schlenk bottle with 20 mL THF. The mixture was heated to 50 °C and stirred for 2 hours. Then, the suspension was recrystallized at -30 °C and yellow microcrystals were obtained (267 mg, 82% yield).

3. General procedure for transfer hydrogenation of esters

In a glovebox under an N₂ atmosphere, a scintillation vial (with a magnetic stir bar) was charged with esters (1.0 mmol), and H₃N·BH₃ (1.0 mmol, 31 mg). The catalyst **Fe1** (0.02 mmol, 7 mg), KO*t*Bu (0.05 mmol, 6 mg), and THF (2 mL) were added. The mixture was stirred at 60 °C. After the indicated time, the reaction mixture was isolated by chromatography on silica gel to give the product.

4. General procedure for catalytic methanolysis/hydrogenative depolymerization of polyester and polycarbonate plastics

For all polymers, the used molar amount was calculated based on the respective repetition unit. In a glovebox under an N₂ atmosphere, a scintillation vial (with a magnetic stir bar) was charged with **Fe1** (0.02 mmol, 7 mg), KOtBu (0.05 mmol, 6 mg), H₃N·BH₃ (0.02 mmol, 1 mg) and MeOH (2 mL). Then, the polymer (1.0 mmol) was added. The mixture was stirred at 80 °C. After the indicated time, the reaction mixture was isolated by chromatography on silica gel to give the esters product. After that, the obtained esters were processed according to Section S3 to get diols.

5. General procedure for autoclave reactions

Experiments with compressed gases must be carried out only with appropriate equipment and under rigorous safety precautions.

Processed polymer was filled under air into a glass insert of an autoclave, a stir bar was added, and the insert was placed in a 250 mL steel autoclave. Subsequently, the autoclave was evacuated and backfilled with N₂ three times. **Fe1** and KOtBu were weighed in a 10 mL Schlenk tube and dissolved in 5 mL THF. The solution was transferred via syringe, equipped with a cannular, into the autoclave in an N₂ counter stream. The autoclave was pressurized with 20 bar of H₂. The reaction was stirred at 120 °C for 24 hours. After completion of the reaction time, the autoclave was cooled down to room temperature in an ice bath and carefully vented to atmosphere. The reaction mixture was isolated by chromatography on silica gel to give the product.

6. Characterization data for hydrogenation products

phenylmethanol (1-4): ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.25 (m, 4H), 7.25-7.15 (m, 1H), 4.58 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.89 (s), 128.58 (s), 127.67 (s), 127.02 (s), 77.33 (s), 77.08 (s), 76.82 (s), 65.33 (s).

1.33 (d, J = 6.5 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 145.10 (s), 139.99 (s), 127.09 (s), 125.54 (s), 77.37 (s), 77.11 (s), 76.86 (s), 69.97 (s), 64.62 (s), 25.13 (s).

phenol (7): 1 H NMR (500 MHz, CDCl₃) δ 7.39-7.30 (m, 2H), 7.19 (dd, J = 13.3, 5.7 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 152.11 (s), 151.02 (s), 129.60 (s), 126.33 (s), 120.94 (s), 77.30 (s), 77.05 (s), 76.79 (s).

F 4-fluorophenol (8): 1 H NMR (500 MHz, CDCl₃) δ 6.91-6.77 (m, 2H), 6.75-6.62 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 157.27 (s), 155.38 (s), 150.29 (d, J = 2.2 Hz), 115.47-115.02 (m), 114.92 (s), 76.27 (s), 76.01 (s), 75.76 (s).

(2-fluorophenyl)methanol (9): 1 H NMR (500 MHz, CDCl₃) δ 7.32-7.23 (m, 1H), 7.15 (ddd, J = 7.4, 6.5, 1.6 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.96-6.87 (m, 1H), 4.58 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 161.55 (s), 159.60 (s), 129.42-129.18 (m), 127.82 (d, J = 14.7 Hz), 124.21 (d, J = 3.3 Hz), 115.29 (s), 115.12 (s), 77.38 (s), 77.12 (s), 76.87 (s), 59.04 (d, J = 4.5 Hz).

(4-fluorophenyl)methanol (10): 1 H NMR (500 MHz, CDCl₃) δ 7.23 (dd, J = 8.6, 5.5 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 4.54 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 163.28 (s), 161.33 (s), 136.58 (d, J = 3.1 Hz), 128.76 (d, J = 8.2 Hz), 115.46 (s), 115.29 (s), 77.31 (s), 77.06 (s), 76.81 (s), 64.56 (s).

(4-chlorophenyl)methanol (11): 1 H NMR (500 MHz, CDCl₃) δ 7.25 (dt, J = 17.4, 5.3 Hz, 4H), 4.60 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 139.26 (s), 133.38 (s), 128.70 (s), 128.29 (s), 77.28 (s), 77.03 (s), 76.77 (s), 64.59 (s).

2-chlorophenol (12): ¹H NMR (500 MHz, CDCl₃) δ 7.17 (dd, J = 8.0, 1.3 Hz, 1H), OH 7.03 (td, J = 8.2, 1.4 Hz, 1H), 6.90 (dd, J = 8.2, 1.3 Hz, 1H), 6.72 (td, J = 8.0, 1.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.26 (s), 127.98 (s), 127.34 (s), 120.35 (s), 118.86 (s), 115.27 (s), 76.29 (s), 76.03 (s), 75.78 (s).

4-(hydroxymethyl)benzonitrile (13): 1 H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.1 Hz, 3H), 7.23 (d, J = 8.0 Hz, 1H), 4.60 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 139.90 (s), 128.04 (s), 127.06 (s), 126.59 (s), 116.90 (s), 76.31 (s), 76.05 (s), 75.80 (s), 63.55 (s), 22.30 (s).

OH **2-(3-hydroxypropyl)phenol (14):** 1 H NMR (500 MHz, CDCl₃) δ 7.02 (ddd, J = 6.8, 5.5, 1.6 Hz, 2H), 6.78 (td, J = 8.3, 2.4 Hz, 2H), 3.56 (t, J = 5.8 Hz,

2H), 2.70 (t, J = 6.8 Hz, 2H), 1.84-1.75 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 153.45 (s), 129.62 (s), 126.53 (s), 126.26 (s), 119.79 (s), 115.00 (s), 76.26 (s), 76.01 (s), 75.75 (s), 59.78 (s), 31.22 (s), 24.17 (s).

phenol (15-17): 1 H NMR (500 MHz, CDCl₃) δ 7.17 (t, J = 7.8 Hz, 2H), 6.86 (t, J = 7.3 Hz, 1H), 6.76 (d, J = 8.3 Hz, 2H). 13 C NMR (126 MHz, CDCl₃) δ 154.37 (s), 128.66 (s), 119.82 (s), 114.27 (s), 76.25 (s), 76.00 (s), 75.74 (s).

naphthalen-1-ol (18): ¹H NMR (500 MHz, CDCl₃) δ 8.24-8.09 (m, 1H), 7.89-7.74 (m, 1H), 7.60-7.39 (m, 3H), 7.30 (t, J = 7.8 Hz, 1H), 6.80 (d, J = 7.4 Hz,1H). ¹³C NMR (126 MHz, CDCl₃) δ 151.37 (s), 134.78 (s), 127.71 (s), 126.47 (s), 125.86 (s), 125.30 (s), 124.36 (s), 121.55 (s), 120.73 (s), 108.63 (s), 77.31 (s), 77.06 (s), 76.80 (s).

naphthalen-2-ol (19): ¹H NMR (500 MHz, CDCl₃) δ 7.69 (t, J = 8.0 Hz, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 7.03 (dd, J = 8.8, 2.4 Hz, 1H). ¹³C NMR (126 MHz,

CDCl₃) δ 152.28 (s), 133.56 (s), 128.84 (s), 127.94 (s), 126.74 (s), 125.52 (s), 125.33 (s), 122.61 (s), 116.69 (s), 108.46 (s), 76.24 (s), 75.99 (s), 75.74 (s).

[1,1'-biphenyl]-4-ol (20): ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.52 (m, 2H), 7.49-7.46 (m, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 4.6 Hz, 1H), 6.92-6.87 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.10 (s), 140.76 (s), 134.00 (s), 128.67 (d, J = 13.6 Hz), 128.39 (s), 127.06 (s), 126.71 (d, J = 2.4 Hz), 115.64 (s), 77.25 (d, J = 6.0 Hz), 77.02 (s), 76.76 (s).

cyclohexylmethanol (21): ¹H NMR (500 MHz, CDCl₃) δ 3.35 (d, J = 6.4 Hz, HO 2H), 1.77-1.56 (m, 5H), 1.46-1.33 (m, 1H), 1.24-1.06 (m, 3H), 0.94-0.80 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 76.33 (s), 76.07 (s), 75.82 (s), 67.64 (s), 39.44 (s), 28.51 (d, J = 17.0 Hz), 25.59 (s), 24.84 (s).

octane-1,4-diol (22): ¹H NMR (500 MHz, CDCl₃) δ 4.53-4.33 (m, 1H), 2.46 (dd, J = 9.6, 7.0 Hz, 2H), 2.26 (td, J = 13.4, 6.7 Hz, 1H), 1.79 (dtd, J = 1.44), 1.7912.7, 9.5, 8.2 Hz, 1H), 1.67 (dddd, J = 13.4, 9.9, 8.3, 4.8 Hz, 1H), 1.58-1.47

(m, 1H), 1.42-1.22 (m, 4H), 0.85 (dd, J = 9.4, 4.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.36 (s), 80.09 (s), 76.47 (s), 76.22 (s), 75.96 (s), 34.25 (s), 27.86 (s), 27.00 (s), 26.34 (s), 21.42 (s), 12.91 (s).

pentan-1-ol (23): ¹H NMR (500 MHz, CDCl₃) δ 3.54 (t, J = 6.7 Hz, 2H), 1.58-1.42 (m, 2H), 1.32-1.16 (m, 4H), 0.83 (dd, J = 9.6, 4.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 76.36 (s), 76.22 (d, J = 32.0 Hz), 75.83 (s), 61.84 (s), 31.42 (s), 26.93 (s), 21.50 (s), 13.03 (s).

3-methylbutan-1-ol (24): ¹H NMR (500 MHz, CDCl₃) δ 3.52 (t, J = 7.1 Hz, OH 2H), 1.62 (dt, J = 13.4, 6.7 Hz, 1H), 1.36 (dd, J = 14.1, 7.0 Hz, 2H), 0.83 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 76.35 (s), 76.09 (s), 75.84 (s), 60.07 (s), 40.63 (s), 23.69 (s), 21.60 (s).

nonan-1-ol (25): ¹H NMR (500 MHz, CDCl₃) δ 3.56 (t, J = 6.7 Hz, 2H), 1.68 (s, 1H), 1.57-1.41 (m, 2H), 1.34-1.10 (m, 11H), 0.81 (t, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 76.29 (s), 76.03 (s), 75.78 (s), 62.01 (s), 31.78 (s), 30.81 (s), 28.70 (s), 28.34 (d, J = 15.5 Hz), 24.75 (s), 21.65 (s), 13.07 (s).

hexan-1-ol (26): ¹H NMR (500 MHz, CDCl₃) δ 3.57 (s, 2H), 1.49 (d, J = 6.0 Hz, 2H), 1.24 (s, 6H), 0.83 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 76.14 (d, J = 32.0 Hz), 76.00-75.96 (m), 75.76 (s), 31.75 (s), 30.62 (s), 24.40 (s), 21.62 (s), 13.02 (s).

O dimethyl terephthalate (P1): ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 4H), 3.88 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.32 (s), 133.92 (s), 129.58 (s), 77.28 (s), 77.03 (s), 76.77 (s), 52.47 (s).

1,4-phenylenedimethanol (**P1'):** ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 4H), 4.63 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 139.30 (s), 126.23 (s), 76.25 (s), 75.99 (s), 75.74 (s), 64.12 (s).

methyl 6-hydroxyhexanoate (P2): 1 H NMR (500 MHz, CDCl₃) δ HO $_{\odot}$ 3.54 (s, 3H), 3.48 (t, J = 6.6 Hz, 2H), 2.95 (d, J = 4.0 Hz, 1H), 2.20 (t, J = 7.5 Hz, 2H), 1.53 (dt, J = 15.3, 7.5 Hz, 2H), 1.48-1.39 (m, 2H), 1.35-1.17 (m, 2H). 13 C NMR (126 MHz, CDCl₃) δ 173.37 (s), 76.55 (s), 76.29 (s), 76.04 (s), 61.22 (s), 50.51 (s), 32.99 (s), 31.24 (s), 24.33 (s), 23.68 (s).

HO hexane-1,6-diol (P2'): ¹H NMR (500 MHz, CDCl₃) δ 3.58 (t, J = 6.0 Hz, 4H), 1.52 (s, 4H), 1.34 (d, J = 6.8 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 76.28 (s), 76.03 (s), 75.77 (s), 61.76 (s), 31.61 (s), 24.49 (s).

methyl 2-hydroxypropanoate (P3): 1 H NMR (500 MHz, CDCl₃) δ 4.23 (q, J = HO 6.9 Hz, 1H), 3.70 (d, J = 9.6 Hz, 3H), 1.35 (d, J = 6.9 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 175.12 (s), 76.47 (s), 76.22 (s), 75.96 (s), 65.80 (s), 51.43 (s), 19.30 (d, J = 3.5 Hz).

Propane-1,2-diol (P3'): 1 H NMR (500 MHz, CDCl₃) δ 3.95-3.61 (m, 1H), 3.48 (dd, J = 11.4, 3.0 Hz, 1H), 3.29 (dd, J = 11.4, 7.8 Hz, 1H), 1.05 (d, J = 6.5 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 76.44 (s), 76.19 (s), 75.93 (s), 67.29 (s), 66.78 (s), 17.69 (s).

4,4'-(propane-2,2-diyl)diphenol (P4): 1 H NMR (500 MHz, MeOD) δ 7.02 (d, J = 8.6 Hz, 4H), 6.66 (d, J = 8.7 Hz, 4H), 1.57 (s, 6H). 13 C NMR (126 MHz, MeOD) δ 154.53 (s), 142.09 (s), 127.35 (s), 114.15 (s), 48.14 (s), 47.97 (s), 47.80 (s), 47.63 (s), 47.46 (s), 47.29 (s), 47.12 (s), 41.10 (s), 30.30 (s).

7. NMR spectra of the products

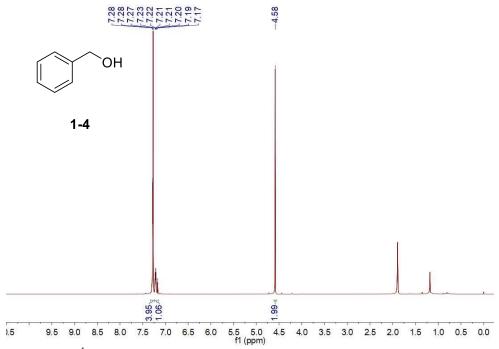


Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of 1.

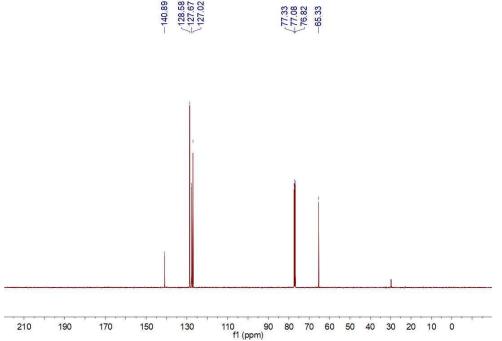
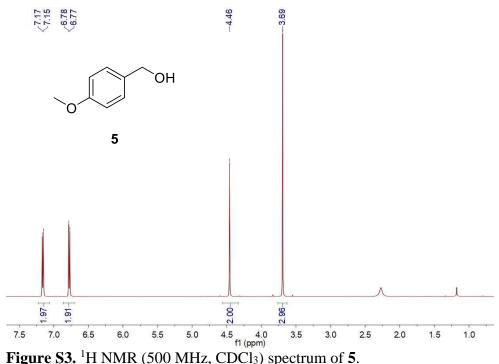
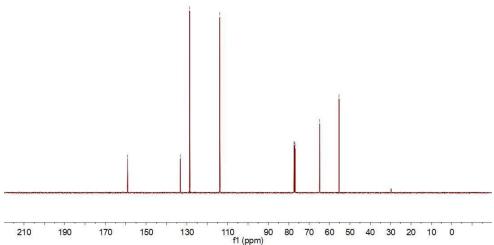




Figure S2. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1.

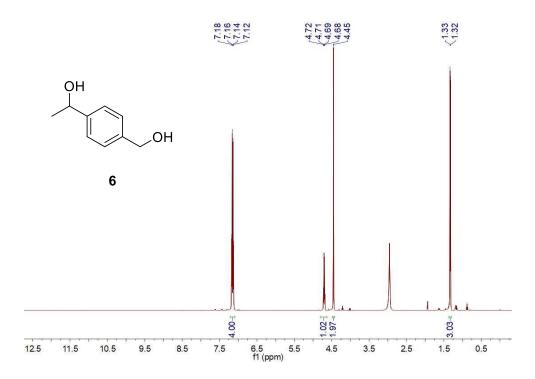
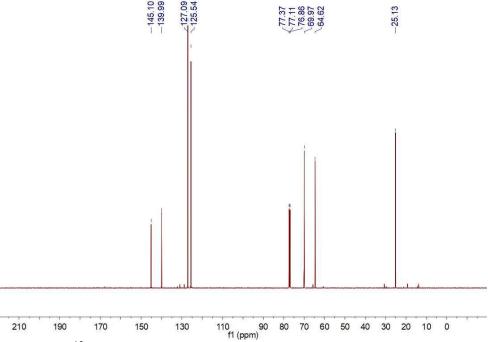
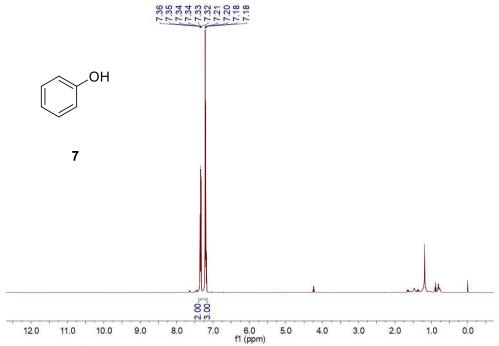


Figure S3. ¹H NMR (500 MHz, CDCl₃) spectrum of **5**.




Figure S4. ¹³C NMR (126 MHz, CDCl₃) spectrum of **5**.

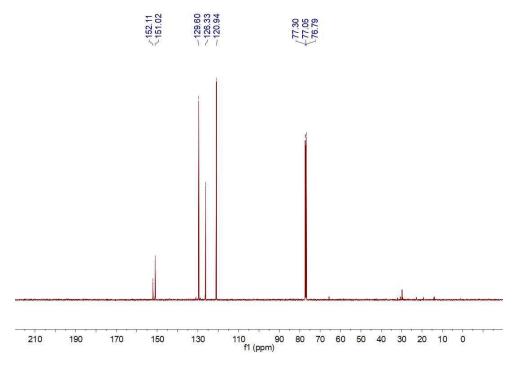

Figure S5. ¹H NMR (500 MHz, CDCl₃) spectrum of **6**.

Figure S6. ¹³C NMR (126 MHz, CDCl₃) spectrum of **6**.

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectrum of **7**.

Figure S8. ¹³C NMR (126 MHz, CDCl₃) spectrum of **7**.

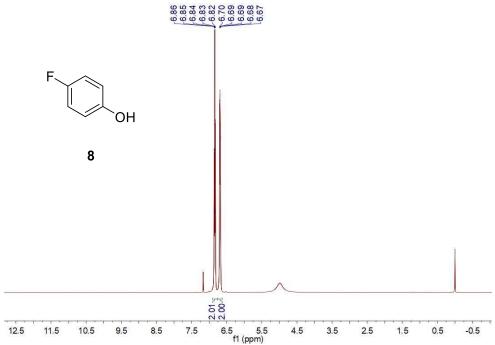
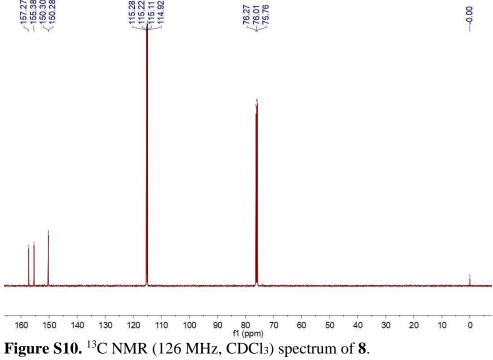



Figure S9. ¹H NMR (500 MHz, CDCl₃) spectrum of 8.

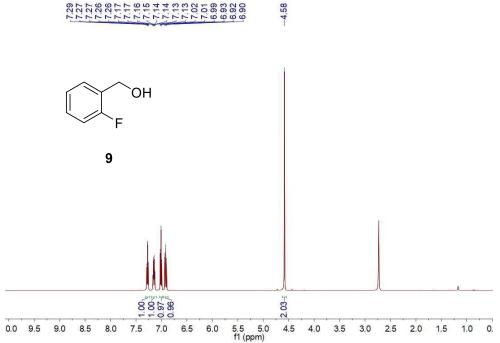


Figure S11. ¹H NMR (500 MHz, CDCl₃) spectrum of 9.

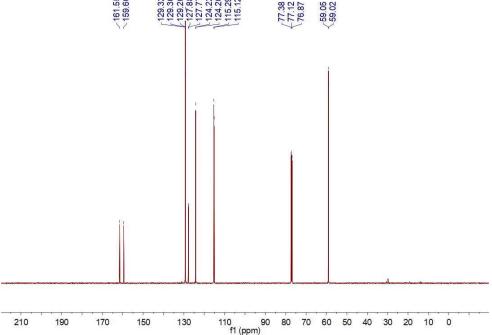
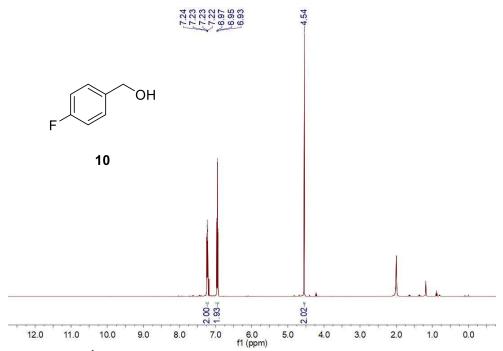



Figure S12. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9.

Figure S13. ¹H NMR (500 MHz, CDCl₃) spectrum of **10**.

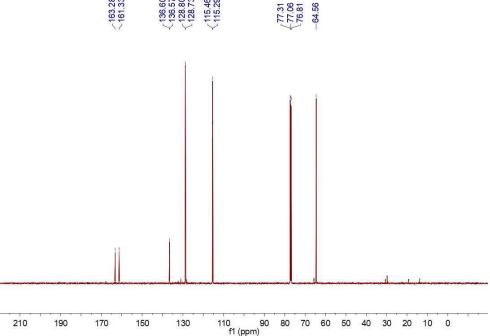


Figure S14. ¹³C NMR (126 MHz, CDCl₃) spectrum of 10.

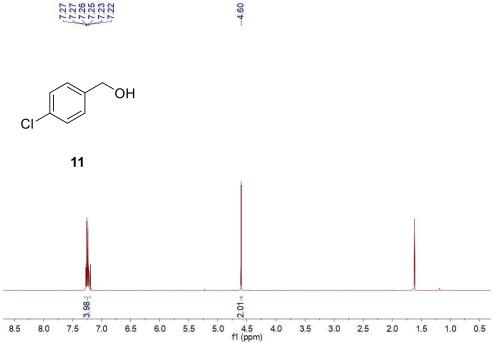
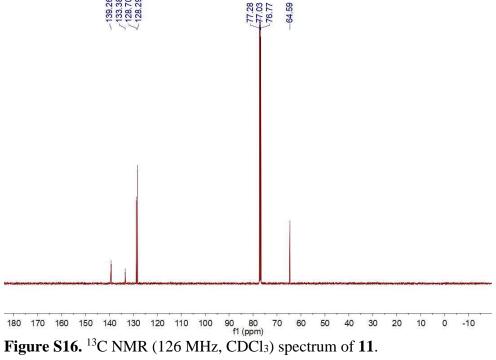



Figure S15. ¹H NMR (500 MHz, CDCl₃) spectrum of 11.

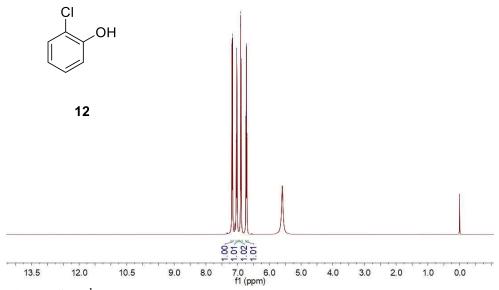
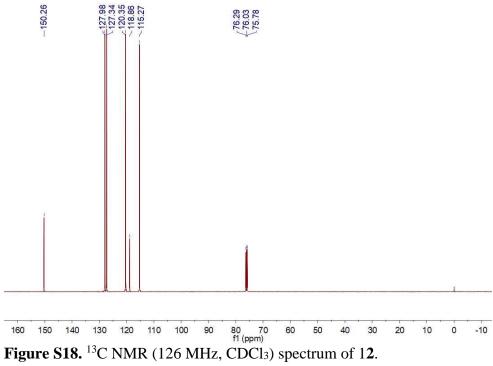
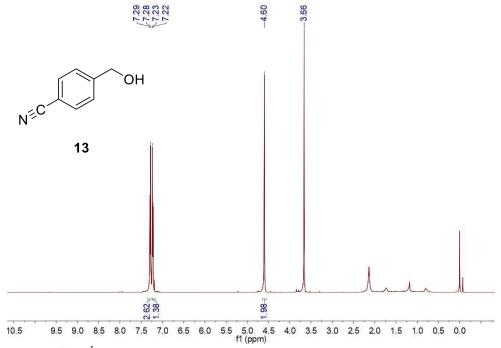
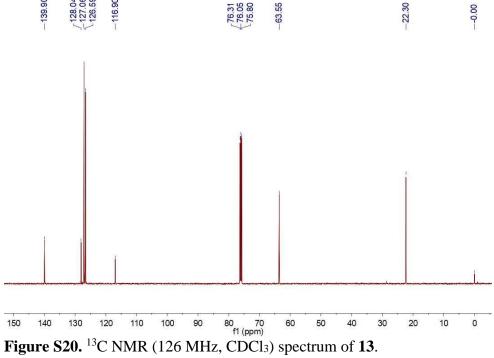





Figure S17. ¹H NMR (500 MHz, CDCl₃) spectrum of 12.

Figure S19. ¹H NMR (500 MHz, CDCl₃) spectrum of **13**.

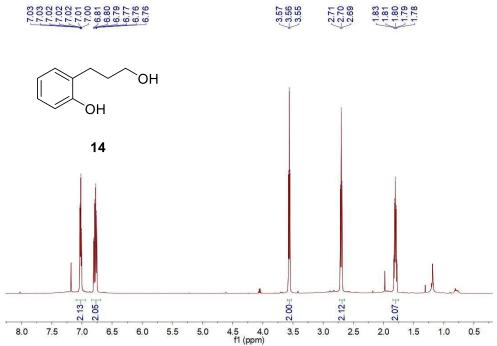


Figure S21. ¹H NMR (500 MHz, CDCl₃) spectrum of 14.

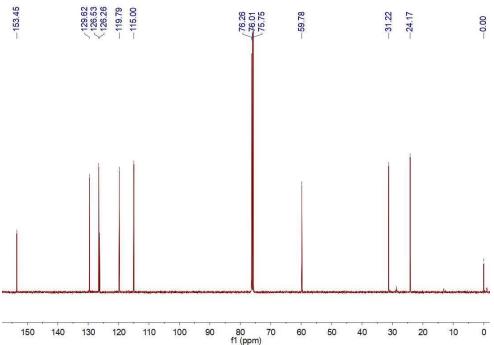
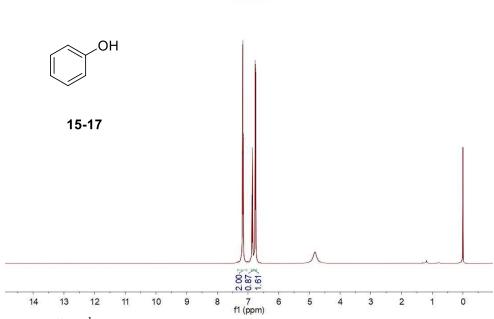
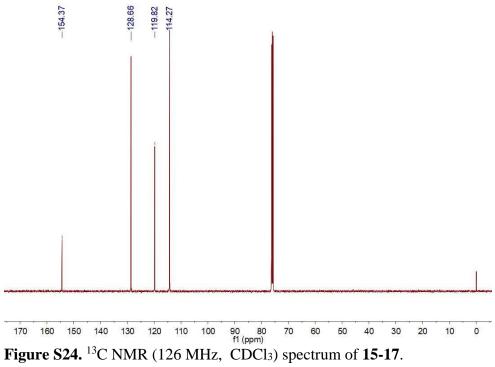
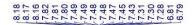





Figure S22. ¹³C NMR (126 MHz, CDCl₃) spectrum of 14.

Figure S23. ¹H NMR (500 MHz, CDCl₃) spectrum of **15-17**.

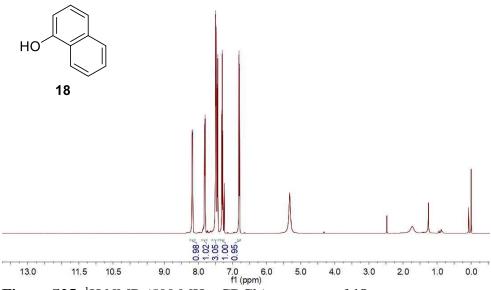



Figure S25. ¹H NMR (500 MHz, CDCl₃) spectrum of 18.

Figure S26. ¹³C NMR (126 MHz, CDCl₃) spectrum of **18**.

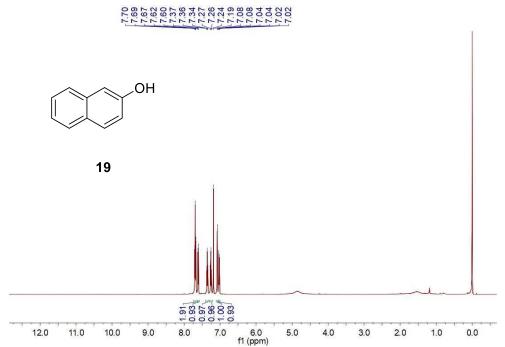


Figure S27. ¹H NMR (500 MHz, CDCl₃) spectrum of 19.

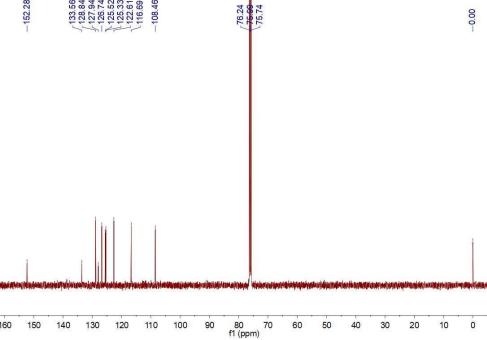


Figure S28. ¹³C NMR (126 MHz, CDCl₃) spectrum of 19.

7.756 7.754 7.748 7.748 7.749 7.739

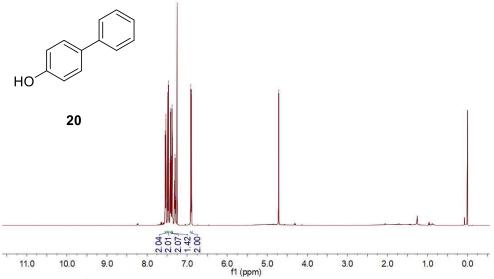


Figure S29. ¹H NMR (500 MHz, CDCl₃) spectrum of 20.

Figure S30. ¹³C NMR (126 MHz, CDCl₃) spectrum of 20.

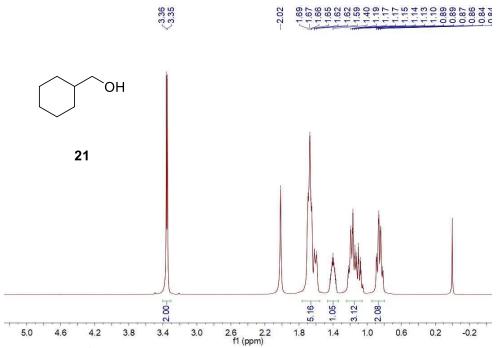
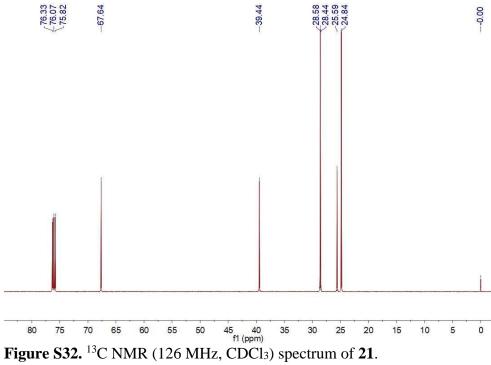



Figure S31. ¹H NMR (500 MHz, CDCl₃) spectrum of 21.

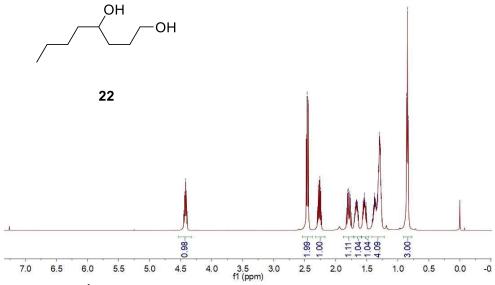


Figure S33. ¹H NMR (500 MHz, CDCl₃) spectrum of 22.

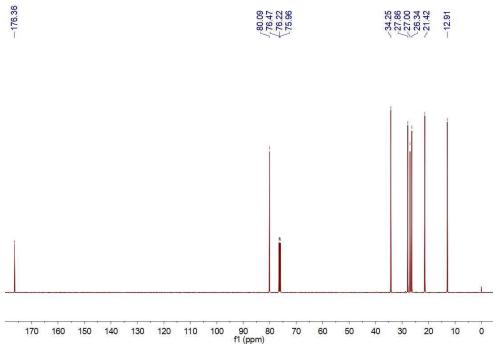


Figure S34. ¹³C NMR (126 MHz, CDCl₃) spectrum of 22.

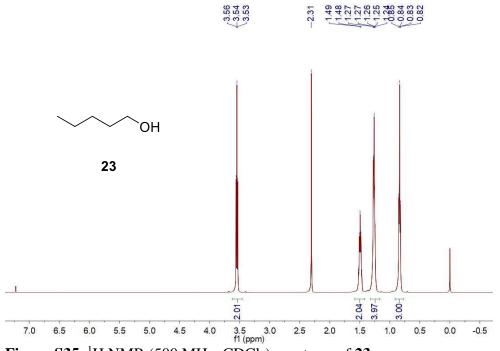
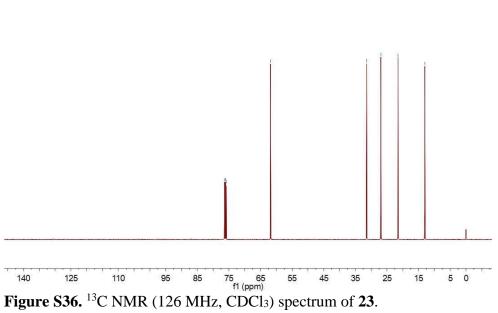



Figure S35. ¹H NMR (500 MHz, CDCl₃) spectrum of 23.

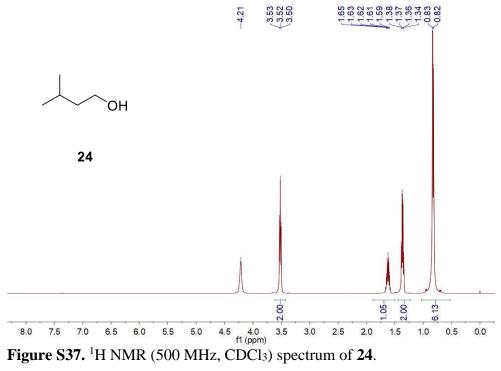


Figure S37. ¹H NMR (500 MHz, CDCl₃) spectrum of 24.

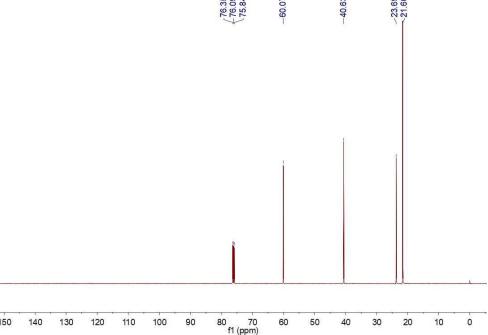


Figure S38. ¹³C NMR (126 MHz, CDCl₃) spectrum of 24.

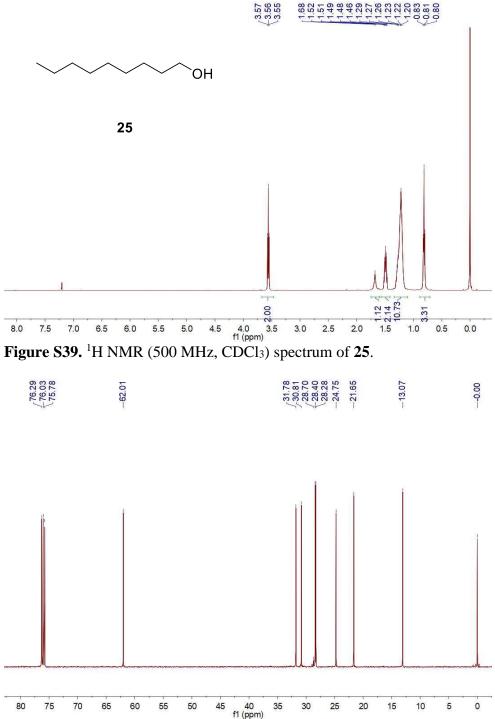


Figure S40. ¹³C NMR (126 MHz, CDCl₃) spectrum of 25.

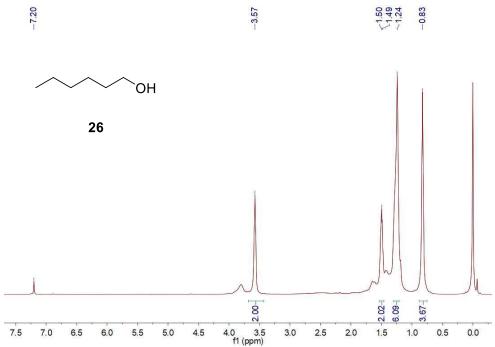


Figure S41. ¹H NMR (500 MHz, CDCl₃) spectrum of 26.

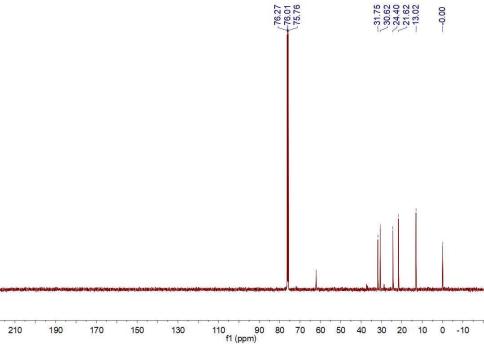


Figure S42. ¹³C NMR (126 MHz, CDCl₃) spectrum of 26.

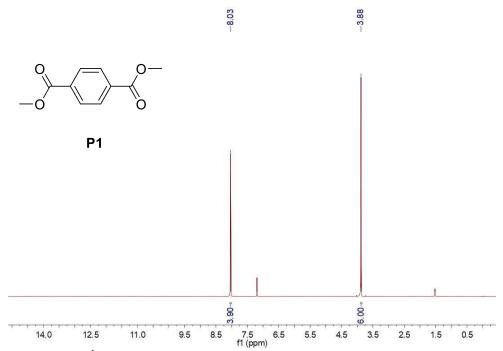
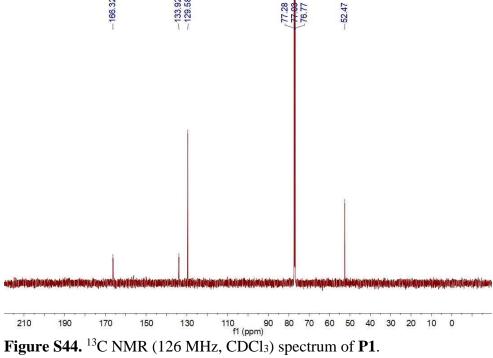



Figure S43. ¹H NMR (500 MHz, CDCl₃) spectrum of P1.



Figure S45. ¹H NMR (500 MHz, CDCl₃) spectrum of P1'.

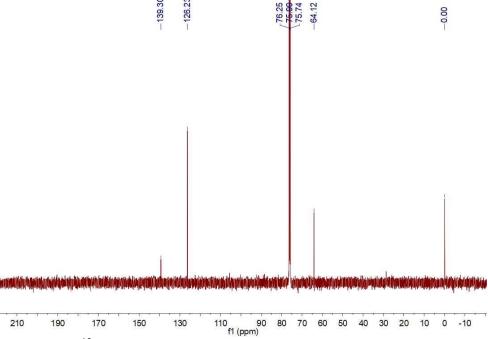
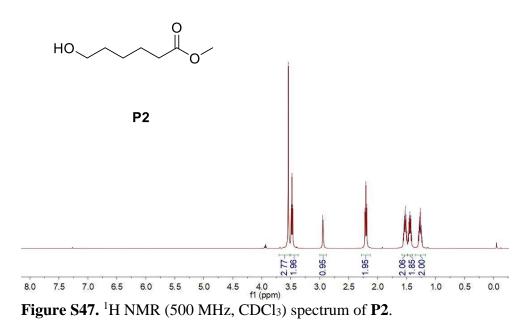



Figure S46. ¹³C NMR (126 MHz, CDCl₃) spectrum of P1'.

76.55 76.55 76.55 76.04 76.04 -61.22 -50.51 24.33

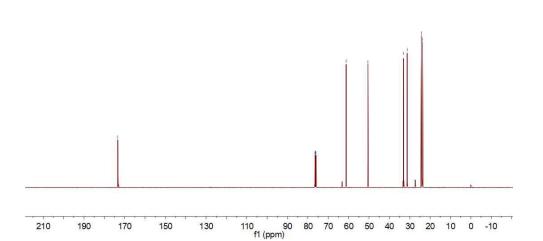


Figure S48. ¹³C NMR (126 MHz, CDCl₃) spectrum of P2.

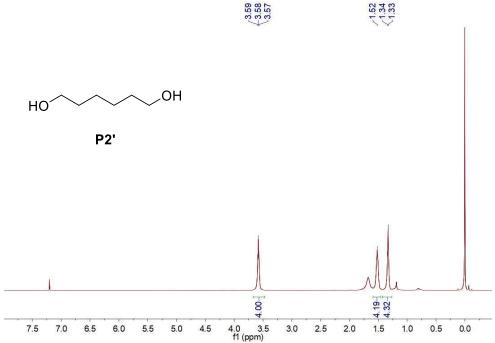


Figure S49. ¹H NMR (500 MHz, CDCl₃) spectrum of P2'.

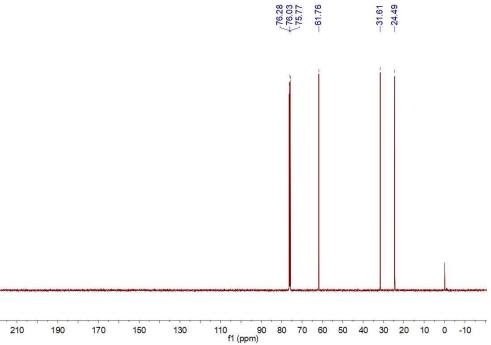
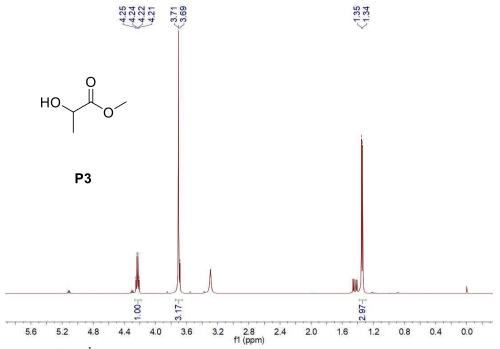




Figure S50. ¹³C NMR (126 MHz, CDCl₃) spectrum of **P2'**.

Figure S51. ¹H NMR (500 MHz, CDCl₃) spectrum of **P3**.

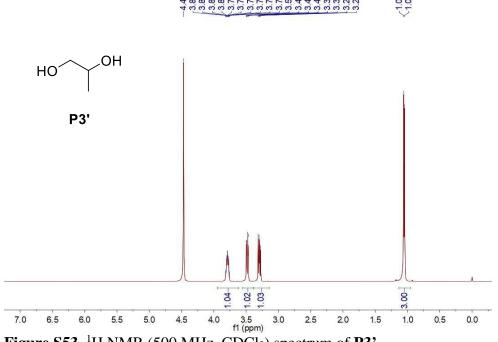


Figure S53. ¹H NMR (500 MHz, CDCl₃) spectrum of P3'.

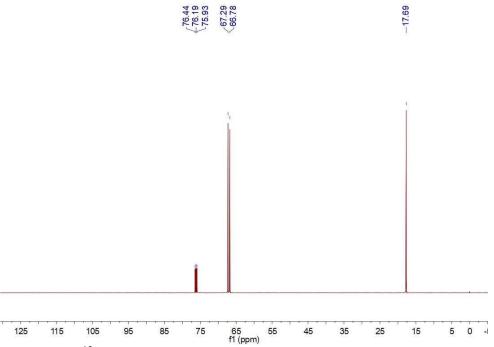


Figure S54. ¹³C NMR (126 MHz, CDCl₃) spectrum of P3'.

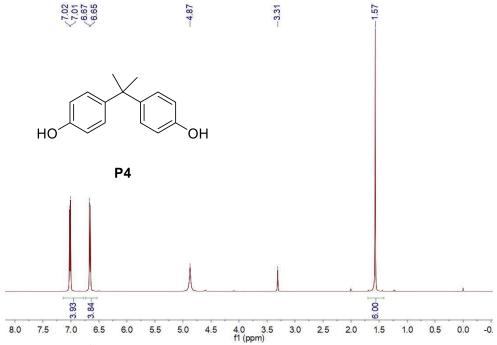


Figure S55. ¹H NMR (500 MHz, MeOD) spectrum of **P4**.

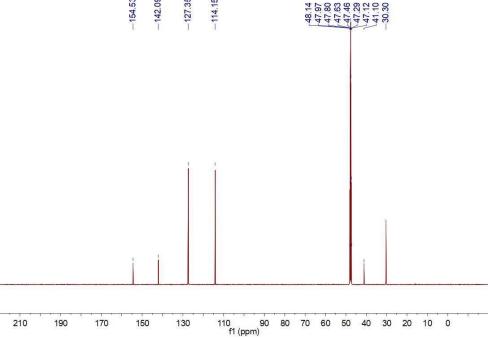
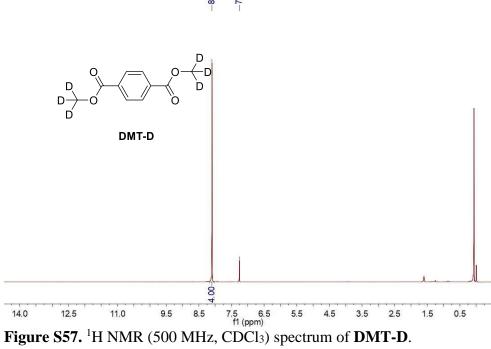



Figure S56. ¹³C NMR (126 MHz, MeOD) spectrum of P4.

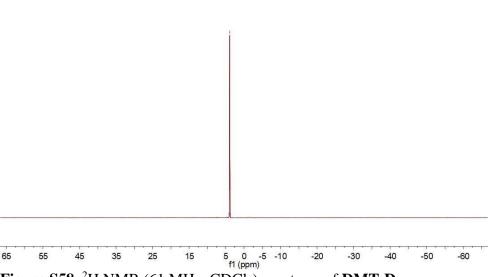


Figure S58. ²H NMR (61 MHz, CDCl₃) spectrum of **DMT-D**.

Table S1. Crystal data and structure refinement.

Formula weight 1190.32 Temperature/K 298.15 Crystal system monoclinic Space group C2/c a/Å 41.6176(10) b/A 10.7884(2) c/Å 22.8010(6) α/° 90 β/° 99.547(2) γ/° 90 Volume/ų 10095.6(4) Z 8 p _{calc} g/cm³ 1.566 μ/mm¹ 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα (λ = 1.54184) 20 range for data collection/° 7.864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488, R _{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [I> = 2σ (I)] R₁ = 0.0696, wR₂ = 0.1993	Table S1 . Crystal data and structure	e refinement.
Temperature/K Crystal system Space group C2/c a/Å 41.6176(10) b/Å 10.7884(2) c/Å 22.8010(6) α/° 90 B/° 99.547(2) γ/° 90 Volume/ų 10095.6(4) Z 8 $p_{calc}g/cm³$ 1.566 $p_{ll}mm³$ 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 CuKα (λ = 1.54184) 20 range for data collection/° 7.864 to 153.09 Index ranges Reflections collected 34334 Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes [I>=2σ (I)] Final R indexes [all data] R1 = 0.0696, wR₂ = 0.1993 Final R indexes [all data] R1 = 0.1061, wR₂ = 0.2304	Empirical formula	C ₃₉ H ₄₄ Cl ₁₁ Fe ₃ N ₉
Crystal system monoclinic Space group C2/c a/Å 41.6176(10) b/Å 10.7884(2) c/Å 22.8010(6) α/° 90 β/° 99.547(2) γ/° 90 Volume/ų 10095.6(4) Z 8 ρ_{calc} g/cm³ 1.566 μ /mm¹ 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα (λ = 1.54184) 2O range for data collection/° 7.864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488, R _{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [all data] R₁ = 0.0696, wR₂ = 0.1993 Final R indexes [all data] R₁ = 0.1061, wR₂ = 0.2304	Formula weight	1190.32
Space group C2/c a/Å 41.6176(10) b/Å 10.7884(2) c/Å 22.8010(6) α/° 90 β/° 99.547(2) γ/° 90 Volume/ų 10095.6(4) Z 8 ρ_{calc} g/cm³ 1.566 μ /mm⁻¹ 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα (λ = 1.54184) 20 range for data collection/° 7.864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 Reflections collected 34334 Independent reflections 10116 [Rint = 0.0488, Rsigma = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [all data] R₁ = 0.0696, wR₂ = 0.1993 Final R indexes [all data] R₁ = 0.1061, wR₂ = 0.2304	Temperature/K	298.15
1 A 1	Crystal system	monoclinic
c/A 22.8010(6) c/A 22.8010(6) c/A 90 c/A 99.547(2) c/A 99.547(2) c/A 90 Volume/Å ³ 10095.6(4) c/A 8 c/A 1.566 c/A 1.566 c/A 1.566 c/A 1.5496 c/A 1.566 c/A 1.5496 c/A 1.54184) c/A 1.54184) c/A 2.7864 to 153.09 Index ranges 48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) c/A 2.7864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) c/A 2.7864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) c/A 2.7864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) c/A 3.7864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) c/A 3.7864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 (100) Index ranges -48 ≤	Space group	C2/c
c/Å 22.8010(6) α/° 90 β/° 99.547(2) γ/° 90 Volume/ų 10095.6(4) Z 8 ρ_{calc} g/cm³ 1.566 μ /mm⁻¹ 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488, R _{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [I>=2 σ (I)] R ₁ = 0.0696, wR ₂ = 0.1993 Final R indexes [all data] R ₁ = 0.1061, wR ₂ = 0.2304	a/Å	41.6176(10)
$\alpha l / \alpha^{\prime}$ 90 $\alpha l / \alpha^{\prime}$ 99.547(2) $\alpha l / \alpha^{\prime}$ 90 $\alpha l / \alpha^{\prime}$ 90 $\alpha l / \alpha^{\prime}$ 90 $\alpha l / \alpha^{\prime}$ 10095.6(4) $\alpha l / \alpha^{\prime}$ 1.566 $\alpha l / \alpha^{\prime}$ 1.566 $\alpha l / \alpha^{\prime}$ 12.496 $\alpha l / \alpha^{\prime}$ 13.496 $\alpha l / \alpha^{\prime}$ 13.4	b/Å	10.7884(2)
99.547(2) $99.547(2)$ 8 $99.547(2)$	c/Å	22.8010(6)
y/° 90 Volume/ų 10095.6(4) Z 8 $P_{calc}g/cm³$ 1.566 $P_{calc}g/cm³$ 1.2496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα ($λ$ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges -48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 Reflections collected 34334 Independent reflections 10116 [R_{int} = 0.0488, R_{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F^2 1.039 Final R indexes [I >=2 σ (I)] R_1 = 0.0696, w R_2 = 0.1993 Final R indexes [all data] R_1 = 0.1061, w R_2 = 0.2304	α/°	90
Volume/ų 10095.6(4) Z 8 $P_{calc}g/cm³$ 1.566 $P_{calc}g/cm³$ 1.2.496 $P_{colo}g/cm³$ 1.2.496 $P_{colo}g/cm³$ 1.541840 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα ($λ = 1.54184$) $P_{calc}g/cm³$ 2.48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28 $P_{calc}g/cm³$ 1.566 $P_{colo}g/cm³$ 1.541840 P	β/°	99.547(2)
$P_{calc}g/cm^3$ 1.566 $P_{calc}g/cm^3$ 1.566 $P_{calc}g/cm^3$ 1.2496 $P_{colo}(000)$ 4824.0 $P_{colo}(000)$ 2.2 × 0.2 × 0.1 $P_{colo}(000)$ 2.3 × 0.2 × 0.1 $P_{colo}(000)$ 2.4 × 0.2 × 0.1 $P_{colo}(000)$ 7.864 to 153.09 $P_{colo}(000)$ 1.6 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	γ/°	90
$\rho_{calc}g/cm^3$ 1.566 μ/mm^{-1} 12.496 $F(000)$ 4824.0 Crystal size/mm³ $0.2 \times 0.2 \times 0.1$ Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488, R _{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [I>=2σ (I)] R₁ = 0.0696, wR₂ = 0.1993 Final R indexes [all data] R₁ = 0.1061, wR₂ = 0.2304	Volume/ų	10095.6(4)
μ/mm^{-1} 12.496 F(000) 4824.0 Crystal size/mm³ 0.2 × 0.2 × 0.1 Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections 10116 [$R_{\text{int}} = 0.0488$, $R_{\text{sigma}} = 0.0457$] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F^2 1.039 Final R indexes [$I > 2\sigma(I)$] $R_1 = 0.0696$, w $R_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061$, w $R_2 = 0.2304$	Z	8
F(000) 4824.0 Crystal size/mm³ $0.2 \times 0.2 \times 0.1$ Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488 , R _{sigma} = 0.0457] Data/restraints/parameters $10116/350/636$ Goodness-of-fit on F² 1.039 Final R indexes [l>=2σ (l)] R1 = 0.0696 , wR2 = 0.1993 Final R indexes [all data] R1 = 0.1061 , wR2 = 0.2304	ρ _{calc} g/cm³	1.566
Crystal size/mm³ $0.2 \times 0.2 \times 0.1$ Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections 10116 [R _{int} = 0.0488, R _{sigma} = 0.0457] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F² 1.039 Final R indexes [l>=2σ (l)] R₁ = 0.0696, wR₂ = 0.1993 Final R indexes [all data] R₁ = 0.1061, wR₂ = 0.2304	μ/mm ⁻¹	12.496
Radiation $CuK\alpha$ (λ = 1.54184) 20 range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections $10116 \ [R_{int} = 0.0488, R_{sigma} = 0.0457]$ Data/restraints/parameters $10116/350/636$ Goodness-of-fit on F ² 1.039 Final R indexes [$l > 2\sigma$ (l)] $R_1 = 0.0696, wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061, wR_2 = 0.2304$	F(000)	4824.0
20 range for data collection/° 7.864 to 153.09 Index ranges $-48 \le h \le 52, -10 \le k \le 13, -28 \le l \le 28$ Reflections collected 34334 Independent reflections $10116 \ [R_{int} = 0.0488, R_{sigma} = 0.0457]$ Data/restraints/parameters $10116/350/636$ Goodness-of-fit on F² 1.039 Final R indexes [$l > 2\sigma(l)$] $R_1 = 0.0696, wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061, wR_2 = 0.2304$	Crystal size/mm³	0.2 × 0.2 × 0.1
Index ranges $-48 \le h \le 52$, $-10 \le k \le 13$, $-28 \le l \le 28$ Reflections collected 34334 Independent reflections $10116 \ [R_{int} = 0.0488, R_{sigma} = 0.0457]$ Data/restraints/parameters $10116/350/636$ Goodness-of-fit on F² 1.039 Final R indexes [I>=2 σ (I)] R ₁ = 0.0696, wR ₂ = 0.1993 Final R indexes [all data] R ₁ = 0.1061, wR ₂ = 0.2304	Radiation	CuKα (λ = 1.54184)
Reflections collected 34334 Independent reflections 10116 [$R_{int} = 0.0488$, $R_{sigma} = 0.0457$] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F^2 1.039 Final R indexes [$I > = 2\sigma$ (I)] $R_1 = 0.0696$, $wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061$, $wR_2 = 0.2304$	2Θ range for data collection/°	7.864 to 153.09
Independent reflections 10116 [$R_{int} = 0.0488$, $R_{sigma} = 0.0457$] Data/restraints/parameters 10116/350/636 Goodness-of-fit on F^2 1.039 Final R indexes [$I > = 2\sigma$ (I)] $R_1 = 0.0696$, $wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061$, $wR_2 = 0.2304$	Index ranges	-48 ≤ h ≤ 52, -10 ≤ k ≤ 13, -28 ≤ l ≤ 28
Data/restraints/parameters $10116/350/636$ Goodness-of-fit on F² 1.039 Final R indexes [I>=2 σ (I)] $R_1 = 0.0696$, $wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061$, $wR_2 = 0.2304$	Reflections collected	34334
Goodness-of-fit on F^2 1.039 Final R indexes [I>=2 σ (I)] $R_1 = 0.0696$, $wR_2 = 0.1993$ Final R indexes [all data] $R_1 = 0.1061$, $wR_2 = 0.2304$	Independent reflections	10116 [R _{int} = 0.0488, R _{sigma} = 0.0457]
Final R indexes [I>=2 σ (I)] R ₁ = 0.0696, wR ₂ = 0.1993 Final R indexes [all data] R ₁ = 0.1061, wR ₂ = 0.2304	Data/restraints/parameters	10116/350/636
Final R indexes [all data] $R_1 = 0.1061$, $wR_2 = 0.2304$	Goodness-of-fit on F ²	1.039
	Final R indexes [I>=2σ (I)]	$R_1 = 0.0696$, $wR_2 = 0.1993$
Largest diff. peak/hole / e Å ⁻³ 0.82/-0.81	Final R indexes [all data]	$R_1 = 0.1061$, $wR_2 = 0.2304$
1	Largest diff. peak/hole / e Å-3	0.82/-0.81