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Table S1. The component details of ionic eutectogels and organic mixed ionic—electronic conductor

(OMIEC) eutectogels

Sample ChCl Gly AA Initiator PEG(575)DA PEDOT:PSS
wt%) (wt%) (wt%) (wt%) (wt%) (wt%)
PED&;PSS 0 0 0 0 0 100
IC 30.2 39.8 28.9 1.0 0.1 0
MC 1 28.4 37.5 28.9 1.0 0.1 4.1
MC 2 27.9 36.9 28.9 1.0 0.1 5.2
MC3 27.2 35.8 28.9 1.0 0.1 7.0
MC 4 26.7 353 28.9 1.0 0.1 8.0
DIC 30.2 39.8 28.9 1.0 0.1 0
DMC 1 28.4 37.5 28.9 1.0 0.1 4.1
DMC 2 27.9 36.9 28.9 1.0 0.1 5.2
DMC 3 27.2 35.8 28.9 1.0 0.1 7.0
DMC 4 26.7 353 28.9 1.0 0.1 8.0

Abbreviations: ChCl: Choline chloride, Gly: Glycerol, AA: Acrylic acid, PEDOT:PSS: Poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate), Photoinitiator: 2-oxoglutaric acid, Cross-linker:
Poly(ethylene glycol) diacrylate (PEG(575)DA).



Table S2. FT-IR peak assignments of PEDOT:PSS film, IC, MC 3, and DMC 3 eutectogels

Functional eroups PEDOT:PSS IC DIC MC 3 DMC 3
Broup (cm™) (em™) (em™) (em™) (cm™)
. 3,331,3,345  3,331,3,345 3,332, 3,345,
O—H stretching 3,408, 3,206 3,332, 3,339 3.353 3.353 3.370
syfnlx:;iy:r;?:g&g B 2,931 2,938 2,931 2,934
(Gly, EG) 2,876 2876 2,876 2,876
C=O0 stretching (PAA) — 1,723 1,719 1,720 1,717
C=C asymmetric 1,598 (PSS), _ _ _ _
stretching 1,520 (PEDOT)
+
—(CHzs)3 _
bending(ChCl) 1,477 1,476 1,477 1,473
CH; bending (PAA, _
Gly, EG) 1,453 1,452 1,452 1,455
C—C inter-ring _ _ _ _
stretching (PEDOT) 1,270
C—O0O—H bending (EG, _
Gly, PAA) 1,415 1,412 1,415 1,412
C—O—H stretching
(PAA, ChCL Gly) 1,237 1,247 1,236 1,242
C—O stretching
(ChCl) 1,171 1,176 1,170 1,175
S—O0, S—phenyl (PSS) 1,162, 1,122 - — - —
C—C—O (EG), C—0O _
stretching (ChCI) 1,086 1,083 1,086 1,084
C—0—C (PEDOT) 1,057 — — — —
0O—S—0 symmetric
stretching (PSS) 1,010
C—C—0 asymmetric
stretching (Gly, EG) 1,042 1,037 1,042 1,039
N*—C (ChCl) — 956 954 956 956
C—S—C (PEDOT) 945, 859, 707 - — - —
C—OH stretching _ 923 922 923 923
(Gly)
CHa; rocking vibration _ _ _
(EG) 881 882
€ stretching — 864 864 864 864

(Gly/EG)




Table S3. FT-IR data for the OH stretching region (3,000-3,700 cm™"), including (a) peak position (cm

1) and (b) area ratio (%)

(a)
Functional PEDOT:PSS IC DIC MC 3 DMC 3
groups (ecm™) (cm™) (ecm™) (ecm™) (cm™)
Free OH, — 3,506 3,506 3,512 3,511
Water
OH—SOx (PSS)/ 3,408 — — 3,420 3,421
PEDOT"*
OH—OH - 3,375 3,356 3,358 3,343
OH—CI - 3,250 3,216 3,259 3,260
OH—SO, 3,206 - — 3,209 3,194
(PEDOT:PSS)
OH—COOH — 3,158 3,100 3,142 3,126
(PAA)
OH—SOx 3,039 — — 3,040 3.044
(PEDOT:PSS)
(b)
Functional PEDOT:PSS IC DIC MC 3 DMC 3
groups (%) (%) (%) (%) (%)
Free OH, 0 8.4 9.8 7.0 7.6
Water
OH—SOx 55.4 0 0 13.5 16.3
(PEDOT:PSS)
OH—OH 0 60.4 62.5 48.6 51.0
OH—CI 0 27.9 25.6 19.9 14.5
OH—SOx" 36.5 0 0 6.7 6.1
(PEDOT:PSS)
OH—COOH 0 3.3 2.1 4.0 42
(PAA)
OH—SOx 8.0 0 0 0.3 0.1
(PEDOT:PSS)




Table S4. XPS peak assignments of the IC, DIC, MC 3, and DMC 3 eutectogels

Binding energy . Proportion
Sample State (V) Bonding (%)
532.5 Cc—0O 75.16
IC O1ls
533.1 C—OH 24.84
5324 Cc—0 65.13
DIC O1s
532.7 C—OH 34.87
531.5 O=S (PSS) 31.5
O1s 532.2 C—0/C—0—C 48.43
533.6 C—OH 20.07
MC 3 163.1 2p,,
C—S (PEDOT) 42
165.2 2py,
S 2p
167.8 2p;,
S—Ox (PSS) 58
168.9 2P,
531.5 O=S (PSS) 18.9
O1s 532.23 C—0/C—0—C 56.26
5334 C—OH 24.84
DMC 3 163.2 2p,,
C—S (PEDOT) 61
165.1 2py,
S 2p
168.1 2py,
S—Ox (PSS) 39
168.9 2P,




Table S5. Raman peak positions and assignments of MC 3 and DMC 3 eutectogels

Moiety é\c/ln?‘?) ]ﬁ\fngf
Co—Cq 1,263.1 1,260.8
Cg—Cg 1,368.8 1,367.7
Ce—Cg 1,448.4 1,442.8

1,501.6 1,503.8




Table S6. Quantitative Raman spectroscopy analysis of MC 3 and DMC 3 eutectogels

Shift Proportion
Sample State Bonding
(em™) (%)
Ca_CB
Quinoid 1,425.2 38.86
symmetric
MC3
C0(=CB
Benzoid 1,447.8 61.14
symmetric
CO(_CB
Quinoid 1,428.5 51.61
symmetric
DMC 3
CO(=CB
Benzoid 1,445.7 48.39
symmetric
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Table S7. Electrical and mechanical properties of ionic eutectogels and OMIEC eutectogels

PEDOT:PSS Tensile Elongation Elastic
Conductivity

Sample concentration /m) strength at break modulus

(wt.%) (kPa) (%) (kPa)

PEDOT:PSS 100 131 _ _ _
film

IC 0 0.017 90+2.9 1,038+15.3 11+1.3
MC1 4.1 0.032 90+4.4 1,134+14.8 141+0.8
MC 2 5.2 0.061 9313.6 1,134£17.5 1510.5
MC3 7.0 0.19 95143 1,600+21.3 1711
MC 4 8.0 0.026 431£2.2 1,235£20.6 12+0.8
DIC 0 0.11 9543.1 1,217421.3 1940.6
DMC 1 4.1 0.17 93133 1,783+19.1 204+0.9
DMC 2 5.2 0.21 102+2.8 1,786122.3 21+1.4
DMC 3 7.0 1.12 142+3.1 3,065£53.0 2610.7
DMC 4 8.0 0.21 59+2.6 2,145+28.5 14+1.2
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Table S8. Degree of electromechanical hysteresis (EMH) for eutectogel sensors under various strains at 1
Hz

Sg/f:;“ IC MC 3 DMC 3
100 7.4640.92 1.4840.23 0.28 +0.13
400 15.74+1.82 1.5640.31 0.45 +0.12
600 17.0343.24 1.65 +0.06 0.5740.04
700 17.37+1.87 1.9140.6 0.9 +0.27
1000 - 2.0840.63 0.99 40.29
1300 2.1140.89 1.01 40.52
1500 5.5540.91 1.0240.47
1600 - 3.840.34
2000 - 7.9740.56
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Table S9. EMH across various stretch—release cycles for IC, MC 3, and DMC 3 sensors under various

strains at 1 Hz

Strain

(%) Cycle IC MC3 DMC 3
1 15.74+1.82
5 21.14+1.93
400 10 20.924+1.36
50 19.69+1.58
100 28.16%2.78
1 17.03+3.24 1.65 £0.06 0.57+0.04
5 30x4.71 2.37 £0.11 0.66x0.06
600 10 - 2.4240.17 0.77+0.05
50 2.47+0.21 0.88+0.08
100 2.77+£0.28 1.7540.10
1 1.56+0.31 0.810.33
5 2.6+0.76 1.994+0.45
1,000 10 3.354+0.83 3.13£0.57
50 5.36+1.07 3.84+0.55
100 5.64+1.02 4.3740.81
1 5.55+0.91 1.02+0.47
5 7.38+0.83 1.04£0.53
1,500 10 11.51+1.02 3.35£0.58
50 11.61+1.38 3.4410.62
100 12.0941.11 3.47140.84
1 7.97+1.31
5 10.51£1.85
2,000 10 14.944+1.94
50 17.61+2.13
100 -
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Table S10. Comparison of EMH between the present study and previously reported strain sensors

. Strain Resistan?e Supplementary
Material (%) hysteresis reference
(%)
100 7.5
IC 400 7.9 This work
700 17.4
100 1.5
400 1.6
MC3 700 1.9 This work
1,000 2.1
1,300 2.1
100 0.3
400 0.5
700 0.9
1,000 1.0
DMC 3 This work
1,300 1.0
1,500 1.0
1,600 3.8
2,000 8.0
100 23.1
300 19.1
ChCI/AA/PEDOT:PSS eutectogel [1]
500 42.6
800 559
100 12.5
H- ChCI/AA/PEDOT:PSS 300 1.6
eutectogel 500 30.3 [1]
800 45.9
PEDOT:PSS/PVA hydrogel 300 1.5 [2]
CNT/PEDOT:PSS@NR 100 108 3]
microfiber
PEDOT:PSS—PAAm organogel 50 10.0 [4]
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MWCNT/PEDOT:PSS based
fiber

PEDOT:PSS on PDMS
microchannel

VSNPs/PAAm/alginate hydrogel
nanocomposites

K-carrageenan/PAAm hydrogel

PVA/AgNWs Bilayer hydrogel
nanocomposites

MWCNT/silicone rubber
conducting nanocomposites

POCL elastomer
EG-NaCl-Ecoflex ionogel

50

30

100
1,000
250

50
100
200
300
300
250

15.2

9.2

2.4

9.6

7.0

3.0
5.0
8.0
11

1.0
0.2

(7]
(8]
[9]

[10]
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Table S11. Gauge factor (GF) of eutectogel sensors

Strain interval (%) IC MC 3 DMC 3
0—600 0.71 1.17 1.66
600—1000 1.47 1.97 2.45
1000—1400 - 2.67 -
1000—1600 - - 3.91
1600—2000 - - 1.8
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Table S12. Response time of the IC sensor at various strain rates under 150% strain

Strain rate Res.ponse Strain rate Res.ponse Strain rate Res.ponse
time time time
(Hz) (tms) (Hz) (ms) (Hz) (ts)
0.17 2,360 1.83 278 3.5 122
0.33 1,300 2 216 3.67 122
0.5 895 2.17 216 3.83 113
0.67 625 2.33 216 4 113
0.83 486 2.5 216 4.17 103
1 486 2.67 180 4.33 94
1.17 416 2.83 180
1.33 347 3 150
1.5 278 3.17 141
1.67 278 3.33 132
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Table S13. Response time of the MC 3 sensor at various strain rates under 150% strain

Strain rate Res.ponse Strain rate Res.ponse Strain rate Res.ponse
time time time
(Hz) (tms) (Hz) (ms) (Hz) (tms)
0.17 1,805 1.83 216 3.5 113
0.33 1,180 2 216 3.67 103
0.5 833 2.17 180 3.83 103
0.67 625 2.33 180 4 95
0.83 486 2.5 180 4.17 95
1 416 2.67 144 4.33 94
1.17 347 2.83 144
1.33 347 3 144
1.5 278 3.17 144
1.67 278 3.33 113
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Table S14. Response time of the DMC 3 sensor at various strain rates under 150% strain

Strain rate Res.ponse Strain rate Res.ponse Strain rate Res.ponse
time time time
(Hz) (ms) (Hz) (tms) (Hz) (tms)
0.17 1,805 1.83 208 3.5 103
0.33 1,110 2 180 3.67 103
0.5 763 2.17 180 3.83 94
0.67 555 2.33 180 4 94
0.83 486 2.5 144 4.17 84
1 416 2.67 144 4.33 84
1.17 347 2.83 144
1.33 277 3 144
1.5 277 3.17 131
1.67 208 3.33 113
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Table S15. Relative resistance change, response time, and mechanical properties of the uncut IC sensor
during self-healing following 100,000 fatigue cycles under 50% strain at 1 Hz

Self-healing time Stretch—release cycle (pri;.tine) 100,000
®) Applied strain 0% 50%
AR/R; 0 0.337
Response time (ms) 486 486
‘ Elongation (%) 1,038 (£15.3) 612
Tensile strength (kPa) 90 (£2.9) 36
AR/R, - 0.18
Response time (ms) - 486
2 Elongation (%) - 1,017
Tensile strength (kPa) - 44
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Table S16. Relative resistance change, response time, and mechanical properties of the uncut MC 3 sensor
during self-healing following 100,000 fatigue cycles under various strains at 1 Hz

Stretch—release 0
Self-healing time cycle (Pristine) 100,000
(h)
Applied strain 0% 50% 100% 150%
AR/R| 0 0.051 0.125 0.158
Response time 416 416 416 486
(ms)
’ Elongation (%) 1,600 1,590 1,586 1,262
(£21.3) ’ ’ ’
Tensile strength
(kPa) 95 (+4.3) 80 67 89
AR/R - 0.009 0.011 0.012
Response time _ 416 416 416
12 (ms)
Elongation (%) - 1,608 1,615 1,614
Tensile strength _
(kPa) 98 94 92
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Table S17. Relative resistance change, response time, and mechanical properties of the uncut DMC 3 sensor
during self-healing following 100,000 fatigue cycles under various strains at 1 Hz

Stretch—release 0

Self-heaing cycle (Pristine) 100,000
time (h
ime (h) Applied strain 0% 50% 100% 150% 200%
AR/R, 0 0.048 0.098 0.156 0.646
Response time 416 416 416 416 416
(ms)
0 o 3,065
Elongation (%) (+53) 3,022 3,011 3,008 2,634
Tensile strength
(kPa) 142 (+3.1) 116 115 101 93
AR/R| - 0.028 0.048 0.096 0.164
Response time — 416 416 416 416
6 (ms)
Elongation (%) - 3,035 3,045 3,037 3,013
Tensile strength
(kPa) 135 126 122 125
AR/R, — 0.009 0.011 0.012 0.032
Response time — 416 416 416 416
12 (ms)
Elongation (%) - 3,064 3,059 3,042 3,119
Tensile strength
(kPa) 147 146 148 141
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Table S18. Crack length (mm) of precut sensors during cyclic stretching

(mm)
Sample IC DIC
Stretch (A) I
1.25 1.5 1.75 2 1.25 1.5 1.75 2
Cycle
0 10 10 10 10 10 10 10 10
1,000 10 10.5 10.5 12 10 10.1 10.1 10.7
2,000 10 10.5 11 13 10 10.2 10.4 11.2
3,000 10 10.5 11.5 14 10 10.2 10.8 11.6
4,000 10 10.5 12.2 15 10 10.3 11.1 11.9
5,000 10 10.5 12.3 16 10 10.3 11.4 12.4
6,000 10 11 12.6 17 10 10.3 11.6 12.6
7,000 10 11 12.8 18 10 10.4 11.7 12.6
8,000 10 11 - - 10 10.4 11.9 12.6
9,000 10 11 - - 10 - - -
10,000 10 11 - - 10 - - -
Sample MC 3 DMC 3
Stretch (A) I
1.25 1.5 1.75 2 1.25 1.5 1.75 2
Cycle
0 10 10 10 10 10 10 10 10
1,000 10 10 11 14.5 10 10.1 10.7 10.8
2,000 10 10 11 17 10 10.2 11.2 11.3
3,000 10 10 11.5 19 10 10.3 11.7 12.2
4,000 10 10 12 20 10 10.4 11.8 13.1
5,000 10 10.5 13 22 10 10.4 12.1 13.2
6,000 10 10.5 13.5 24 10 10.5 12.2 13.2
7,000 10 10.5 13.5 27 10 10.5 12.5 133
8,000 10 10.5 13.5 30 10 10.5 12.5 133
9,000 10 10.5 13.5 - 10 - - -
10,000 10 10.5 13.5 - 10 - - -
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Table S19. Crack extension rate (Ac/AN) for uncut and precut sensors under cyclic stretching

Crack Extension rate Ac/AN (um/cycle)

Stretch (1)
IC DIC MC3 DMC3
Non-notch 1.5 0 0 0 0
1.25 0 0 0 0
1.5 0.167 0.055 0.033 0.085
Single notch
1.75 0.464 0.252 0.561 0.443
2 1.5 0.440 2.833 0.673
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Table S20. Energy release rate (G) for uncut and precut sensors under cyclic stretching

Energy release rate, G (J/mz)

Stretch (1)
IC DIC MC3 DMC3
1 I I
Non-notch 1.5 35.10 33.51 56.55 57.50
1.25 16.77 18.02 26.52 35.64
1.5 38.45 45.66 64.49 84.69
Notch
1.75 68.16 85.85 113.24 115.34
2 106.78 93.99 189.87 127.63

25



Table S21. Summary of electrical and mechanical properties of eutectogel sensors

IC MC 3 DMC 3
Tensile strength (kPa) 90 95 142
Elongation (%) 1,038 1,600 3,065
Elastic Modulus (kPa) 11 17 26
Sensitivity [= GF] (%) 1.47 1.97 3.91
Electromechanical hysteresis
at 100% strain (%) 75 1.3 0.3
Toughness (J/m?) 4,429 8,808 20,337
Fatigue threshold, G. (J/m?) 26.6 56.7 83.4
No fatigue 495 1,005 3,085
Work  of 0 h* 150 775 1,547
fracture
(kJ/m?) 6 h** - - 2,385
12 h*** 295 1,043 3,060

*: Tensile tests were performed on IC, MC 3, and DMC 3 samples immediately after 100,000
cycles of fatigue testing at strains of 50%, 150%, and 200%, respectively.

**: Tensile tests were performed on IC, MC 3, and DMC 3 samples after 6 hours of self-healing
following 100,000 cycles of fatigue testing at strains of 50%, 150%, and 200%, respectively.

*#%: Tensile tests were performed on IC, MC 3, and DMC 3 samples after 12 hours of self-
healing following 100,000 cycles of fatigue testing at strains of 50%, 150%, and 200%,
respectively.
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Table S22. Comparison of fatigue life cycles between the present study and previously reported stretchable
sensors under cyclic stretching in the uncut condition

Elongation Response  Fatigue life
Material at break Max. GF time cycle
(%) (ms) (strain)

Suppl.
Ref.

>100,000
(200%)

84(433Hz) 46,177 This

DMC 3 3,050 3.91 416(1Hz)  (250%) work

30,217
(300%)

>100,000
(150%)
44,797

94(4.33Hz)  (200%) This
(250%)

7,417
(300%)

MC3 1,600 2.67

>100,000
(50%)

94(4.33Hz) 8,409 This

1C 1,038 1.47 486(1 Hz) (100%) work

5,929
(150%)

11,300
(50%)
ChCI/AA/PEDOT:PSS 4,799

802 4.48 61

eutectogel (100%) [1]

2,399
(150%)

100,000
(50%)
H-ChCI/AA/PEDOT:PSS 60,000
eutectogel 964 315 40 (100%) (1]
5,949
(150%)

PAAM/SA/MXene/PEDOT 600
:PSS nanocomposite 1,350 1.99 624 o [13]
(50%)
hydrogel
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PAM/HPMC/PEDOT:PSS
polymer hydrogel

PAM/CCMEF/PEDOT:PSS
composite hydrogel

PAA-AI3*/PEDOT:PSS/ZB
polymer hydrogel

Gr/PEDOT:PSS/MnO»
NWs nanocomposites

PDMS/CNT
nanocomposites

AgNPs/CNTs/PDA-TPU
mat

SA/LM/Amm ionic
hydrogel

PEDOT:PSS@CB/CNT-
TPU membrane

PVA/MWCNT/PEDOT:PSS
nanocomposites on PDMS

CNTs/PDA/Elastic Bands

Ti3CoTx on PDMS

PVA/PEDOT:PSS
elastomer

Ti3CoTx—graphene on
PDMS

Graphene nanoplatelets—
AgNWs on PDMS

rGO-TPU fiber mat

CBs/CNTs nanocomposites

GWF (Graphene woven
fabric)

1,640

837

1,457

320

100

640

1,348

910

50

920

53

30

74.1

22

200

50

17.58

0.31

1.32

1.2

3.1

2 x10°

0.6

5.6

52

129.2

178.4

110

190.8

41.5

79

2.18

223

150

400

79

200

2,300

20

220

130

40

130

50

200

125

72

300
(100%)

1,100
(300%)

150
(100%)

5,000
(100%)

5,000
(100%)

1,000
(200%)

350
(200%)

4,000
(25%)

10,000
(10%)

10,000
(100%)

5,000
(20%)

400
(20%)

10,000
(40%)

1,000
(10%)

6,000
(50%)

1,000
(15%)

1,000
(3%)

[19]

[20]

[21]

[23]

[24]

[25]

[26]

[27]

[29]

[30]
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Figure S1. Photographs of fabricated eutectogels (DMC 3) in various shapes and sizes: (a) square (125 x
125 mm) and (b) circular (¢58 mm). Optical microscope images of MC-type conductors (MC 1-4) with
varying PEDOT:PSS contents: (c) 4.1 wt%, (d) 5.2 wt%, (e) 7.0 wt%, and (f) 8.0 wt%.
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Figure S2. Particle size distribution of DMC conductors (DMC 1-4) with increasing PEDOT:PSS contents:
(a) 4.1 wt%, (b) 5.2 wt%, (c) 7.0 wt%, and (d) 8.0 wt%..

Panels (a) and (b) show monomodal distributions with area-weighted average particle sizes of
approximately 17 nm, indicating well-dispersed PEDOT:PSS domains in DMC 1 and DMC 2. Panel (c),
corresponding to DMC 3 (7.0 wt%), exhibits a bimodal distribution consisting of a dominant nanoparticle
population (mean diameter: 20.8 nm) and a minor fraction of micron-sized aggregates (~8.8 um), marking
the onset of aggregation. In panel (d), representing DMC 4 (8.0 wt%), the morphology is dominated by
large PEDOT:PSS aggregates with an average size of 16.2 um and a subpopulation of 17 nm particles, with
an approximate 2:1 area frequency ratio (aggregates:nanoparticles). These results support the interpretation
of a percolation threshold at 7.0 wt% and aggregation-induced network collapse beyond 8.0 wt%, as
discussed in the main text and Fig. 3a.
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Figure S3. (a) Optical transmittance of eutectogel conductors; (b) Swelling ratio of eutectogel conductors
as a function of time (c) Electrical conductivity of DMC 3 as a function of swelling ratio measured by the
four-point probe method; (d) Stress-strain curves of DMC 3 at various swelling ratios.
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Figure S4. XPS spectra of (a) IC, (b) MC 3, (¢) DIC, and (d) DMC 3 sensors.
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Figure S10. Response signals of the sensors during cyclic stretch-release motions at 100% strain under

different strain rates: (a, d) IC, (b, €) MC 3, and (c, f) DMC 3 at 4.33Hz; (g) IC, (h) MC 3, and (i) DMC 3
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Figure S12. Stress—strain curves and response signals of the uncut DMC 3 sensor after autonomous
recovery following 100,000 stretch—release cycles at 1 Hz under strains of (a, ¢) 50%, (b, d) 100%, and (c,

f) 150%.
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Figure S13. Relative resistance changes (AR/Ry) of DMC 3 sensors measured at room temperature under
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DMC 3 sensors.
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Figure S14. Relative resistance changes (AR/R¢ ) of DMC 3 sensors at room temperature under different
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Figure S15. Schematic of fatigue cyclic test conditions for (a) uncut and (b) pre-cut sample with single
notch. Rectangular samples (50x30x1.0 mm?) were clamped in two rigid grips and mounted in a tensile
testing machine with a 100 N load cell. The length (H = 10 mm) and width (W = 30 mm) of samples in the
undeformed state were used for cyclic stretch tests. Fatigue-resistance tests were performed using the
single-notch method with a 10 mm pre-cut crack length, subjected to cyclic stretching at maximum stretch

(Amax) at a crosshead speed of 750 mm/min.
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10000 cycle

Figure S19. Progression of pre-crack length in single-notch IC sensors during fatigue cycling tests at

various Amax levels.
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10000 cycle

Figure S20. Progression of pre-crack length in single-notch DIC sensors during fatigue cycling tests at

various Amax levels.
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10000 cycle

Figure S21. Progression of pre-crack length in single-notch MC 3 sensors during fatigue cycling tests at

various Amax levels.
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10000 cycle

Figure S22. Progression of pre-crack length in single-notch DMC 3 sensors during fatigue cycling tests at

various Amax levels.
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8000 cycle

Figure S23. Photographs showing self-healing of (a) single-notch DIC at Amax=1.75 and (b) single-notch
DMC 3 at Amax=1.5 during cyclic stretching from 10 to 8,000 cycles.
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Figure S24. Response signals from the skin-attached DMC 3 sensors with different swelling ratios
monitoring various human physiological movements. Ankle movements: (a) 10% and (c) 50%; Wrist

movements: (b) 10% and (d) 50%.

52

(b) .

ARIR,
=]
'S

a 6 8 10
Time (s)

4 8 8 10
Time (s)



Max. e = 300%

AR/R,

24 2.4 2.4
2.0 2.0 2.0
16 16 16
- - -
% 1.2 5 12 5 12
< £ £
0.8 0.8 08
0.4 0.4 0.4
0.0 0.0 0.0
o 2 4 6 8 10 6990 6992 6994 6996 6998 7000 7190 7192 7194 7196 7198 7200
Time (s) Time (s) Time (s)

Figure S25. Relative resistance changes of the uncut DMC 3 sensor over 7,000 stretch-release cycles under
300% strain (Amax=4) at 1 Hz (top). The bottom graph shows the stable resistance response of the DMC 3

sensor during cyclic testing.
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