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Supplementary Figure 1. Histograms of surface elevation for the three study domains in
the Pacific Northwest (PacN) region, Mid-Atlantic (MidA) region, and California (CA),
over the Contiguous United States.
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Supplementary Figure 2. Time series of ELM simulated and referenced snow water
equivalent (SWE) and runoff for the ROS flood events over the three basins (PacN, MidA
and CA). The default parameters were used in the ELM simulations. The referenced values
are from the benchmark datasets in Table S1. In each panel, the black line and the width of the
gray shading represent the mean and standard deviation of the referenced values, the colored
lines represent the ELM simulated values, and the vertical pink shadings represent the periods of
each ROS event. For the legend, the subscripts NLDAS, L15, Daymet and PRISM are four
different atmospheric forcing datasets (Table S1), and SNOTEL and GRFR are the snow field
measurements from the SNOTEL network and the Global Reach-level Flood Reanalysis runoff
dataset. Since SNOTEL sites are only distributed in the western US, we used the daily Northern
Hemisphere Snow Water Equivalent (NH-SWE) dataset for 1996MidA instead.
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Supplementary Figure 3. Performance of ELM w1th the default and calibrated parameters
and two comparable datasets (UA and GRFR) in capturing the snow water equivalent
(SWE) and runoff represented in the benchmark datasets (i.c., the SNOTEL measurements
and USGS streamflow observations) over the three basins (PacN, MidA, and CA), in terms of
correlation coefficient (R), root mean square error (RMSE) and Bias at each site/basin. Note that
the two months encompassing the events were selected (see Methods), and thus the two
consecutive CA events are merged in the model evaluation over CA basin. In each panel, for the
x-axiS, ELMpefault and ELMcatibrated are the ELM simulations with the default and calibrated
parameters, respectively, and UA and GRFR are the SWE datasets developed by the University
of Arizona and the Global Reach-level Flood Reanalysis runoff dataset, respectively; and for
each violin plot, the white circle is the mean value, and each dot represents the metric at each
SNOTEL site or USGS basin. Since SNOTEL sites are only distributed in the western US, we
used the daily Northern Hemisphere Snow Water Equivalent (NH-SWE) dataset for 1996MidA
instead.

g\f\*@ o,)\v" \%“ 8‘\ o"s\%(* 8“?6“& %Qs



Control +1K +2K +3K +4K +5K
a don mm mm
1000 400
Z  aN 200
Q
&
=) 500 0
=)
QD aen
-200
124°W 123°W  122°W 0 124°W 123°W 122°W 124°W 123°W  122°W 124°W 123°W  122°W 124°W 128°W  122°W 124°W 123°W  122°W -400
b mm
200
<
=)
=
% 100
[N
=)
—
0 79°W 78W 77°W 76°W 75°W  79°W 78°W 77°W 76°W 75°W  79°W 78°W 77°W 76°W 75°W  79°W 78°W 77°W 76°W 75°W  79°W 78°W 77°W 76°W 75°W -100
C s jmm mm
1000
= 4N 200
<
=
<
&) s 500 0
=
—
S aeN
Q
-200
38, 0
12150 {121°W 12050 120°W 12150 121°W 12050 120°W 12150 {121°W 12050 120°W
d 405 mm mm
500
e} 40°N
[3}
H
6 oo 500 0
=
—
o 3N
Q
-500
12150 121°W 12050 120°W 0 12150 121°W 12050 120°W 12150 121°W 12050 120°W 12150 121°W 12050 120°W 12150 121°W 12050 120°W 12150 121°W 12050 120°W

Supplementary Figure 4. Spatial distribution of initial snow water equivalent (SWE) before
the ROS event, in the historical events and changes under a warmer climate. Panels a-d
show four different events: 1996PacN, 1996MidA, 2017CA-Jan, and 2017CA-Feb. The first
column is the historical simulation (Control), and the second to sixth columns are the differences
between warming scenarios with the air temperature increasing from +1K to +5K and historical
simulations.
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Supplementary Figure 5. Spatial distribution of average air temperature in the historical

events. Panels a-d show four different events: 1996PacN, 1996MidA, 2017CA-Jan, and
2017CA-Feb.
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Supplementary Figure 6. Spatial distribution of relative snow contribution (Csnow) in the
historical events and the changes under a warmer climate. Panels a-d show four different
events: 1996PacN, 1996MidA, 2017CA-Jan, and 2017CA-Feb. The first column is the historical
simulations (Control), and the second to sixth columns are the differences between warming
scenarios with the air temperature increasing from +1K to +5K and the historical simulations.
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Supplementary Figure 7. Time series of basin average snow water equivalent (SWE) and
runoff during the ROS flood events under the control and warming scenarios.
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Supplementary Figure 8. Same as Figure S4, except for cumulative terrestrial water input
(TWI).
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Supplementary Figure 9. The peaking time of rainfall, terrestrial water input (TWI), and

runoff under the control and warming scenarios for the four events.
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Supplementary Figure 10. Same as Figure S4, except for soil infiltration.
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Supplementary Figure 11. Same as Figure S4, except for cumulative runoff.
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Supplementary Figure 12. Spatial distribution of the sign changes in TWI and Runoff
under a warmer climate. Panels a-d show four different events: 1996PacN, 1996MidA,
2017CA-Jan, and 2017CA-Feb, and the first to fifth columns are the sign changes in TWI and
runoff under warming scenarios with the air temperature increasing from +1K to +5K compared
to the historical simulations. In the legend, TWI+ and TWI- represent increasing and decreasing
TWI, while Runoff+ and Runoff- represent increasing and decreasing runoff.
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Supplementary Figure 13. Same as Figure S4, except for soil temperature in top 10 cm of
soil.
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Supplementary Figure 14. Same as Figure S4, except for initial column-integrated soil
moisture.
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Supplementary Figure 15. Responses of the basin average and elevation profiles of
cumulative runoff and runoff efficiency for the four events in a warmer climate without
precipitation change. a, Basin average runoff under the control and warming scenarios without
precipitation change. b, Basin average runoff efficiency, defined as the ratio of runoff to
terrestrial water input (TWI), under the control and warming scenarios without precipitation
change. c-f, Elevation profiles of runoff for the four events: 1996PacN, 1996MidA, 2017CA-Jan,
and 2017CA-Feb.
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Supplementary Figure 16. Elevation profiles of different variables for the four events:
1996PacN, 1996MidA, 2017CA-Jan, and 2017CA-Feb under the control and warming
scenarios without precipitation change. The first to fifth rows represent air temperature, rainfall,

sum of liquid water retention and snowmelt (Osnow), terrestrial water input (TWI), and relative

snow contribution to TWI (Cow), respectively.
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Supplementary Table 1. Details of the used datasets in the study.

Category | Datas | Spatial | Tempo | Refere | Download link
et resolut | ral nce
ion resolut
ion
Meteorol | NLDA | 0.125 Hourly | ref. (1) | https://disc.gsfc.nasa.gov/datasets?keywo
ogic S-2 degree rds=NLDAS
forcing
L15 1/16 Daily ref. (2) | https://downloads.psl.noaa.gov/Datasets/I
degree ivneh/fluxvars/
PRIS |4 km Daily ref. (3) | https://prism.oregonstate.edu/recent/
M
Daym | 1 km Daily ref. (4) | https://daymet.ornl.gov/
et
Snow SNOT | Site Daily ref. (5) | https://www.pnnl.gov/data-products
water EL level
equivalen
t NH- Site Daily ref. (6) | https://zenodo.org/records/7565252
SWE | level
UA 4 km Daily ref. (7) | https://nsidc.org/data/nsidc-
0719/versions/1
Runoff or | GRFR | 5 km Daily ref. (8) | https://www.reachhydro.org/home/record
streamflo s/grfr
w
USGS | Site Daily ref. (9) | https://waterdata.usgs.gov
level
https://github.com/daleihao/ROS_Flood-
ELM ELM 1 km Half- This Flood Extremes
hourly | study
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Supplementary Table 2. Performance of ELM with default and calibrated parameters
driven by different atmospheric forcings in simulating snow water equivalent (SWE) and
runoff. For the ELM case name, the subscript represents the atmosphere forcings, and the
‘Optimal’ represents the optimal atmospheric forcing with the best performance for each
event (see Methods); and the superscript represents the default or calibrated parameters.

Region | Case
SWE (mm) Runoff (mm/day)
Metric
R RMSE | Bias R RMSE | Bias
PacN ELMDefault
NLDAS 0.41 |259.7 |-162.4 |0.88 |6.2 4.8
ELMfleSfault
0.75 |[155.7 |587 |0.90 |4.0 1.8
ELMDefault
Daymet 0.52 | 227.5 -126.3 | 0.78 |56 0.0
ELMDefault
PRISM 0.65 |206.1 |-114.4 |0.86 |53 0.4
BLMGe
0.77 1500 |-241 |092 |47 2.7
MidA ELMDefault
NLDAS 024 |62.6 17.7 |075 |69 0.1
ELMfleSfault
0.32 |87.3 500 |0.65 |53 0.0
ELMDefault
Daymet 0.60 |41.4 7.0 0.88 |5.3 0.4
ELMDefault
PRISM 0.55 | 46.4 144 |0.82 |53 0.2
BLMGe
0.72 |36.3 9.0 091 |5.1 0.1
CA ELMDefault
NLDAS 035 |6550 |-563.2 |0.86 |10.5 3.8
ELMfleSfault
053 |398.6 |-243.9 |0.49 |7.0 0.9
ELMDefault
Daymet 0.60 | 494.9 -406.4 | 0.87 | 11.6 5.2
ELMDefault
PRISM 0.29 |597.2 |-481.8 |0.66 |10.8 3.4
BLMGe
0.72 | 3045 |-186.8 |0.86 |6.7 1.8
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Supplementary Table 3. Information on the sensitive parameters in the ELM calibration.

Category

Parameter

Unit

Definition

Default
value

Range

Snow

G

Unitless

Tunning
parameter
for top
snow/soil
layer
thickness

0.34

[0.0, 1.0]

Tall

Snowfall
temperature

274.15

[273.15,
275.15]

Kaccum

Unitless

Snow cover
accumulation
parameter

0.1

[0.02, 0.4]

Nmelt

Unitless

Snhow cover
depletion
curve shape
parameter

200.0

[50, 400]

Tfree

Show
freezing
temperature

273.15

[271.15,
275.15]

Runoff

f over

Decay factor
for surface
runoff

0.5

[0.1, 5]

fdrai

Decay factor
for
subsurface
runoff

2.5

[0.1, 5]
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