
Supplemental Figure 1. Empirical QQ Plots of the Normalized Spike-Count Distributions 
at Retrieval Partitioned by Neuronal Excitability at Encoding with the Top Percentage of 
Data Removed 
 

 
 

Note. QQ plots visualizing the shapes of the target-by-neuron and novel-by-neuron item 
distributions with the top 0.25% of the recordings from both distributions removed. Compare the 
QQ plots in this figure to the QQ plots of 100% of data plotted in Figure 4. For the hippocampus, 
most spike counts fell densely on the diagonal line with a sharp deflection upward towards the y-
axis in Figure 4a, indicating the normalized spike count distribution for targets was more skewed 
than the distribution for novel items. In this figure, panel (a) demonstrates the deflection 
disappeared after removing the top 0.25% of data, indicating that relatively few hippocampal 
neurons fired strongly in response to targets mostly associated with excitability at encoding (Low-
High) when compared to novel items. No differences between the target-by-neuron and novel-by-
neuron distributions were observed for the amygdala (Figure 4b). None of the QQ plots indicated 
a difference in skewness between targets and novel item distributions for the subsets of targets in 
which spiking decreased (Panel e & f: High-Low), remained high (Panel c & d: High-High), or 
remained low (Panel g & h: Low-Low) for either the hippocampus or the amygdala, a similar 
pattern shown in Figure 4.  
 

 
 
 
 
 
 
 
 
 

 



Supplemental Table 1. Statistical Results for Mean, Standard Deviation, and Kurtosis of 
the Target vs. Foil Distributions at Retrieval Partitioned by the Pattern of Target Firing at 
Encoding 

 

 
Note. No significant  interactions were present for a given statistical moment between the target-
vs.-foil normalized spike count distributions in one region (e.g., the hippocampus) compared to 
the corresponding difference the other region (e.g., the amygdala) according to bootstrap tests 
(k=10,000, p < .05, Bonferroni corrected). Within the hippocampus, a significant difference 
between the target vs. foil mean, standard deviation, and kurtosis was observed only for targets 
that were associated with excitability at encoding (Low-High; p < .05, Bonferroni corrected). 
Within the amygdala, a significant difference was present for the difference in means for the targets 
vs foils for those targets associated with excitability at encoding (Low-High), decreased 
excitability (High-Low), and those that remained low (Low-Low). Additionally, within the 
amygdala, a significant difference was present for the difference in standard deviation for the 
targets vs foils for only those targets associated with excitability at encoding (Low-High). The 
corresponding analysis for skewness is reported in Table 2 of the main text. Bonferroni corrected: 
* = p < .05, ** = p < .01, *** = p < .001 

 
 
 

 

  Mean   Mean   
 Interaction Hippocampus Amygdala 

p Targets Novel p Targets Novel p 
Low-High 0.597 0.13 0.08 0.001** 0.21 0.16 <0.0001*** 
High-High 0.077 0.11 0.08 0.037 0.16 0.16 0.874 
High-Low 0.063 0.06 0.08 0.252 0.11 0.16 <0.0001*** 
Low-Low 0.104 0.04 0.08 0.013 0.10 0.16 <0.0001*** 

 
  Standard Deviation Standard Deviation 

 Interaction Hippocampus Amygdala 
p Targets Novel p Targets Novel p 

Low-High 0.031 1.41 1.18 <0.0001*** 4.0 1.23 0.0045** 
High-High 0.476 1.21 1.18 0.541 1.26 1.23 0.400 
High-Low 0.364 1.14 1.18 0.426 1.17 1.23 0.095 
Low-Low 0.218 1.13 1.18 0.356 1.14 1.23 0.007 

 
  Kurtosis Kurtosis 

 Interaction Hippocampus Amygdala 
p Targets Novel p Targets Novel p 

Low-High 0.014 114.6 29.9 0.012* 28.7 34.9 0.736 
High-High 0.505 17.7 29.9 0.694 28.9 34.9 0.703 
High-Low 0.435 12.2 29.9 0.607 18.7 34.9 0.388 
Low-Low 0.227 32.9 29.9 0.924 16.2 34.9 0.183 

 



Supplemental Figure 2. Empirical QQ Plots for Remembered Targets vs. Foils and 
Forgotten Targets vs. Foils with the Top Percentage of Data Removed 
 

 
 

Note. QQ plots visualizing the shapes of the target-by-neuron and novel-by-neuron item 
distributions with the top 0.25% of the recordings from both distributions removed. Compare the 
QQ plots in this figure to the QQ plots of 100% of data plotted in Figure 5. For the hippocampus, 
most spike counts fell densely on the diagonal line with a sharp deflection upward towards the y-
axis in Figure 5a, indicating the normalized spike count distribution for targets was more skewed 
than the distribution for novel items. In this figure, panel (a) demonstrates the deflection 
disappeared after removing the top 0.25% of data, indicating that relatively few hippocampal 
neurons fired strongly in response to targets when compared to novel items. No difference between 
the forgotten target-by-neuron and novel-by-neuron distributions was observed for the amygdala 
(Figure 5b). None of the QQ plots indicated a difference in skewness between targets and novel 
item distributions for forgotten items for either the hippocampus or the amygdala, a similar pattern 
shown in Figure 5c and 5d.  

 
 



Supplemental Figure 3. Empirical QQ Plots for Remembered vs. Forgotten Targets with 
the Top Percentage of Data Removed 

 
 

 
 
 
Note. QQ plots visualizing the shapes of the remembered target-by-neuron and forgotten 

target-by-neuron item distributions with the top 0.25% of the recordings from both distributions 
removed. Compare the QQ plots in this figure to the QQ plots of 100% of data plotted in Figure 
6. For the hippocampus, most spike counts fell densely on the diagonal line with a sharp deflection 
upward towards the y-axis in Figure 6a, indicating the normalized spike count distribution for 
remembered targets was more skewed than the distribution for forgotten targets. In this figure, 
panel (A) demonstrates the deflection disappeared after removing the top 0.25% of data, indicating 
that relatively few hippocampal neurons fired strongly in response to targets that were remembered 
when compared to forgotten items. No difference between the remembered target-by-neuron and 
forgotten target-by-neuron distributions was observed for the amygdala (Figure 6b).  

 
 
 
 
 
 
 
 
 
 
 

 
 
 



Supplemental Figure 4. Empirical QQ Plots for Targets Partitioned by Neuronal 
Excitability at Encoding as a Function of Subsequent Memory 
 

  
 

 

 
Note. No differences in skewness 

between the target-by-neuron and novel-by-item 
recording distributions were detected in either 
the hippocampus or amygdala for remembered or 
forgotten items within the different levels of 
firing at encoding (High-High: a-d, High-Low: 
e-h, Low-Low: i-l). Significant differences in 
skewness and visual evidence of the item-
specific memory signal for the Low-High 
condition are reported in Figure 7 in the main 
text.  
 

 
 
 
 
 
 
 



Supplemental Figure 5. Empirical QQ Plots for Targets Partitioned by Neuronal 
Excitability at Encoding as a Function of Subsequent Memory with the Top Percentage of 
Data Removed 
 

  

  
 
 
Note. In this figure, panel (a) demonstrates the deflection disappeared after removing the top 
0.25% of data, indicating that relatively few hippocampal neurons fired strongly in response to 
targets that were remembered and were also associated with excitable neurons at encoding 
(compare to Figure 7a) when compared to novel items. No differences between the remembered 
target-by-neuron or forgotten target-by-neuron distributions and the novel-by-neuron distribution 
were observed for the hippocampus or the amygdala, which persisted when removing a small 
fraction from both distributions (b-p). 



Generic Memory Signal 
 

The generic recognition memory signal is (by definition) not item specific and instead 
consists of a difference in the average firing rate to old items compared to new items on the 
recognition test. This difference might be observed either at the level of single neurons (e.g., a 
neuron with a significantly higher firing rate to old items vs. new items) or at the population 
level (aggregated measurements of all recorded single neurons exhibiting a higher rate of 
responding to old items vs. new items). Bootstrapping analyses (see above) determined whether 
a higher firing rate for target or novel items was observed in the hippocampus or amygdala. For 
each single neuron, bootstrap trials (k=10,000 trials) compared the mean normalized firing rate 
for target and novel items. Each bootstrap trial 1) combined the target (Ntarget) and novel (Nnovel) 
item normalized spike counts 2) randomly sampled with replacement from that combined set of 
measurements to generate a new set of Ntarget normalized “target” spike counts and a new set of 
Nnovel normalized “novel” spike counts, then 3) calculated the difference in the means between 
the two sampled distributions, resulting in 10,000 mean different scores from the bootstrapped 
samples. The proportion of these trials in which the absolute value of the difference in means 
between the “target” and “novel” distributions was greater than or equal to the observed 
difference in the original target and novel distributions determined the P value. Significance was 
defined as p < 0.05 (two-tailed), unless otherwise specified. 

As defined above, a difference in neural activity in response to previously studied items 
(targets) or novel items (novel) items is what we refer to as the “generic” episodic memory 
signal. The generic signal can be measured at the level of individual neurons or at the population 
level. Individual neurons that exhibit this property (i.e., firing rates that differ for targets vs. 
novel) are considered to be memory-selective. Memory-selective neurons that increase in spike 
count in response to targets compared to novel items are “repetition detectors”, and those that 
increase in spike count in response to novel items compared to targets are “novelty detectors”. 
The generic memory signal in single neurons has been observed in prior work when examining 
all responses irrespective of the behavioral response (Urgolites et al., 2022) or when excluding 
error trials (Rutishauser et al., 2010, 2015). We identified the generic memory signal in single 
neurons in the hippocampus and in the population firing of the amygdala.  

Each recorded neuron across was tested for the generic memory signal was tested across all 
patients and session. The test compared spikes for targets vs. novel items during the poststimulus 
window of 200ms to 1-second after the stimulus presentation (see Methods; replication of 
Urgolites et al., 2022).  Using this poststimulus window for all trials irrespective of behavioral 
response, the generic signal was not detected. More specifically, of the 736 hippocampal 
neurons, 32 (4.3%) were memory-selective, a proportion not significantly greater than the 36.8 
expected by chance (α = 0.05; 736 × 0.05 = 36.8). Among these, 18 neurons were repetition 
detectors, and 14 neurons were novelty detectors. Of the 1043 amygdala neurons, 50 (3.8%) 
were memory-selective, not significantly exceeding the 52.2 neurons expected by chance (α = 
0.05; 1043 × 0.05 = 52.2). Among these, 21 neurons were repetition detectors, and 29 neurons 
were novelty detectors.  

Next, we aimed to replicate the identification of the generic memory signal previously 
reported with a subset of this dataset (Rutishauser et al., 2015). Following a similar approach, we 
extended our analysis to include spike counts within an extended poststimulus window of 200ms 
to 1.7-seconds after image onset, while also excluding error trials. Using this method, the generic 



memory signal was detected in 58 of the 736 hippocampal neurons (7.9%), significantly 
exceeding the number of neurons expected at chance (α = 0.05; p = 0.0005). Among these 
neurons, 34 were repetition detectors and 24 were novelty detectors. Of 1043 amygdala neurons, 
50 (5.5%), were memory-selective, which was not significantly greater than chance. Of these, 
there were 23 repetition detectors and 27 novelty detectors. Therefore, we replicated the 
identification of the generic memory signal when examining correct responses during an 
extended post-stimulus window and found it was selective to the hippocampus. 

Additionally, the difference in normalized response count for target and novel items in the 
hippocampus and amygdala was tested across all patients and sessions, for both poststimulus 
windows and trial types of the single neuron analyses of the generic memory signal. For the 
replication of Urgolites et al., 2022, mean firing in the amygdala was significantly greater for 
novel compared to target items (p=0.0374, mean target=0.14,mean novel=0.16,SD=0.005; Table 
1). No significant difference in population firing was detected in the hippocampus between target 
and novel items (p=0.667, mean target=0.08,mean novel=0.08,SD=0.006; Table 1). For the 
replication of Rutishauser et al., 2015, mean firing in the amygdala was significantly greater for 
novel compared to target items (p=0.0027, mean hit = 0.15, mean correct rejection = 0.18). No 
significant difference in population firing was detected in the hippocampus between target and 
novel items (p=0.314, mean hit=0.07,mean correct rejection=0.06). We identified the generic 
memory signal in single neurons in the hippocampus and in the population firing of the 
amygdala 

 

 
Evidence against the notion newly formed episodic memories are 
encoded via overlapping neural assemblies 
 

The idea that episodic memories are represented by overlapping (not pattern-separated) 
neural assemblies was based on work involving “concept cells” (Quiroga, 2012). As noted by 
Quian Quiroga (2020), concept cells fire to a particular concept, such as a famous person (e.g., 
James Brolin) and not to other concepts. A concept cell is activated whether participants are 
looking at pictures of the person, reading the person’s name, or “…even when recalling or 
thinking about the person”(p. 1002). In short, any stimulus that triggers the thought of the 
famous person activates the concept cell. Concept cells reflect semantic memory, but their 
apparent role in episodic memory has been taken as evidence against pattern separation. For 
example, if the “preferred” (P) concept like James Brolin is experimentally associated with a 
different “non-preferred” (NP) stimulus like the Eiffel Tower in a single-trial episodic memory 
task (e.g., a picture of James Brolin standing next to the Eiffel Tower), some concept neurons 
immediately expand their tuning in such a way as to now also fire to the NP stimulus (Ison et al., 
2015). Critically, immediately upon learning the association, the neuron continued responding to 
Brolin and now also fired to Brolin standing near the Eiffel Tower and to the Eiffel Tower 
without Brolin. These neurons were referred to as “pair-coding” neurons. The existence of these 
neurons was interpreted as being inconsistent with the notion that episodic memories are coded 
in distinct, pattern-separated assembles because the episodically learned associations were 
encoded by expanding the tuning of the neurons initially responding to a concept, not by 
recruiting new neurons to form non-overlapping (pattern-separated) representations.  



However, Ison et al. (2015) pointed out another possible interpretation of their findings 
that did not require the assumption that the concept neuron episodically expanded its tuning at 
all. As they put it: “Two possible mechanisms can in principle account for the increased response 
to the NP stimuli after learning. On the one hand, neurons can rapidly change their tuning and 
start firing to the NP stimuli directly—that means, a neuron originally encoding the P stimulus 
starts encoding the NP stimulus after learning—in which case, the time courses of both P and NP 
signals are expected to be similar. On the other hand, the NP stimuli can act as a cue to evoke the 
representation of (and in turn the neuron’s firing to) the P stimuli” (p. 226). According to the 
second interpretation, the James Brolin concept neuron responded to non-preferred Eiffel Tower 
stimulus after associative learning only because it now triggered the thought of James Brolin. As 
noted above, a concept neuron is defined as a neuron that responds whenever any stimulus 
triggers a thought of its preferred concept. According to this interpretation, the fact that the 
James Brolin neuron now responds to the Eiffel Tower only means that it is still behaving as a 
concept neuron (not that it has expanded its turning based on an episodically learned 
association). 

To distinguish between these two possible mechanisms, Ison et al. (2015) analyzed the 
response onset latencies of the pair-coding neurons to the P and NP stimuli. If the concept neuron 
expanded its tuning based on the newly learned episodic association, similar latency onsets for 
the P and NP stimuli should be observed. If the concept neuron did not expand its tuning but is 
instead activated by NP stimulus because it triggers the thought of the P stimulus, a longer 
latency onset should be observed for the NP stimulus compared to the P stimulus. Out of 21 pair-
coding neurons, 13 showed no significant difference in latency between the P and NP stimuli 
(these were labeled Type 1 neurons), and 8 showed a significantly slower latency for NP stimuli 
compared to P stimuli (these were labeled Type II neurons), as if the NP stimuli merely triggered 
the thought of their corresponding P stimuli. The existence of Type I neurons was taken as 
evidence that some neurons did indeed expand their tuning as a result of the episodically learned 
association between the P and NP stimuli. This finding was interpreted as being inconsistent with 
pattern-separated episodic representations.  

However, a null result for neurons labeled as “Type I” does not constitute strong evidence 
against a simpler explanation according to which the latencies for all 21 pair-coding neurons 
were longer for the NP stimuli than the P stimuli. Unless statistical power was very high, the so-
called Type I neurons might simply reflect a failure to detect a true latency difference for these 
neurons as well. The idea that there are two distinct types of neurons based on the latency 
measures implies that the 21 P-NP latency difference-scores constitute a mixture distribution, 
one with a mean difference centered on 0 (Type I neurons) and another with a true mean 
difference greater than 0 (Type II neurons). However, no test for a mixture distribution was 
reported, so we performed such a test on the latency scores for the 21 pair-coding neurons 
estimated from Figure S4 of Ison et al. (2015). We first fit a single Gaussian distribution (free 
parameters = one mean and one standard deviation) to the 21 latency difference scores (P latency 
minus NP latency), and then fit a Gaussian mixture distribution (free parameters = two means, 
two standard deviations, and a mixing proportion) to the same data. The fits were performed 
using maximum likelihood estimation, and the quality of the fits was compared using both AIC 
and BIC to adjust for the difference in the number of free parameters. According to both 
goodness-of-fit measures, a single Gaussian distribution model provided a better fit than the two-
Gaussian mixture model (AIC = 261.35 and BIC = 263.44 for the single-Gaussian model; AIC = 



263.46 and BIC = 268.68 for the two-Gaussian mixture model). Thus, there is no evidence for 
two types of neurons based on the latency data.  

In light of the above results, we next simply compared the average latency of the 21 pair-
coding neurons in response to the P stimulus vs. the experimentally associated NP stimulus. This 
approach does not assume a categorical distinction between Type I and Type II neurons. Across 
all 21 pair-coding neurons, the average latency to the associated NP stimulus (322 ms) was 
significantly longer than the average latency to the P stimulus (259 ms), P = .019. This is the 
expected result if the experimentally learned NP stimulus triggers a thought of the P stimulus, 
which in turn, activates the concept neuron. According to these results, the activity of the concept 
neuron in response to the recently associated NP stimulus still reflects semantic memory, not 
episodic memory. That being the case, the data do not weigh against the notion that episodic 
memories are coded in non-overlapping neural assembles (assemblies that were not recorded in 
this experiment, which only recorded from semantic-memory concept neurons). 


