

1	Supplementary Information
2	Supplementary Methods.....2
3	Sampling rationale.....2
4	Definition of the Thermo-Motility Index.....2
5	Discussion on the endolymph viscosity of diapsids.....13
6	Supplementary Note 1 (<i>Dimetrodon</i> photogrammetry).....14
7	Supplementary Note 2 (Summary of the statistics).....15
8	Supplementary Note 3 (Divergence times and Last Occurrence Datum).....22
9	Divergence times.....22
10	Last appearance datum.....43
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

22 **Supplementary Methods**

23 **Sampling rationale**

24 Our sample captures taxonomic, phylogenetic, morphological, ecological, behavioural and locomotor
25 diversity, but was constrained by the availability of material. We focused on densely sampling mammals
26 and birds, which we used as independent models for endotherms; we used the large lepidosaurian
27 sample as a model for ectotherms. The remaining extant specimens covered the range of body
28 temperatures in vertebrates, but they are not the focus of this study. Our fossil sample included several
29 mammaliamorphs, where the transition to endothermy is thought to occur. Although less accurate than
30 the 3D sets, the 2D dataset was only used to extend the analysis to lower body temperatures, which
31 clarified the relationship with the TMI. Predictions for the thermal regime of fossil synapsids are only
32 based on the 3D sets.

33

34 **Definition of the Thermo-Motility Index**

35 In this study, in the context of a single duct model, we consider the mass and damping terms specific
36 for the common crus, simple crus, anterior utriculus and posterior utriculus as being negligible. We re-
37 express the upper corner frequency of a semicircular duct (Rabbitt et al., 2004, David et al. 2016):

38
$$\omega_{2,n} \approx \frac{\mu_{(T)} \lambda_{\mu,S,n}}{2\rho\pi \cdot a_{S,n}} \quad (\text{Equ. SM 1})$$

39 in a way that clearly separates endolymph viscosity, as the first term, from information that is provided
40 by bony semicircular canals, as the third term. Information only available from membranous
41 semicircular ducts corresponds to the second term:

42
$$\omega_{2,n} \approx \mu_{(T)} \cdot \alpha_{\omega_{2,n}} \cdot \beta_{\omega_{2,n}} \quad (\text{Equ. SM 2})$$

43 where

44
$$\alpha_{\omega_{2,n}} = \frac{\lambda_{\mu,S,n}}{2\rho\pi \delta_{a_S:r_{S,B}+R_{e,B},n}} \quad (\text{Equ. SM 3})$$

45 ,

46
$$a_{S,n} = \delta_{a_S:r_{S,B}+R_{e,B},n} b_{a_S:r_{S,B}+R_{e,B},n} r_{S,B,n}^{m_{a_S:r_{S,B},n}} R_{e,B,n}^{m_{a_S:R_{e,B},n}} \quad (\text{Equ. SM 4})$$

47 ,

48
$$\beta_{\omega_2,n} = \frac{1}{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}} b_{\omega_2:R_{e,B},n} R_{e,B,n}^{m_{\omega_2:R_{e,B},n}} \text{ (Equ. SM 5)}$$

49 ,

50
$$r_{S,B,n} = \frac{d_{S,B,n}}{2} = \delta_{r_{S,B}:R_{e,B},n} b_{r_{S,B}:R_{e,B},n} R_{e,B,n}^{m_{r_{S,B}:R_{e,B},n}} \text{ (Equ. SM 6)}$$

51 ,

52
$$R_{e,B,n} = \frac{2\sqrt{\pi}L_{e,B,n} + 4\pi\sqrt{\Lambda_{e,B,n}}}{8\pi\sqrt{\pi}} \text{ (Equ. SM 7)}$$

53 ,

54
$$b_{\omega_2:R_{e,B},n} = \frac{1}{b_{a_S:r_{S,B}+R_{e,B},n} \cdot b_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}} \text{ (Equ. SM 8)}$$

55 and

56
$$m_{\omega_2:R_{e,B},n} = -m_{a_S:R_{e,B},n} - (m_{r_{S,B}:R_{e,B},n} \cdot m_{a_S:r_{S,B},n}) \text{ (Equ. SM 9)}$$

57 In these formulae:

58 $\omega_{2,n}$ stands for the upper corner frequency of the semicircular duct n.

59 μ_T is the viscosity of the endolymph at temperature T, while ρ is its density.

60 $\lambda_{\mu,S,n}$ and $a_{S,n}$ are respectively the average wall shape drag factor and average cross-sectional area of the
61 slender portion of the semicircular duct n.

62 $\alpha_{\omega_2,n}$ represents a factor accounting for functional information relevant to the upper corner frequency
63 that is unavailable from the bony semicircular canal n.

64 $\beta_{\omega_2,n}$ represents a factor accounting for functional information relevant to the upper corner frequency
65 that is available from the bony semicircular canal n.

66 $R_{e,B,n}$, $L_{e,B,n}$ and $\Lambda_{e,B}$ are respectively the average radius, the perimeter and the area of the ellipse best
67 fitting the projection of the torus of the semicircular canal n on its maximal response plane.

68 $d_{S,B,n}$ and $r_{S,B,n}$ are respectively the average diameter and average cross-sectional radius of the slender
69 portion of the semicircular canal n.

70 $\delta_{a_S:r_{S,B}+R_{e,B},n}$ (relative duct thickness) corresponds to the ratio between the cross-sectional area of the
71 slender portion of the semicircular duct n and its value predicted from the combination of the
72 cross-sectional radius of the slender portion of the corresponding semicircular canal and the
73 corresponding radius of curvature.

74 $\delta_{r_{S,B}:R_{e,B},n}$ (relative canal thickness) corresponds to the ratio between the cross-sectional radius of the
75 slender portion of the semicircular canal n and its value predicted from the corresponding radius
76 of curvature.

77 b_x and m_x are respectively the coefficient and exponent of the corresponding power law x .

78 For an eccentricity $e_{e,B,n} < 0.96$, $R_{e,B,n}$ can be approximated as:

79
$$R_{e,B,n} \approx \frac{D_{M,B,n} + D_{m,B,n}}{4} \quad (\text{Equ. SM 10})$$

80 where $D_{M,B,n}$ and $D_{m,B,n}$ are respectively the major and minor axes of the ellipse best fitting the projection
81 of the torus of the semicircular canal n on its maximal response plane.

82

83 Similarly, we re-express the sensitivity of a semicircular duct (David et al., 2016):

84
$$G_{v,n} \approx \frac{2\rho\Lambda_n E_n a_{s,n}^2}{\mu_{(T)} \lambda_{\mu,s,n} L_{s,n}} \quad (\text{Equ. SM 11})$$

85 as

86
$$G_{v,n} \approx \frac{1}{\mu_{(T)}} \cdot \alpha_{G_{v,n}} \cdot \beta_{G_{v,n}} \quad (\text{Equ. SM 12})$$

87 where

88
$$\alpha_{G_{v,n}} = \frac{\varepsilon_{\Lambda,n} \delta_{a_s:r_{s,B}+R_{e,B},n} \delta_{E:R_{e,B},n}}{\alpha_{\omega_2,n} \pi \varepsilon_{L_s,n}} \quad (\text{Equ. SM 13})$$

89 ,

90
$$\beta_{G_{v,n}} = \frac{\sigma_{e,B,n} \delta_{r_{s,B}:R_{e,B},n}^{2m_{a_s:r_{s,B},n}} b_{G_v:R_{e,B},n} R_{e,B,n}^{m_{G_v:R_{e,B},n}}}{\delta_{L_{s,B}:R_{e,B},n}} \quad (\text{Equ. SM 14})$$

91 ,

92
$$\varepsilon_{\Lambda,n} = \frac{\Lambda_n}{\Lambda_{e,B,n}} \quad (\text{Equ. SM 15})$$

93 ,

94
$$E_n = \delta_{E:R_{e,B},n} b_{E:R_{e,B},n} R_{e,B,n}^{m_{E:R_{e,B},n}} \quad (\text{Equ. SM 16})$$

95 ,

96
$$\varepsilon_{L_s} = \frac{L_s}{L_{s,B,n}} \quad (\text{Equ. SM 17})$$

97 ,

98
$$\sigma_{e,B,n} = f(e_{B,n}) = \frac{\Lambda_{e,B,n}}{R_{e,B,n}^2} \quad (\text{Equ. SM 18})$$

99 ,

100
$$e_{B,n} = \sqrt{1 - \frac{D_{m,B,n}^2}{D_{M,B,n}^2}} \quad (\text{Equ. SM 19})$$

101 ,

102
$$L'_{S,B,n} = \delta_{L'_{S,B}:R_{e,B},n} b_{L'_{S,B}:R_{e,B},n} R_e^{m_{L'_{S,B}:R_{e,B},n}} \quad (\text{Equ. SM 20})$$

103 ,

104
$$b_{G_V:R_{e,B},n} = \frac{b_{E:R_{e,B},n} b_{a_S:r_{S,B}+R_{e,B},n}^{2m_{a_S:r_{S,B},n}}}{b_{L'_{S,B}:R_{e,B},n}} \quad (\text{Equ. SM 21})$$

105 and

106
$$m_{G_V:R_{e,B},n} = 2 + m_{E:R_{e,B},n} + 2m_{a_S:R_{e,B},n} + (2m_{r_{S,B}:R_{e,B},n} \cdot m_{a_S:r_{S,B},n}) - m_{L'_{S,B}:R_{e,B},n} \quad (\text{Equ. SM 22})$$

107 In these formulae:

108 $\Gamma_{V,n}$ stands for the sensitivity, or gain to angular velocity, of the semicircular duct n.

109 Λ_n is the enclosed area of the projection of the torus of the semicircular duct n on its maximal response
110 plane.

111 $E_{n,n}$ (deflection factor) is a transfer factor linking endolymph volume displacement to cilia deflection.

112 $L_{S,n}$ is the three-dimensional length of the slender portion of the semicircular duct n.

113 $L'_{S,n}$ is the two-dimensional length of the slender portion of the semicircular canal n.

114 $\alpha_{GV,n}$ represents a factor accounting for functional information relevant to the sensitivity that is
115 unavailable from the bony semicircular canal n.

116 $\beta_{GV,n}$ represents a factor accounting for functional information relevant to the sensitivity that is available
117 from the bony semicircular canal n.

118 $\varepsilon_{\Lambda,n}$ (area error factor) corresponds to a ratio between the enclosed area of the torus of the semicircular
119 duct n and the area of the ellipse best fitting the torus of the corresponding semicircular canal, both
120 projected on their respective maximal response planes

121 $\varepsilon_{LS',n}$ (slender length error factor) corresponds to a ratio between the three-dimensional length of the
122 slender portion of the semicircular duct n and the two-dimensional length of the slender portion of
123 corresponding semicircular canal.

124 $\delta_{E:R_{e,B},n}$ (relative deflection factor) corresponds to the ratio between the deflection factor of the
125 semicircular duct n and its value predicted from the radius of curvature of the corresponding
126 semicircular canal.

127 $\delta_{LS',B:Re,B,n}$ (relative slender length) corresponds to the ratio between the two-dimensional length of the
 128 slender portion of the semicircular canal n and its value predicted from the corresponding radius
 129 of curvature.

130 $\sigma_{e,B,n}$ (eccentricity factor) corresponds to a ratio, between the area of an ellipse and its squared average
 131 radius, which negatively correlates with the eccentricity $e_{B,n}$ of the semicircular canal torus n.

132 As we compare specimens of very different body sizes in this study, we need to re-express $\beta_{\omega_2,n}$ and
 133 $\beta_{GV,n}$ in relation to Z, a body size variable that alternatively corresponds to body mass, condylo-basal
 134 length or condylo-antero-orbital length. Hence:

$$135 \quad \beta_{\omega_2,n} = \frac{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}}{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:R_{e,B},n}}} b_{\omega_2:Z,n} Z^{m_{\omega_2:Z,n}} \quad (\text{Equ. SM 23})$$

136 and

$$137 \quad \beta_{GV,n} = \frac{\sigma_{e,B,n} \delta_{r_{S,B}:R_{e,B},n}^{2m_{a_S:R_{e,B},n}} \delta_{R_{e,B}:Z,n}^{m_{GV:R_{e,B},n}} b_{GV:Z,n} Z^{m_{GV:Z,n}}}{\delta_{L_{S,B}:R_{e,B},n}} \quad (\text{Equ. SM 24})$$

138 where

$$139 \quad R_{e,B,n} = \delta_{R_{e,B}:Z,n} b_{R_{e,B}:Z,n} Z^{m_{R_{e,B}:Z,n}} \quad (\text{Equ. SM 25})$$

140 ,

$$141 \quad b_{\omega_2:Z,n} = b_{\omega_2:R_{e,B},n} b_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}} \quad (\text{Equ. SM 26})$$

142 ,

$$143 \quad b_{GV:Z,n} = b_{GV:R_{e,B},n} b_{R_{e,B}:Z,n}^{m_{GV:R_{e,B},n}} \quad (\text{Equ. SM 27})$$

144 ,

$$145 \quad m_{\omega_2:Z,n} = m_{\omega_2:R_{e,B},n} \cdot m_{R_{e,B}:Z,n} \quad (\text{Equ. SM 28})$$

146 and

$$147 \quad m_{GV:Z,n} = m_{GV:R_{e,B},n} \cdot m_{R_{e,B}:Z,n} \quad (\text{Equ. SM 29})$$

148 where $\delta_{Re,B:Z,n}$ (relative radius of curvature) corresponds to the ratio between the radius of curvature of
 149 the semicircular canal n and its value predicted from the body size variable.

150 $m_{\omega_2:Z,n}$ is predicted to be negative, while $m_{GV:Z,n}$ is predicted to be positive (Jones and Spells 1963).

151 We note that, in a given plane of rotation, the average frequency of head motion f_H is related to the
 152 average angular velocity $\dot{\Omega}_H$ and average angular amplitude A_H of head motion, such that:

153
$$f_H = \frac{\dot{\Omega}_H}{A_H} \text{ (Equ. SM 30)}$$

154

155 These three parameters are also expected to be related to body size parameters, following the formulae:

156
$$f_H = \delta_{f_H:Z} b_{f_H:Z} Z^{m_{f_H:Z}} \text{ (Equ. SM 31)}$$

157 ,

158
$$\dot{\Omega}_H = \delta_{\dot{\Omega}_H:Z} b_{\dot{\Omega}_H:Z} Z^{m_{\dot{\Omega}_H:Z}} \text{ (Equ. SM 32)}$$

159 and

160
$$A_H = \delta_{A_H:Z} b_{A_H:Z} Z^{m_{A_H:Z}} \text{ (Equ. SM 33)}$$

161 Where $m_{f_H:Z}$ and $m_{\dot{\Omega}_H:Z}$ are both predicted to be negative (Jones and Spells 1963), with absolute values
 162 expected to be several orders of magnitude higher than $m_{A_H:Z}$.

163 To simplify functional comparisons, we introduce the parameter K_H , which represents an overall
 164 measure of head motion, such that:

165
$$K_H = \sqrt{f_H \dot{\Omega}_H} \text{ (Equ. SM 34)}$$

166 K_H is expected to be related to body size such that:

167
$$K_H = \delta_{K_H:Z} b_{K_H:Z} Z^{m_{K_H:Z}} \text{ (Equ. SM 35)}$$

168 with

169
$$\delta_{K_H:Z} = \delta_{f_H:Z} \sqrt{\delta_{A_H:Z}} = \frac{\delta_{\dot{\Omega}_H:Z}}{\sqrt{\delta_{A_H:Z}}} \text{ (Equ. SM 36)}$$

170 ,

171
$$b_{K_H:Z} = b_{f_H:Z} \sqrt{b_{A_H:Z}} = \frac{b_{\dot{\Omega}_H:Z}}{\sqrt{b_{A_H:Z}}} \text{ (Equ. SM 37)}$$

172 and

173
$$m_{K_H:Z} = m_{f_H:Z} + \frac{m_{A_H:Z}}{2} = m_{\dot{\Omega}_H:Z} - \frac{m_{A_H:Z}}{2} \text{ (Equ. SM 38)}$$

174 which likely reduce to

175 $m_{K_H:Z} \approx m_{f_H:Z} \approx m_{\dot{\Omega}_H:Z}$ (Equ. SM 39)

176
177
178
179 In this context, both the upper corner frequency $\omega_{2,n}$ and the sensitivity $G_{V,n}$ of the semicircular duct n
180 are expected to be related to the overall measure of head motion K_H , following the formulae:

181 $\omega_{2,n} = \delta_{\omega_2:K_H,n} b_{\omega_2:K_H,n} K_H^{m_{\omega_2:K_H,n}}$ (Equ. SM 40)

182 and

183 $G_{V,n} = \delta_{G_V:K_H,n} b_{G_V:K_H,n} K_H^{m_{G_V:K_H,n}}$ (Equ. SM 41)

184 where $m_{\omega_2:K_H,n}$ is predicted to be positive, while $m_{G_V:K_H,n}$ is predicted to be negative (Jones and Spells
185 1963).

186 Accounting for Equ. SM 2 and 12, it follows that:

188

189 $\delta_{\omega_2:K_H,n} b_{\omega_2:K_H,n} K_H^{m_{\omega_2:K_H,n}} \approx \mu_{(T)} \cdot \alpha_{\omega_2,n} \cdot \beta_{\omega_2,n}$ (Equ. SM 42)

190 and

191 $\delta_{G_V:K_H,n} b_{G_V:K_H,n} K_H^{m_{G_V:K_H,n}} \approx \frac{1}{\mu_{(T)}} \cdot \alpha_{G_V,n} \cdot \beta_{G_V,n}$ (Equ. SM 43)

192 which develop to

193

194 $\delta_{\omega_2:K_H,n} \delta_{K_H:Z}^{m_{\omega_2:K_H,n}} b_{\omega_2:K_H,n} b_{K_H:Z}^{m_{\omega_2:K_H,n}} Z^{(m_{K_H:Z} \cdot m_{\omega_2:K_H,n})} \approx \mu_{(T)} \cdot \alpha_{\omega_2,n} \cdot \frac{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}}{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}} b_{\omega_2:Z,n} Z^{m_{\omega_2:Z,n}}$ (Equ. SM 44)

195

196 and

197 $\delta_{G_V:K_H,n} \delta_{K_H:Z}^{m_{G_V:K_H,n}} b_{G_V:K_H,n} b_{K_H:Z}^{m_{G_V:K_H,n}} Z^{(m_{K_H:Z} \cdot m_{G_V:K_H,n})} \approx \frac{1}{\mu_{(T)}} \cdot \alpha_{G_V,n} \cdot \frac{\sigma_{e,B,n}^{2m_{a_S:r_{S,B},n}} \delta_{r_{S,B}:R_{e,B},n}^{m_{G_V:R_{e,B},n}} \delta_{R_{e,B}:Z,n}^{m_{G_V:R_{e,B},n}} b_{G_V:Z,n} Z^{m_{G_V:Z,n}}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}}$
198 (Equ. SM 45)

199 From these equations, we deduce that:

200 $m_{\omega_2:Z,n} = m_{K_H:Z} \cdot m_{\omega_2:K_H,n}$ (Equ. SM 46)

201 ,

202 $m_{G_v:Z,n} = m_{K_H:Z} \cdot m_{G_v:K_H,n}$ (Equ. SM 47)

203
204
205
206
207

and of particular interest for this study:

208 $\mu_{(T)} \cdot \alpha_{\omega_2,n} \cdot \frac{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{a_S:S,B,n}}} b_{\omega_2:Z,n} \approx \delta_{\omega_2:K_H,n} \delta_{K_H:Z}^{m_{\omega_2:K_H,n}} b_{\omega_2:K_H,n} b_{K_H:Z,n}^{m_{\omega_2:K_H,n}}$ (Equ. SM 48)

209 and

210 $\frac{1}{\mu_{(T)}} \cdot \alpha_{G_v,n} \cdot \frac{\sigma_{e,B,n}^{2m_{a_S:S,B,n}} \delta_{R_{e,B}:Z,n}^{m_{G_v:R_{e,B},n}} b_{G_v:Z,n}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{a_S:S,B,n}}} \approx \delta_{G_v:K_H,n} \delta_{K_H:Z}^{m_{G_v:K_H,n}} b_{G_v:K_H,n} b_{K_H:Z}^{m_{G_v:K_H,n}}$ (Equ. SM 49)

211 Equations SM 48 and 49 can be re-expressed as:

212 $\frac{\mu_{(T)}}{\delta_{K_H:Z}^{m_{\omega_2:K_H,n}} \delta_{\omega_2:K_H,n}} c_{\omega_2,n} \approx \frac{1}{\alpha_{\omega_2,n}} \cdot \frac{\delta_{L_{S,B}:R_{e,B},n}^{m_{a_S:S,B,n}}}{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}}$ (Equ. SM 50)

213 and

214 $\mu_{(T)} \delta_{K_H:Z}^{m_{G_v:K_H,n}} \delta_{G_v:K_H,n} c_{G_v,n} \approx \alpha_{G_v,n} \cdot \frac{\sigma_{e,B,n}^{2m_{a_S:S,B,n}} \delta_{R_{e,B}:Z,n}^{m_{G_v:R_{e,B},n}}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{a_S:S,B,n}}}$ (Equ. SM 51)

215 where

216 $c_{\omega_2,n} = \frac{b_{\omega_2:Z,n}}{b_{K_H:Z}^{m_{\omega_2:K_H,n}} b_{\omega_2:K_H,n}}$ (Equ. SM 52)

217 and

218 $c_{G_v,n} = \frac{b_{G_v:K_H,n} b_{K_H:Z}^{m_{G_v:K_H,n}}}{b_{G_v:Z,n}}$ (Equ. SM 53)

219 are constants.

220 We note that endolymph viscosity is related to body temperature such that (David et al. 2016):

221 $\mu_{(T)} = A_w \cdot \mu_{e/w} \cdot 10^{\left(\frac{C_{T_1}}{T - C_{T_2}} \right)}$ (Equ. SM 54)

222 Where A_w corresponds the viscosity coefficient of water and equals 0.0241 mPa.s, $\mu_{e/w}$ corresponds to
 223 a ratio between the viscosity coefficients of endolymph and water, T corresponds to body temperature
 224 in Kelvin and C_{T1} and C_{T2} equal 247.8 K and 140 K respectively.

225

226

227

228 Taking this into account, we re-express equations SM 50 and 51 as:

$$229 \quad \frac{10^{\left(\frac{C_{T_1}}{T-C_{T_2}}\right)}}{\delta_{K_H:Z}^{m_{\omega_2:K_H,n}} \delta_{\omega_2:K_H,n}^{m_{\omega_2,n}}} c_{\omega_2,n} \approx \frac{1}{A_w \cdot \mu_{e/w}} \cdot \frac{1}{\alpha_{\omega_2,n}} \cdot \frac{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}}{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}} \quad (\text{Equ. SM 55})$$

230

and

$$231 \quad 10^{\left(\frac{C_{T_1}}{T-C_{T_2}}\right)} \delta_{K_H:Z}^{m_{G_v:K_H,n}} \delta_{G_v:K_H,n}^{m_{G_v,n}} c_{G_v,n} \approx \frac{1}{A_w \cdot \mu_{e/w}} \cdot \alpha_{G_v,n} \cdot \frac{\sigma_{e,B,n}^{2m_{a_S:r_{S,B},n}} \delta_{R_{e,B}:Z,n}^{m_{G_v:R_{e,B},n}}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{\omega_2:R_{e,B},n}}} \quad (\text{Equ. SM 56})$$

232 Taking the decimal logarithm of both terms of these equations, we get:

$$233 \quad \begin{aligned} & \left(\frac{C_{T_1}}{T-C_{T_2}} \right) - m_{\omega_2:K_H,n} \log_{10} \left(\delta_{K_H:Z} \right) - \log_{10} \left(\delta_{\omega_2:K_H,n} \right) + \log_{10} \left(c_{\omega_2,n} \right) \\ & \approx -\log_{10} \left(A_w \cdot \mu_{e/w} \right) - \log_{10} \left(\alpha_{\omega_2,n} \right) + \log_{10} \left(\frac{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}}{\delta_{R_{e,B}:Z,n}^{m_{\omega_2:R_{e,B},n}}} \right) \end{aligned} \quad (\text{Equ. SM 57})$$

234 and

$$235 \quad \begin{aligned} & \left(\frac{C_{T_1}}{T-C_{T_2}} \right) + m_{G_v:K_H,n} \log_{10} \left(\delta_{K_H:Z} \right) + \log_{10} \left(\delta_{G_v:K_H,n} \right) + \log_{10} \left(c_{G_v,n} \right) \\ & \approx -\log_{10} \left(A_w \cdot \mu_{e/w} \right) + \log_{10} \left(\alpha_{G_v,n} \right) + \log_{10} \left(\frac{\sigma_{e,B,n}^{2m_{a_S:r_{S,B},n}} \delta_{R_{e,B}:Z,n}^{m_{G_v:R_{e,B},n}}}{\delta_{L_{S,B}:R_{e,B},n}^{m_{\omega_2:R_{e,B},n}}} \right) \end{aligned} \quad (\text{Equ. SM 58})$$

236

237 From equations SM 57 and 58 we define the Thermo-Motility Index $TMI_{P,n,Z}$ of the semicircular duct n
 238 as:

239 $TMI_{P,n,Z} \approx I_{B,P,n,Z} + I_{M,P,n} + I_E \approx \left(f(K_{H:Z}) + \varepsilon_{P:K_H,n,Z} \right) - \left(\frac{C_{T_1}}{T + C_{T_2}} \right) + C_{P,n,Z}$ (Equ. SM 59)

240 where

241 $f(K_{H:Z}) = m_{\omega_2:K_H,n} \log_{10}(\delta_{K_H:Z}) \approx - \left(m_{G_v:K_H,n} \log_{10}(\delta_{K_H:Z}) \right)$ (Equ. SM 60)

242 ,

243 $\varepsilon_{\omega_2:K_H,n,Z} = \log_{10}(\delta_{\omega_2:K_H,n})$ (Equ. SM 61)

244 ,

245 $\varepsilon_{G_v:K_H,n,Z} = -\log_{10}(\delta_{G_v:K_H,n})$ (Equ. SM 62)

246 and

247 $C_{P,n,Z} = -\log_{10}(c_{P,n})$ (Equ. SM 63)

248 In these formula $I_{B,P,n,Z}$, $I_{M,P,n}$ and I_E respectively stand for the bony, membranous-only and endolymph
249 parts of the TMI; P corresponds to either the upper corner frequency or sensitivity of the semicircular
250 duct n and Z corresponds to the body size variable (body mass, condylobasal length or condyle-
251 anteroorbital length); $f(K_{H:Z})$ is a function that positively correlates to overall head motion K_H relative
252 to body size, and reflects behavioural activity; $C_{P,n,Z}$, C_{T_1} and C_{T_2} are constants and $\varepsilon_{P:K_H,n,Z}$ is an error
253 term reflecting the difference between semicircular duct function and head motion metrics.

254 As endotherms show increased body temperatures and are behaviourally more active than ectotherms,
255 which is likely reflected by increased overall head motion, they are clearly expected, from equation SM
256 59, to show higher TMI. In this context, it should be noted that the error term $\varepsilon_{P:K_H,n,Z}$, whose statistical
257 distribution should be similar between endotherms and ectotherms, is expected to differ between
258 species, affecting their TMI. However, the effect of the error term should be averaged out when
259 comparing groups, provided enough species have been sampled.

260 The endolymph part of the TMI is expressed as:

261 $I_E = \log_{10}(A_w \cdot \mu_{e/w})$ (Equ. SM 64)

262 where A_w corresponds the viscosity coefficient of water and equals 0.0241 mPa.s and $\mu_{e/w}$ corresponds
263 to a ratio between the viscosity coefficients of endolymph and water.

264 Bony parts of the TMI are expressed as:

265 $I_{B,\omega_2,n,Z} = \log_{10} \left(\frac{\delta_{R_{e,B},n}^{m_{\omega_2:R_{e,B},n}}}{\delta_{r_{S,B}:R_{e,B},n}^{m_{a_S:r_{S,B},n}}} \right)$ (Equ. SM 65)

266 and

267 $I_{B,G_V,n,Z} = \log_{10} \left(\frac{\delta_{L_{S,B}:R_{e,B},n}^{m_{G_V:R_{e,B},n}}}{\sigma_{e,B,n} \delta_{r_{S,B}:R_{e,B},n}^{2m_{a_S:r_{S,B},n}} \delta_{R_{e,B}:Z,n}^{m_{G_V:R_{e,B},n}}} \right)$ (Equ. SM 66)

268

269

270

271 where:

272 $\delta_{R_{e,B}:Z,n}$ (relative radius of curvature) corresponds to the ratio between the radius of curvature of the
273 semicircular canal n and its value predicted from the body size variable.

274 $\delta_{r_{S,B}:R_{e,B},n}$ (relative canal thickness) corresponds to the ratio between the cross-sectional radius of the
275 slender portion of the semicircular canal n and its value predicted from the corresponding radius
276 of curvature.

277 $\delta_{L_{S,B}:R_{e,B},n}$ (relative slender length) corresponds to the ratio between the two-dimensional length of the
278 slender portion of the semicircular canal n and its value predicted from the corresponding radius
279 of curvature.

280 $\sigma_{e,B,n}$ (eccentricity factor) corresponds to a ratio, between the area of an ellipse and its squared average
281 radius, which negatively correlates with the eccentricity $e_{B,n}$ of the semicircular canal torus n.

282 Membranous-only parts of the TMI are expressed as:

283 $I_{M,\omega_2,n} = \log_{10} \left(\frac{\lambda_{\mu,S,n}}{2\rho\pi\delta_{a_S:r_{S,B}+R_{e,B},n}} \right)$ (Equ. SM 67)

284 and

285 $I_{M,G_V,n} = I_{M,\omega_2,n} + \log_{10} \left(\frac{\pi\varepsilon_{L_{S,B},n}}{\varepsilon_{\Lambda,n} \delta_{a_S:r_{S,B}+R_{e,B},n} \delta_{E:R_{e,B},n}} \right)$ (Equ. SM 68)

286 where:

287 ρ is the density of the endolymph.

288 $\lambda_{\mu,S,n}$ is the average wall shape drag factor of the slender portion of the semicircular duct n.

289 $\delta_{a_S:r_{S,B}+R_{e,B},n}$ (relative duct thickness) corresponds to the ratio between the cross-sectional area of the
290 slender portion of the semicircular duct n and its value predicted from the the combination of the

291 cross-sectional radius of the slender portion of the corresponding semicircular canal and the
292 corresponding radius of curvature.

293 $\delta_{E:Re,B,n}$ (relative deflection factor) corresponds to the ratio between the deflection factor of the
294 semicircular duct n and its value predicted from the radius of curvature of the corresponding
295 semicircular canal.

296 $\varepsilon_{A,n}$ (area error factor) corresponds to a ratio between the enclosed area of the torus of the semicircular
297 duct n and the area of the ellipse best fitting the torus of the corresponding semicircular canal, both
298 projected on their respective maximal response planes

299 $\varepsilon_{LS,n}$ (slender length error factor) corresponds to a ratio between the three-dimensional length of the
300 slender portion of the semicircular duct n and the two-dimensional length of the slender portion of
301 corresponding semicircular canal.

302 Exponents $m_{\omega 2:Re,B,n}$, $m_{aS:rS,B,n}$ and $m_{GV:Re,B,n}$ were computed in R, using measured morphological
303 parameters and applying phylogenetic least square regressions on relevant datasets, following equations
304 SM 4, 6, 9, 20, 16 and 22 (Supplementary Note 2). Their value is provided in the following table:

	Anterior	Posterior	Lateral
$m_{aS:rS,B}$	1.140	0.876	0.824
$m_{\omega 2:Re,B}$	-1.083	-1.149	-0.992
$m_{GV:Re,B}$	0.890	1.062	0.811

305

306 David, R. et al. Assessing morphology and function of the semicircular duct system:
307 introducing new in-situ visualization and software toolbox. *Sci. Rep.* **6**, 1-14 (2016).

308 Jones, G. M. & Spells, K. E. A theoretical and comparative study of the functional dependence
309 of the semicircular canal upon its physical dimensions. *Proc. R. Soc. Lond. Ser. B. Biol. Sci.* **157**, 403-
310 419 (1963).

311 Rabbitt, R. D., Damiano, E. R. & Grant J. W. in *The vestibular system* (eds Highstein, S. M.,
312 Fay R. R. & Popper A. N.) 153–201 (Springer, 2004).

313

314 **Discussion on the endolymph viscosity of diapsids**

315 The phylogenetic distribution of the endolymph part in available species indicates that a low-
316 viscosity endolymph was the basal condition for Euarchontoglires and Euteleostei, thus parsimoniously

317 the basal condition for Osteichthyes too. Conversely, feral rock pigeons, which possess a high-viscosity
318 endolymph, do not show any peculiarities in terms of locomotor behaviours, body temperature or
319 labyrinth morphology when compared to other birds. We thus assume that a high-viscosity endolymph
320 is typical for Aves. This raises the question as to when a high-viscosity endolymph originated in
321 diapsids. Data from audition in various lizard species suggest that an endolymph with water-like
322 viscosity would better fit empirical results in these species (Manley 2006, 2014). These results indicate
323 that a high-viscosity endolymph would be unlikely for lepidosaurs, and the acquisition of a high-
324 viscosity endolymph would have occurred between the origin of birds and the divergence of
325 Lepidosauria and Archelosauria. In this context it should be noted that Crocodilia and Testudines are in
326 line with the theoretical and empirical relationships between the TMI and body temperature (Fig. 2),
327 which suggests, *a posteriori*, the retention of a low-viscosity endolymph part in these taxa.

328

329 Manley, G. A. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of
330 ten species of lizard with small papillae. *Hearing Res.* **212**, 33-47 (2006).

331 Manley, G. A. in *Perspectives on auditory research* (eds Popper, A. N. & Fay, R. R.) 321-341
332 (Springer, 2014).

333

334 **Supplementary Note 1.** *Dimetrodon* inner ear reconstruction from a serial sectioned model

335

336 The *Dimetrodon* specimen used in this study (FMNH PR 4976) is a wax endocast model that was
337 reconstructed from a serially-sectioned skull. The inclusion of the specimen was paramount because,
338 despite our efforts to scan multiple non-therapsid synapsids (Supplementary Data 3), only one retrieved
339 usable data. The FMNH collections records do not include information on the original specimen that
340 was sectioned to make the endocast model. However, comments in Olson (1938; also see Romer and
341 Price, 1940) and notes from A. S. Romer preserved in the Museum of Comparative Zoology archives
342 suggest that the endocast was reconstructed from serial sections of MCZ 9560. For measurement
343 purposes, a photogrammetric model of FMNH PR 4976 was created based on 50 individual photographs
344 of the specimen. The model was reconstructed using Colmap 3.5 (<https://colmap.github.io/index.html>).
345 The endocast is comprised of about 30 slices with an average thickness of 2.147 mm, resulting in a total
346 length of 64.42 mm. We estimate that the condylobasal length of MCZ 9560 was about 260 mm, so the

347 model clearly has been scaled up from the original size of the bony labyrinth. In his description of his
348 serial sectioning technique, Olson (1944; p.9) states: "In cases of skulls under 40mm in length, it has
349 proved very difficult to obtain evenly spaced sections since they should not be over .15mm apart.
350 Intervals of .3 mm to .5 mm are satisfactory for skulls between 50 and 65 mm, and intervals of .75 mm
351 for those between 65 and 100 mm. The best results have been obtained with skulls of over 100 mm by
352 using intervals of .6 to .8mm in the otic region of the brain cases and intervals of 1.0 to 1.5mm for the
353 more anterior parts of the skulls." He also lists slice thickness ranging from 0.37 mm to 1.1 mm (average
354 0.744 mm) for the specimens he describes in that work. Based on those values, we estimate that the
355 endocast has been scaled up by a factor of between 2.68x (0.8mm slice thickness) to 3.58x (0.6 mm
356 slice thickness), as suggested by the original publications (Olson 1938, 1944, Romer et al. 1940) and
357 notes of A. S. Romer. Hence, measurements taken on the wax model were corrected by the average
358 scaling factor. Using either factor instead of the average does not affect the conclusions of the study.

359

360 Olson, E. C. The occipital, otic, basicranial and pterygoid regions of the Gorgonopsia. *J.*
361 *Morphol.* **62**, 141–175 (1938).

362 Olson, E. C. Origin of mammals based upon cranial morphology of the therapsid suborders.
363 *Geol. Soc. Am.*, **55** (1944).

364 Romer, A. S., Price, L. W. & Price, L. I. Review of the Pelycosauria. *Geol. Soc. Am.* **28**(1940).

365

366 **Supplementary Note 2.** Summary of the statistics.

367 **Abbreviations**

368 Body mass: **BM**

369 Condylobasal length: **CBL**

370 Condylo-anteroorbital length: **CAOL**

371 3D Bony dataset: **3DB**

372 3D Membranous dataset: **3DM**

373 2D Membranous dataset: **2DM**

374 Anterior canal/duct: **_a**

375 Posterior canal/duct: **_p**

376 Lateral canal/duct: **_l**

377 Bony semicircular canals: **_B**

378 Radius of curvature: **R**
 379 Cross-sectional area of the middle section of the cupula: **aC_ _Md**
 380 Average thickness of the crista ampullaris: **tCr**
 381 Cross-section radius of the slender portion: **rS**
 382 Length of the slender portion: **LS**
 383 Cross-sectional area of the slender portion of the membranous semicircular duct: **aS**
 384 Height of the cilia area: **hc**
 385 Average thickness of the cupula: **tC**
 386 Transverse diameter of the slender part (including the walls): **dS_ _Out**
 387 Deflection factor of the cupula: **E**
 388 Temperature ratio: **RT**
 389 Upper corner frequency: **ω₂**
 390 Sensitivity: **Gv**
 391 Thermo-Motility Index: **TMI**
 392 Thermic regime: **TR**
 393 Phylogenetic generalized least square regression: **PGLS-R**
 394
 395 **PGLS-R of height of cilia areas of cristae ampullares of semicircular ducts against corresponding average cristae thicknesses and cross-sectional areas of middle sections of cupulae**
 396

	Intercept	Log ₁₀ (tCr_a)	Pagel's λ	adj. R ²	p-value	AICc	N
Log ₁₀ (hc_a)	1.797	0.387	0.88	0.71	8.93 10⁻¹³	-97.9	43 (3DM)
	Intercept	Log ₁₀ (tCr_p)	Pagel's λ	adj. R ²	p-value	AICc	N
Log ₁₀ (hc_p)	1.798	0.368	1.00	0.67	1.55 10⁻¹¹	-98.2	43 (3DM)
	Intercept	Log ₁₀ (tCr_l)	Log ₁₀ (aC_l_Md)	Pagel's λ	adj. R ²	p-value	AICc
Log ₁₀ (hc_l)	1.904	0.369	0.140	0.90	0.66	1.39 10⁻¹⁰	-100.4
							43 (3DM)

397 Only specimens with measurements of height of cilia areas were included.
 398
 399 **PGLS-R of deflection factors of cupulae against corresponding average thicknesses of cupulae models and cross-sectional areas of middle sections of cupulae**
 400

	Intercept	Log ₁₀ (tC_a)	Log ₁₀ (aC_a_Md)	Pagel's λ	adj. R ²	p-value	AICc	N
Log ₁₀ (E_a)	-0.431	0.422	-1.718	0.98	0.99	< 2.2 10⁻¹⁶	-154.2	43 (3DM)
	Intercept	Log ₁₀ (tC_p)	Log ₁₀ (aC_p_Md)	Pagel's λ	adj. R ²	p-value	AICc	N
Log ₁₀ (E_p)	-0.408	0.479	-1.739	0.95	0.99	< 2.2 10⁻¹⁶	-153.3	43 (3DM)
	Intercept	Log ₁₀ (tC_l)	Log ₁₀ (aC_l_Md)	Pagel's λ	adj. R ²	p-value	AICc	N
Log ₁₀ (E_l)	-0.417	0.364	-1.655	0.82	1.00	< 2.2 10⁻¹⁶	-184.0	43 (3DM)

401 Only specimens with measurements of deflection factors were included.
 402

403 **PGLS-R of transverse diameters with wall included against corresponding cross-sectional areas**
 404 **of slender portions of membranous semicircular ducts**

	Intercept	$\text{Log}_{10}(\text{aS_a})$	$\text{Log}_{10}(\text{aS_p})$	$\text{Log}_{10}(\text{aS_l})$	Pagel's λ	adj. R^2	p-value	N
$\text{Log}_{10}(\text{dS_a_Out})$	0.205	0.544			0.39	0.85	$< 2.2 \cdot 10^{-16}$	47 (3DM+2DM)
$\text{Log}_{10}(\text{dS_p_Out})$	0.209		0.532		0.52	0.82	$< 2.2 \cdot 10^{-16}$	47 (3DM+2DM)
$\text{Log}_{10}(\text{dS_l_Out})$	0.227			0.544	0.72	0.85	$< 2.2 \cdot 10^{-16}$	47 (3DM+2DM)

405 Only specimens with measurements of cross-sectional areas and transverse diameter (with walls) were
 406 included.

407

408 **PGLS-R of cross-section radii of slender portions against corresponding transverse diameters**
 409 **with wall included**

	Intercept	$\text{Log}_{10}(\text{dS_a_Out})$	Pagel's λ	adj. R^2	p-value	AICc	N
$\text{Log}_{10}(\text{rS_a_B})$	-0.023	1.291	0.66	0.97	$< 2.2 \cdot 10^{-16}$	-66.2	22 (3DM)
	Intercept	$\text{Log}_{10}(\text{dS_p_Out})$	Pagel's λ	adj. R^2	p-value	AICc	N
$\text{Log}_{10}(\text{rS_p_B})$	0.017	1.315	0.00	0.93	$1.56 \cdot 10^{-13}$	-50.9	22 (3DM)
	Intercept	$\text{Log}_{10}(\text{dS_l_Out})$	Pagel's λ	adj. R^2	p-value	AICc	N
$\text{Log}_{10}(\text{rS_l_B})$	0.021	1.286	0.35	0.88	$7.92 \cdot 10^{-11}$	-38.6	22 (3DM)

410 Only specimens with measurements of cross-section radii and transverse diameter (with walls) were
 411 included.

412

413 **PGLS-R of body mass against condylobasal and condylo-anteroorbital lengths**

	Intercept	$\text{Log}_{10}(\text{CBL})$	$\text{Log}_{10}(\text{CAOL})$	Pagel's λ	adj. R^2	p-value	N
$\text{Log}_{10}(\text{BM})$	-2.441	1.181	2.162	0.86	0.89	$< 2.2 \cdot 10^{-16}$	233 (3DB)

414 Only specimens with measurements of body mass were included.

415

416 **PGLS-R of cross-section radii and lengths of slender portions of bony semicircular canals**
 417 **against corresponding radii of curvature**

	Intercept	$\text{Log}_{10}(\text{R_a_B})$	$\text{Log}_{10}(\text{R_p_B})$	$\text{Log}_{10}(\text{R_l_B})$	Pagel's λ	adj. R^2	p-value	N
$\text{Log}_{10}(\text{rS_a_B})$	-0.766	0.799			0.74	0.71	$< 2.2 \cdot 10^{-16}$	298 (3DB)
$\text{Log}_{10}(\text{rS_p_B})$	-0.735		0.811		0.68	0.71	$< 2.2 \cdot 10^{-16}$	298 (3DB)
$\text{Log}_{10}(\text{rS_l_B})$	-0.785			0.829	0.56	0.74	$< 2.2 \cdot 10^{-16}$	298 (3DB)
$\text{Log}_{10}(\text{LS_a_B})$	0.570	1.010			0.67	0.94	$< 2.2 \cdot 10^{-16}$	298 (3DB)
$\text{Log}_{10}(\text{LS_p_B})$	0.596		0.994		0.58	0.95	$< 2.2 \cdot 10^{-16}$	298 (3DB)
$\text{Log}_{10}(\text{LS_l_B})$	0.654			0.969	0.67	0.94	$< 2.2 \cdot 10^{-16}$	298 (3DB)

418

419 **PGLS-R of deflection factors of cupulae against corresponding radii of curvature**

	Intercept	$\text{Log}_{10}(R_{a_B})$	$\text{Log}_{10}(R_{p_B})$	$\text{Log}_{10}(R_{l_B})$	Page's λ	adj. R^2	p-value	N
$\text{Log}_{10}(E_{a_B})$	2.059	-2.266			0.00	0.87	< 2.2 10⁻¹⁶	43 (3DM)
$\text{Log}_{10}(E_{p_B})$	1.947		-2.241		0.48	0.90	< 2.2 10⁻¹⁶	43 (3DM)
$\text{Log}_{10}(E_{l_B})$	1.971			-2.204	0.00	0.90	< 2.2 10⁻¹⁶	43 (3DM)

420 Only specimens with measurements of deflection factors were included.

421

422 **PGLS-R of cross-sectional areas of slender portions of membranous semicircular ducts against**
423 **corresponding radii of curvature**

	Intercept	$\text{Log}_{10}(rS_{a_B})$	$\text{Log}_{10}(R_{a_B})$	Page's λ	adj. R^2	p-value	N
$\text{Log}_{10}(aS_{a_B})$	-0.497	1.174	0.164	0.70	0.87	< 2.2 10⁻¹⁶	47 (3DM)
	Intercept	$\text{Log}_{10}(rS_{p_B})$	$\text{Log}_{10}(R_{p_B})$	Page's λ	adj. R^2	p-value	N
$\text{Log}_{10}(aS_{p_B})$	-0.710	0.927	0.420	0.83	0.86	< 2.2 10⁻¹⁶	47 (3DM)
	Intercept	$\text{Log}_{10}(rS_{l_B})$	$\text{Log}_{10}(R_{l_B})$	Page's λ	adj. R^2	p-value	N
$\text{Log}_{10}(aS_{l_B})$	-0.845	0.829	0.372	0.59	0.80	< 2.2 10⁻¹⁶	47 (3DM)

424 Only specimens with measurements of cross-section radii of bony canals were included.

425

426 **PGLS-R of radii of curvature against the square root of body mass and condylobasal and condylo-**
427 **anteroorbital lengths**

	Intercept	$\text{Log}_{10}(\sqrt{BM})$	$\text{Log}_{10}(CBL)$	$\text{Log}_{10}(CAOL)$	Page's λ	adj. R^2	p-value	N
$\text{Log}_{10}(R_{a_B})$	-0.232	0.483			0.93	0.75	< 2.2 10⁻¹⁶	233 (3DB)
$\text{Log}_{10}(R_{p_B})$	-0.285	0.485			0.89	0.74	< 2.2 10⁻¹⁶	233 (3DB)
$\text{Log}_{10}(R_{l_B})$	-0.197	0.475			0.93	0.71	< 2.2 10⁻¹⁶	233 (3DB)
$\text{Log}_{10}(R_{a_B})$	-0.632		0.544		0.79	0.70	< 2.2 10⁻¹⁶	298 (3DB)
$\text{Log}_{10}(R_{p_B})$	-0.673		0.536		0.84	0.68	< 2.2 10⁻¹⁶	298 (3DB)
$\text{Log}_{10}(R_{l_B})$	-0.580		0.536		0.80	0.68	< 2.2 10⁻¹⁶	298 (3DB)
$\text{Log}_{10}(R_{a_B})$	-0.623			0.610	0.76	0.73	< 2.2 10⁻¹⁶	298 (3DB)
$\text{Log}_{10}(R_{p_B})$	-0.687			0.616	0.76	0.75	< 2.2 10⁻¹⁶	298 (3DB)
$\text{Log}_{10}(R_{l_B})$	-0.584			0.610	0.71	0.73	< 2.2 10⁻¹⁶	298 (3DB)

428 Only extant specimens with measurements of body mass were included in relevant regressions.

429

430

431

432

433

434

435 **PGLS-R of the temperature ratio against 18 models for the TMI, resulting from all possible**
 436 **combinations between 3 semicircular ducts, 2 functional parameters and 3 body size parameters**

	Intercept	TMI_ω ₂ _a_√BM	TMI_ω ₂ _p_√BM	TMI_ω ₂ _l_√BM	Pagel's λ	adj. R ²	p-value	N
RT	1.277	-0.305			0.00	0.83	8.62 10⁻¹²	28 (3DB+3DM+2DM)
RT	1.270		-0.309		0.00	0.79	2.05 10⁻¹⁰	28 (3DB+3DM+2DM)
RT	1.356			-0.256	1.00	0.41	1.55 10⁻⁴	28 (3DB+3DM+2DM)
	Intercept	TMI_Gv_a_√BM	TMI_Gv_p_√BM	TMI_Gv_l_√BM	Pagel's λ	adj. R ²	p-value	N
RT	1.420	-0.173			1.00	0.59	1.16 10⁻⁶	28 (3DB+3DM+2DM)
RT	1.443		-0.175		1.00	0.45	6.06 10⁻⁵	28 (3DB+3DM+2DM)
RT	1.468			-0.166	1.00	0.30	1.59 10⁻³	28 (3DB+3DM+2DM)
	Intercept	TMI_ω ₂ _a_CBL	TMI_ω ₂ _p_CBL	TMI_ω ₂ _l_CBL	Pagel's λ	adj. R ²	p-value	N
RT	1.307	-0.296			0.43	0.74	2.90 10⁻⁹	28 (3DB+3DM+2DM)
RT	1.371		-0.246		1.00	0.46	3.97 10⁻⁵	28 (3DB+3DM+2DM)
RT	1.386			-0.242	1.00	0.40	1.65 10⁻⁴	28 (3DB+3DM+2DM)
	Intercept	TMI_Gv_a_CBL	TMI_Gv_p_CBL	TMI_Gv_l_CBL	Pagel's λ	adj. R ²	p-value	N
RT	1.433	-0.170			1.00	0.59	1.04 10⁻⁶	28 (3DB+3DM+2DM)
RT	1.467		-0.163		1.00	0.43	9.62 10⁻⁵	28 (3DB+3DM+2DM)
RT	1.491			-0.151	1.00	0.28	2.37 10⁻³	28 (3DB+3DM+2DM)
	Intercept	TMI_ω ₂ _a_CAOL	TMI_ω ₂ _p_CAOL	TMI_ω ₂ _l_CAOL	Pagel's λ	adj. R ²	p-value	N
RT	1.294	-0.302			0.32	0.72	6.36 10⁻⁹	28 (3DB+3DM+2DM)
RT	1.375		-0.238		1.00	0.40	2.04 10⁻⁴	28 (3DB+3DM+2DM)
RT	1.363			-0.261	1.00	0.39	2.31 10⁻⁴	28 (3DB+3DM+2DM)
	Intercept	TMI_Gv_a_CAOL	TMI_Gv_p_CAOL	TMI_Gv_l_CAOL	Pagel's λ	adj. R ²	p-value	N
RT	1.437	-0.165			1.00	0.54	4.68 10⁻⁶	28 (3DB+3DM+2DM)
RT	1.475		-0.152		1.00	0.37	3.86 10⁻⁴	28 (3DB+3DM+2DM)
RT	1.490			-0.150	1.00	0.25	3.78 10⁻³	28 (3DB+3DM+2DM)

437 In these regressions we used average values for the clades Acanthopterygii, Anguimorpha, Anura,
 438 Atlantogenata, Batoidea, Caudata, Crocodylia, Elopomorpha, Euarchontoglires, Galloanserae,
 439 Gekkota, Gymnophiona, Holocephali, Iguania, Lacertoidea, Laurasiatheria, Marsupialia, Monotremata,
 440 Neoaves, Otocephala, Palaeognathae, Paracanthopterygii, Protacanthopterygii, Rhynchocephalia,
 441 Scincomorpha, Selachii, Serpentes and Testudines. Only specimens with measurements of body
 442 temperature were included. These groups were chosen to best balance taxonomic sampling with robust
 443 averaging of TMI.

444

445

446

447

448

449 **Akaike information criterion of 18 models for the TMI, and resulting weights used in model**
 450 **averaging**

Model	AICc	Akaike Weights
TMI_w2_a_√BM	-93.4	0.135
TMI_w2_p_√BM	-86.6	0.005
TMI_w2_l_√BM	-84.1	0.001
TMI_Gv_a_√BM	-94.4	0.224
TMI_Gv_p_√BM	-86.1	0.004
TMI_Gv_l_√BM	-79.4	0.000
TMI_w2_a_CBL	-94.9	0.288
TMI_w2_p_CBL	-86.9	0.005
TMI_w2_l_CBL	-84.0	0.001
TMI_Gv_a_CBL	-94.6	0.249
TMI_Gv_p_CBL	-85.1	0.002
TMI_Gv_l_CBL	-78.6	0.000
TMI_w2_a_CAOL	-90.5	0.032
TMI_w2_p_CAOL	-83.5	0.001
TMI_w2_l_CAOL	-83.3	0.001
TMI_Gv_a_CAOL	-91.4	0.051
TMI_Gv_p_CAOL	-82.2	0.001
TMI_Gv_l_CAOL	-77.6	0.000

451
 452 **PGLS-R of the temperature ratio against the weighted TMI, using species values or group**
 453 **averages**

	Intercept	TMI	Pagel's λ	adj. R ²	p-value	N
RT	1.618	-0.018	0.99	0.01	0.11	230 (3DB+3DM+2DM)
RT	1.347	-0.248	0.27	0.80	9.45 10⁻¹¹	28 (3DB+3DM+2DM)

454 Only specimens with measurements of body temperature were included. The first regression is based
 455 on all relevant specimens, while the second regression is based on average values for the clades
 456 Acanthopterygii, Anguimorpha, Anura, Atlantogenata, Batoidea, Caudata, Crocodylia, Elopomorpha,
 457 Euarchontoglires, Galloanserae, Gekkota, Gymnophiona, Holocephali, Iguania, Lacertoidea,
 458 Laurasiatheria, Marsupialia, Monotremata, Neoaves, Otocephala, Palaeognathae, Paracanthopterygii,
 459 Protacanthopterygii, Rhynchocephalia, Scincomorpha, Selachii, Serpentes and Testudines.

460
 461

462 **Logistic regression of the thermic regime against the weighted TMI**

	Intercept	p-value	TMI	p-value	AIC	N
TR	7.09	7.32 10 ⁻¹³	10.080	1.26 10 ⁻¹²	118.04	180 (3DB)

463 Only amniote specimens with measurements of body temperature were included.
 464

465

466 **Phylogenetic logistic regression of the thermic regime against the weighted TMI**

	Intercept	p-value	TMI	p-value	N
TR	4.942	0.083	6.928	0.041	180 (3DB)

467 Only amniote specimens with measurements of body temperature were included.

468

469

470 **Supplementary Note 3.** Divergence times and Last Occurrence Datum

471 **Divergence Times**

472 **Common ancestor of *Diadectes* and *Amniota*:** The relationships of diadectomorphs are controversial.
473 They have often been recovered as the sister group of Amniota (e.g., Gauthier et al. 1988; Laurin &
474 Reisz 1995, 1997; Lee & Spencer 1997; Kissel & Reisz 2004a; Reisz 2007; Kissel 2010; Liu & Bever
475 2015; Laurin & Piñeiro 2017; Ford and Benson 2019), but other analyses have recovered them nested
476 within Amniota, either as the sister taxon of Sauropsida (Ruta et al. 2003; Ruta & Coates 2007;
477 Marjanović & Laurin 2019) or Synapsida (Sumida et al. 1992; Berman et al. 1992; Berman 2000;
478 Berman 2013). Here, we used the “traditional” hypothesis that diadectomorphs are the sister group of
479 amniotes, although we acknowledge that this is an area of continuing research. Despite this stemward
480 position, the known fossil record of diadectomorphs begins after the first appearances of Synapsida and
481 Sauropsida. The oldest records of diadectomorphs are occurrences of *Desmatodon* in the Kasimovian
482 (Late Pennsylvanian) Sangre de Cristo Formation of Colorado and the Red Knob Formation of
483 Pennsylvania (Reisz 2007; Kissel 2010). The nested position of *Desmatodon* within Diadectomorpha
484 and the stratigraphic ranges of other taxa in the clade imply that much of the earliest history of the clade
485 is not recorded (Reisz 2007; Kissel 2010). Therefore, it is necessary to turn to other taxa to calibrate the
486 time of origin of Amniota.

487 Benton et al. (2015) used the Visean (Middle Mississippian) aïstopod *Lethiscus stocki* to
488 calibrate the divergence of crown Tetrapoda, reflecting the hypothesis that aïstopods are members of
489 Lepospondyli and thus part of total group Amniota (e.g., Ruta et al. 2003; Ruta and Coates 2007).
490 However, reconsideration of the phylogenetic relationships of aïstopods has raised the possibility that
491 they are stem tetrapods, not members of the crown group (Pardo et al. 2017). If that hypothesis is
492 correct, the stem lissamphibian *Balanerpeton* and the stem amniote *Westlothiana* from the upper Visean
493 East Kirkton locality of Scotland (Pardo et al. 2017), which has been dated to 332.9–330.9 Mya (Benton
494 et al. 2015), are the next relevant calibration points. Therefore, the divergence between diadectomorphs
495 and crown amniotes must have occurred between the upper Visean and the Bashkirian given the first
496 occurrences of synapsids and sauropsids in the Joggins Formation of Nova Scotia, which has been
497 calibrated at 318 Mya (Benton et al. 2015; also see below). We use the midpoint of this age range (324.5
498 Mya) to calibrate the divergence of Diadectomorpha and Amniota.

499 **Synapsida + Sauropsida:** The divergence between synapsids and sauropsids occurred by the
500 Bashkirian Stage of the Early Pennsylvanian (late Carboniferous Period). This divergence is calibrated
501 by the presence of the sauropsid *Hylonomus lyelli* and the putative synapsids *Protoclepsydrops haplous*
502 and *Asaphestera platyris*, which occur in the same stratigraphic horizon in the Joggins Formation of
503 Nova Scotia (Carroll 1964; Mann et al. 2020). *Protoclepsydrops* is known from limited, fragmentary

504 material, and its identity as a synapsid has been questioned (Reisz 1972, 1986; Mann & Paterson 2019).
505 *Asaphestera* was long considered a ‘microsaur’, but had recently been re-identified as a synapsid,
506 possibly a caseasaur (Mann et al. 2020). The sauropsid identity of *Hylonomus* is better supported
507 (Müller and Reisz 2006), so its presence in the fossil record implies that synapsids and sauropsids must
508 have diverged by this time, even if *Protoclepsydrops* and/or *Asaphestera* are not synapsids. Age
509 estimates for the Joggins Formation range from about 319–310 million years ago (Reisz and Müller
510 2004, van Tuinen and Hadly 2004), and Benton et al. (2015) recommended of 318 million years ago as
511 a minimum age for this divergence. We use a slightly older date of 320 Mya to accommodate the earliest
512 divergences among sauropsids (see divergence between Captorhinidae and Diapsida below).

513 **Caseasauria + Eupelycosauria:** *Eocasea martinsi* and *Datheosaurus macrourus* are the oldest known
514 relatively certain caseasaurians, and both are likely Gzhelian in age (Reisz and Fröbisch 2014; Spindler et
515 al., 2016). However, the oldest taxa relevant for calibrating this node are the ophiacodontids
516 *Archaeothyris florensis* and *Echinerpeton intermedius*, and the varanopid *Dendromaia unamakiensis*
517 (assuming varanopids are synapsids; see discussion in Ford and Benson 2019) from the slightly older
518 Morien Group of Nova Scotia (Reisz 1972; Maddin et al. 2019; Mann & Paterson 2019), which is likely
519 Moscovian–Kasimovian in age (see discussion in van Tuinen and Hadley 2004). The presence of
520 ophiacodontids at this time implies the caseasaurians had also diverged by this point, regardless of the
521 recent debate on the phylogenetic relationships of early synapsids (e.g., compare the results of Benson
522 2012 and Brocklehurst et al. 2016). If *Asaphestera* is indeed a caseasaur (Mann et al. 2020), it would
523 provide direct confirmation of this hypothesis. The numerical age of the divergence should be between
524 309.2 Mya (the older end of the range given for the age of *Archaeothyris* in van Tuinen and Hadley
525 2004) and 318 Mya (Benton et al.’s 2015 hard minimum for the divergence of Synapsida). 313.6 Mya
526 is the midpoint of this range.

527 **Sphenacodontidae + Therapsida:** Sphenacodontidae is the sister taxon of Therapsida and first appears
528 in the Kasimovian Sangre de Cristo Formation in Colorado (Sumida & Berman 1993). Potentially older
529 sphenacodontid material has been reported from Nova Scotia (Reisz 1972), but given the uncertainty in
530 its identification we use the Sangre de Cristo record as the oldest sphenacodontid. The oldest known
531 therapsid material is substantially younger: the early Permian *Tetraceratops insignis* and the middle
532 Permian *Raranimus dashankouensis* (Liu et al. 2009; Amson & Laurin 2011; although see Spindler
533 2014, 2020). The Kasimovian ranges in age from 307.0–303.7 Mya, and we use the midpoint of this
534 range (305.35 Mya) as the calibration point for this divergence.

535 **Biarmosuchia + Eutherapsida:** Biarmosuchians are generally considered to be the most stemward
536 major therapsid clade (e.g., Sidor & Hopson 1998; Liu et al. 2009, 2010), although *Raranimus*
537 *dashankouensis* and *Tetraceratops insignis* likely fall even further down the therapsid stem (Liu et al.
538 2009; Amson & Laurin 2011; Brink et al. 2015) (and *Tetraceratops* may not be a therapsida at all; see

539 Conrad and Sidor 2001; Spindler 2020). Sphenacodontidae, the sister taxon of Therapsida, first appears
540 in the Late Pennsylvanian (Sumida and Berman, 1993), but there are no known Pennsylvanian
541 therapsids (although see Spindler 2014). Therefore, while divergences between therapsid lineages could
542 date back to the Pennsylvanian, there is no direct evidence for this. The putative early Permian therapsid
543 *Tetraceratops insignis* (Amson & Laurin 2011; although see Spindler 2020) does not help to resolve
544 this issue because it does not appear to fall within any of the major therapsid clades. The divergence
545 between biarmosuchians and other therapsids is calibrated by the oldest record of Dinocephalia.
546 Specifically, anteosaurid dinocephalians are present in the Golyusherma Assemblage of Russia, which
547 is considered to be early Roadian (early middle Permian) in age (Golubev 2015), making these fossils
548 the oldest known unequivocal therapsid occurrence. The Roadian is 272.3 to 268.8 Mya, and we
549 calibrate this divergence at 271 Mya, in part to accommodate other divergences whose timing is based
550 on the first appearance of dinocephalians (see below).

551 **Hipposaurus + Burnetiamorpha:** The biarmosuchians *Leucocephalus*, *Herpetoskylax*, and
552 *Lemurosaurus* occur in the Wuchiapingian *Tropidostoma-Gorgonops* subzone (*Endothiodon*
553 Assemblage Zone) and *Cistecephalus* Assemblage Zone of the Karoo Basin, South Africa (e.g., Sidor
554 & Welman 2003; Sidor & Rubidge 2006; Day et al. 2016, 2018a; Day and Smith 2020; Smith 2020),
555 but *Hipposaurus* is older, occurring in the Capitanian upper Abrahamskraal Formation (*Diictodon-*
556 *Styracocephalus* subzone, *Tapinocephalus* Assemblage Zone) (e.g., Day et al. 2018; Day and Rubidge
557 2020). The divergence time of *Hipposaurus* is bracketed by the presence of the more stemward
558 biarmosuchian *Biarmosuchus* in the likely Wordian Ocher Subassemblage of European Russia (e.g.,
559 Sennikov & Golubev 2017) and the presence of the more derived bullacephalids *Pachydetes* and
560 *Bullacephalus* in the underlying *Eosimops-Glanosuchus* subzone of the *Tapinocephalus* Assemblage
561 Zone (Day and Rubidge 2020). Lanci et al. (2013) provided an age range of 268.5–264.6 Mya for the
562 lower Abrahamskraal Formation, and we use the lower end of this range (268.5 Mya) as the calibration
563 point for this node.

564 **Herpetoskylax + Burnetiamorpha:** The biarmosuchian *Leucocephalus* occurs in the Wuchiapingian
565 *Tropidostoma-Gorgonops* subzone of the *Endothiodon* Assemblage Zone of the Karoo Basin, whereas
566 *Herpetoskylax* and *Lemurosaurus* both occur in the slightly younger *Cistecephalus* Assemblage Zone
567 of the Karoo Basin, South Africa (e.g., Sidor & Welman 2003; Sidor & Rubidge 2006; Day et al. 2016,
568 2018a; Day and Smith 2020; Smith 2020), but they are members of two distinct lineages of
569 biarmosuchians that diverged earlier in the Permian. The age of this divergence depends strongly on
570 whether the lower *Tapinocephalus* Assemblage Zone taxa *Pachydetes* and *Bullacephalus* (i.e., the
571 Bullacephalidae) are members of the nested clade Burnetiamorpha or if they fall near the base of the
572 biarmosuchian phylogeny (Day et al. 2016). Phylogenetic hypotheses supporting bullacephalids as
573 burnetiamorphs are more common in the biarmosuchian literature despite their poorer overall fit to

574 stratigraphy (e.g., Sidor & Smith 2007; Kruger et al. 2015; Day et al. 2016, 2018a; Kammerer 2016a),
575 and we use this topology here. Lanci et al. (2013) provide dates ranging from 268.5–264.6 Mya for the
576 lower Abrahamskraal Formation (i.e., the lower *Tapinocephalus* Assemblage Zone) so we use 265 Mya
577 (approximate age of the Wordian–Capitanian boundary) for this calibration point.

578 **Lemurosaurus + Leucocephalus:** As noted in the previous entry, *Leucocephalus* occurs in strata
579 assigned to the *Tropidostoma-Gorgonops* Subzone (*Endothiodon* Assemblage Zone) of the Karoo
580 Basin, whereas *Lemurosaurus* occurs in strata assigned to the *Cistecephalus* Assemblage Zone (Sidor
581 & Welman 2003; Day et al. 2018a; Day and Smith 2020; Smith 2020). *Lemurosaurus* is typically
582 reconstructed as the most stemward burnetiamorph (e.g., Sidor & Welman 2003; Smith et al. 2006;
583 Kruger et al. 2015; Day et al. 2016; Kammerer 2016a), so the minimum age of this divergence is
584 calibrated by the oldest burnetiamorph records. In addition to *Lemurosaurus*, the oldest burnetiamorphs
585 are *Proburnetia* and *Niuksenitia*, both of which occur in the Ilinskoe faunal assemblage of Russia (e.g.,
586 Sennikov & Golubev 2017) whose early Wuchiapingian age likely falls within the *Endothiodon*
587 Assemblage Zone of South Africa, potentially within the *Tropidostoma-Gorgonops* Subzone (Sennikov
588 & Golubev 2017; Schneider et al. 2019; Day and Smith 2020). The *Endothiodon* Assemblage Zone is
589 between 260.26–256.8 Mya, with the *Tropidostoma-Gorgonops* Subzone being about 258–256.8 Mya
590 (Rubidge et al. 2013; Day et al. 2015; Day and Smith 2020), and we calibrate this divergence at 260
591 Mya to allow time for the multiple burnetiamorph lineages to diverge before their first appearances in
592 Russia and South Africa.

593 **Dinocephalia + Neotherapsida:** As with the divergence between biarmosuchians and Eutherapsida,
594 this divergence is calibrated by the first appearance of dinocephalians in the Roadian Golyusheva
595 Assemblage of Russia (Golubev 2015). We calibrate this divergence at 270 Mya, placing it in the
596 Roadian, but slightly after the divergence of Biarmosuchians and eutherapsids.

597 **Anomodontia + Theriodontia:** The exact time of divergence between Anomodontia and Theriodontia
598 (i.e., Gorgonopsia + Therocephalia + Cynodontia) is somewhat uncertain. In South Africa, anomodonts,
599 therocephalians, and very fragmentary gorgonopsian remains are known from the *Eodicynodon*
600 Assemblage zone in the Abrahamskraal Formation (e.g., Abdala et al. 2008; Day et al. 2018; Rubidge
601 and Day 2020). Dates from near the base of this formation range from 268.5–264.6 Mya (Lanci et al.
602 2013). The portion of the formation corresponding to the overlying *Tapinocephalus* Assemblage Zone
603 are in the range of 262–261 Mya (Day et al. 2015), and the underlying Ecca Group has been dated to
604 approximately 290–265 Mya (e.g., Tohver et al. 2015; Rubidge et al. 2016; Belica et al. 2017), but the
605 latter strata are well below any therapsid occurrences. Together, this implies that the oldest South
606 African therapsids (including early anomodonts) are in the Wordian to early Capitanian range. The non-
607 dicynodont anomodont *Otsheria* is known from the Ocher Assemblage of Russia, which also probably
608 falls in the Wordian (Golubev 2015). The most stemward anomodont, *Biseridens* is known from the

609 Dashankou locality in China, where it co-occurs with dinocephalians but not theriodonts (Liu et al.
610 2010). This locality is often portrayed as older than either the *Eodicynodon* zone or the Ocher
611 Assemblage (e.g., Liu et al. 2009, 2010) based on the primitive gestalt of *Biseridens* and the primitive
612 therapsid *Raranimus*, but its age is poorly constrained and Rubidge and Day (2020) suggested a broad
613 correlation between it and the *Eodicynodon* zone (also see Olroyd and Sidor 2017). Based on this
614 information, the divergence of anomodonts and theriodonts is likely older than 262 Mya and probably
615 older than 264–265 Mya, but younger than 272 Mya. We use 268.5 Mya as the date for this divergence
616 (upper end of the Lanci et al. 2013 range of ages for the lower Abrahamskraal Formation).

617 **Patranomodon + Dicynodontia**: *Eodicynodon oosthuizeni*, the most stemward dicynodont, occurs in
618 the eponymous *Eodicynodon* Assemblage Zone (lower Abrahamskraal Formation, Karoo Basin, South
619 Africa), where it co-occurs with the non-dicynodont anomodont *Patranomodon nyaphulii* (e.g., Day et
620 al. 2018; Rubidge and Day 2020). Radiometric dates and biostratigraphic correlations do not exist with
621 sufficient precision to differentiate the first appearance of *Eodicynodon* from the divergence of
622 Anomodontia, so we place the origin of Dicynodontia one million years after the origin of
623 Anomodontia, 267.5 Mya.

624 **Common ancestor of *Eodicynodon* and *Lystrosaurus***: As noted above, the currently-available fossil
625 record lacks sufficient resolution to provide clear ages for divergences at the base of Dicynodontia.
626 Therefore, we calibrate this divergence point one million years after the origin of Dicynodontia, 266.5
627 Mya.

628 **Common ancestor of *Diictodon* and *Lystrosaurus***: *Diictodon feliceps* is a member of the dicynodont
629 clade Pylaecephalidae. *Eosimops newtoni* and *Robertia broomiana* are the oldest members of this clade,
630 with stratigraphic ranges extending down into the Koornplaats Member of the Abrahamskraal
631 Formation (*Eosimops-Glanosuchus* Subzone of the *Tapinocephalus* Assemblage Zone; Day 2013; Day
632 et al., 2018b; Day and Rubidge 2020). However, its sister lineage (including *Lystrosaurus*) has a
633 potentially older first appearance in *Brachyprosopus broomi*. The latter species also is present in the
634 Abrahamskraal Formation at least as far down as the Leeuvlei Member. A first appearance in the
635 Leeuvlei member would put the first appearance of *Brachyprosopus* the lowermost *Tapinocephalus*
636 Assemblage Zone, near the boundary with the *Eodicynodon* Assemblage Zone (Angielczyk et al. 2016;
637 Day et al. 2020). Together, these data indicate that this divergence falls between the 261–262 Mya
638 radiometric dates in the upper *Tapinocephalus* zone (Day et al. 2015) and the 268–264 Mya range for
639 the dates from the base of the Abrahamskraal Formation (Lanci et al. 2013). We place this divergence
640 at 264 Mya.

641 **Common ancestor of *Pristerodon* and *Lystrosaurus*:** As with the previous calibration,
642 *Brachyprosopus broomi* is likely the oldest relevant taxon whose age is relatively well-constrained. We
643 calibrate this node at 263 Mya, subtracting one million years from the previous calibration.

644 ***Endothiodontia* + *Therochelonia*:** The oldest members of these lineages, *Abajudon*, *Rastodon*, and
645 *Emydops* co-occur with dinocephalian therapsids in the Karoo (South Africa), Ruhuhu (Tanzania), Mid-
646 Zambezi (Zambia), and Paraná (Brazil) basins (Boos et al. 2016; Day et al. 2018; Olroyd et al. 2018;
647 Day and Rubidge 2020). *Abajudon* and *Rastodon* are assumed to be Capitanian in age because of their
648 co-occurrence with dinocephalians, but their ages are otherwise poorly constrained. The records of
649 *Emydops* in the uppermost Abrahamskraal Formation (upper *Tapinocephalus* Assemblage Zone) in the
650 Karoo Basin are close to the dates of 261.24–260.26 Mya for the upper *Diictodon-Styracocephalus*
651 Subzone of the *Tapinocephalus* Assemblage Zone (Rubidge et al. 2013; Day et al. 2015; Day and
652 Rubidge 2020). We calibrate this node at 262.5 Mya to reflect that the divergence must have occurred
653 after the divergence in the previous calibration but before the ca. 261 Mya first appearance of *Emydops*
654 in the fossil record.

655 ***Endothiodontia*:** *Abajudon kaayai*, which co-occurs with tapinocephalid dinocephalians in the Ruhuhu
656 Formation of Tanzania and the lower Madumabisa Mudstone Formation of the Mid-Zambezi Basin of
657 Zambia is likely the oldest known endothiodont, although radiometric dates are not available for either
658 formation (Angielczyk et al. 2014a; Olroyd et al. 2018). However, the widespread genus *Endothiodon*
659 is not known to co-occur definitively with dinocephalians (it is uncertain whether the *Endothiodon*
660 specimen from the Brazilian Rio do Rasto Formation comes from the same stratigraphic level as the
661 dinocephalians reported from that formation; Boos et al. 2013, 2015; Day and Smith 2020), nor does
662 the recently described genus *Niassodon* (e.g., Ray 2000; Boos et al. 2013; Castanhinha et al. 2013; Cox
663 & Angielczyk 2018; Day et al. 2018; Macungo et al. 2020) implying they are at least slightly younger.
664 We calibrate the base of Endothiodontia at 262 Mya to reflect that divergences within the clade must
665 have post-dated the divergence between Endothiodontia and Therochelonia (see previous entry) and
666 must pre-date the first appearance of *Endothiodon bathystoma* in the lower Poortjie Member of the
667 Teekloof Formation, which is between approximately 261–259 Mya (Rubidge et al. 2013; Day et al.
668 2015; Day and Smith 2020), and the likely similarly-aged first appearance of *E. tolani* in the Ruhuhu
669 Formation of Tanzania (Angielczyk et al. 2014; Cox & Angielczyk 2015) and the K5 Formation of
670 Mozambique (Macungo et al. 2020).

671 ***Abajudon* + *Endothiodon*:** The presumably Capitanian first appearance of *Abajudon* discussed in the
672 previous entry is the oldest relevant calibration point for this divergence as well. We calibrate this node
673 at 261.5 Mya to reflect the fact that it must post-date the emergence of Endothiodontia and pre-date the
674 first appearance of *E. bathystoma* in the lower Poortjie Member of the Teekloof Formation (Day et al.
675 2018).

676 ***Endothiodon tolani* + *Endothiodon bathystoma*:** *Endothiodon tolani* was described recently from the
677 middle fossiliferous horizon of the Ruhuhu Formation (R2 of Olroyd & Sidor 2017), Ruhuhu Basin,
678 Tanzania (Cox & Angielczyk 2015). The age of this horizon is not well constrained, but it has been
679 hypothesized to fall near the Guadalupian-Lopingian boundary based on biostratigraphic comparisons
680 (Angielczyk et al. 2014a; Cox & Angielczyk 2015; Olroyd & Sidor 2017). Recently, Macungo et al.
681 (2020) reported *E. tolani* specimens from the K5 Formation of the Metangula Graben of Mozambique,
682 and unerupted tusks visible in CT-scans of the maxillae of NHCC LB648 allow us to recognize that
683 specimen as the first occurrence of *E. tolani* in the Madumabisa Mudstone Formation of the Mid-
684 Zambezi Basin, Zambia. The ages of these units are not well constrained, but there are reasons to believe
685 that fall within the Lopingian (Castanhinha et al. 2013; Barbolini et al. 2016). *Endothiodon bathystoma*
686 has a cosmopolitan distribution in Gondwana (e.g., Boos et al. 2013; Cox & Angielczyk 2015), but its
687 best-dated records are in the Karoo Basin of South Africa. There, *E. bathystoma* first appears in in the
688 lower Poortjie Member of the Teekloof Formation (Day et al. 2018), which is between approximately
689 261–259 Mya (Rubidge et al. 2013; Day et al. 2015; Day and Smith 2020). Together, these observations
690 suggest that *E. tolani* and *E. bathystoma* diverged no later than the latest Capitanian, and we calibrate
691 this divergence at 261 Mya.

692 ***Emydopoidea* + *Bidentalida*:** The records of *Emydops* and *Rastodon* noted in the entry for
693 Endothiodontia + Therochelonia are the oldest relevant calibration points for this node. We calibrated
694 the divergence at 262 Mya based on the fact that it must post-date the divergence of Endothiodontia and
695 Therochelonia, but pre-date the first appearance of *Dicynodontoides* in the Capitanian-Wuchiapingian
696 *Lycosuchus-Eunotosaurus* subzone of the *Endothiodon* Assemblage Zone of the Karoo Basin
697 (Angielczyk et al. 2009; Day and Smith 2020).

698 ***Dicynodontoides* + *Cistecephalidae*:** The first appearance of *Dicynodontoides* is in the upper Poortjie
699 Member of the Teekloof Formation (*Lycosuchus-Eunotosaurus* subzone of the *Endothiodon*
700 Assemblage Zone) of the Karoo Basin (Angielczyk et al. 2009; Day et al. 2018; Day and Smith 2020),
701 which is between 260.26–259.26 Mya (Rubidge et al. 2013; Day et al. 2015; Day and Smith 2020). The
702 oldest well-documented cistecephalid is likely *Cistecephalus microrhinus*, which first appears in the
703 upper *Tropidostoma-Gorgonops* Subzone of the *Endothiodon* Assemblage Zone of the Karoo Basin
704 (Smith & Keyser 1995; Day and Smith 2020). This assemblage zone is bracketed by radiometric dates
705 of 259.26 Mya and 256.25 Mya (Day et al. 2015). The undescribed Mid-Zambezi Basin cistecephalid
706 (see Angielczyk et al. 2019) may be older, but its age is very poorly constrained. We calibrate this node
707 at 259 Mya based on the age of the *Lycosuchus-Eunotosaurus* Subzone.

708 ***Kawingasaurus* + *Kembawacela*:** Our dataset includes two cistecephalid species, *Kawingasaurus*
709 *fossilis* from the Usili Formation (Ruhuhu Basin, Tanzania; Cox 1972) and *Kembawacela kitchingi* from
710 the upper Madumabisa Mudstone Formation (Luangwa Basin, Zambia; Angielczyk et al. 2019).

711 Angielczyk et al. (2014b) correlated the Usili and upper Madumabisa Mudstone formations with the
712 Wuchiapingian *Cistecephalus* Assemblage Zone of the Karoo Basin, but more recent work suggests that
713 they may encompass parts of the upper *Cistecephalus* Assemblage Zone and the lower *Dapocephalus*
714 Assemblage Zone (Angielczyk & Kammerer 2017; Angielczyk 2019; Smith 2020; Viglietti 2020; also
715 see Sidor et al. 2010; Kammerer 2019). Therefore, the divergence between *Kawingasaurus* and
716 *Kembawacela* must have occurred sometime between the divergence of Cistecephalidae (presumably
717 near the Capitanian-Wuchiapingian boundary; see previous entry) and Wuchiapingian-Changhsingian
718 boundary (i.e., near the *Cistecephalus*-*Dapocephalus* Assemblage one boundary; see dates in Rubidge
719 et al. 2013; Day et al. 2015). We calibrate this node at 256 Mya, based on Rubidge et al.'s (2013) date
720 of 256.25 Mya near the base of the Oudeberg Member of the Balfour Formation, which corresponds in
721 part to the *Cistecephalus* Assemblage Zone.

722 **Common ancestor of *Oudenodon* and *Lystrosaurus*:** The common ancestor of *Oudenodon* and
723 *Lystrosaurus* must have existed after the divergence of the stemward, presumably Capitanian
724 bidentalian *Rastodon* and early cryptodonts and geikiids such as *Tropidostoma*, *Australobarbarus*, and
725 *Bulbasaurus*, all of which are early Wuchiapingian in age (approximately the *Endothiodon* Assemblage
726 Zone of the Karoo Basin or its likely equivalents; e.g., Kurkin, 2011; Benton et al., 2012; Kammerer &
727 Smith 2017; Sennikov & Golubev, 2017; Kammerer & Masyutin, 2018a; Day et al. 2018; Day and
728 Smith 2020). Radiometric dates of 259.26 Mya and 256.25 Mya bracket the *Endothiodon* Assemblage
729 Zone in the Karoo Basin (Rubidge et al. 2013; Day et al. 2015), and we calibrate this node at 258 Mya,
730 reflecting the presence of *Tropidostoma* and *Bulbasaurus* in the *Tropidostoma*-*Gorgonops* Subzone of
731 the *Endothiodon* Assemblage Zone (Day et al. 2018).

732 **Common ancestor of *Aulacephalodon* and *Lystrosaurus*:** The early Wuchiapingian
733 (*Tropidostoma*-*Gorgonops* Subzone of the *Endothiodon* Assemblage Zone) geikiid *Bulbasaurus* is the
734 oldest taxon that is relevant to this calibration (Kammerer & Smith 2017). We calibrate this node at
735 257.5 Mya to reflect the fact that *Bulbasaurus* is present in the *Tropidostoma*-*Gorgonops* Subzone (Day
736 et al. 2018; Day and Smith 2020) but must have diverged after the common ancestor of *Oudenodon* and
737 *Lystrosaurus* (see previous entry).

738 **Common ancestor of *Lystrosaurus* and *Sangusaurus*:** The fossils that are most relevant for calibrating
739 this divergence depend strongly on which taxa are most closely related to *Lystrosaurus* and where
740 *Lystrosauridae* falls relative to other dicynodontoids in dicynodont phylogeny (*Sangusaurus* dates from
741 the Anisian–Carnian interval and is well nested within Triassic kannemeyeriiform dicynodonts;
742 Angielczyk et al. 2018; Peecook et al. 2018a). Unfortunately, these are both areas where recent
743 phylogenetic analyses of the group have differed (e.g., compare Angielczyk & Kammerer 2017;
744 Kammerer 2018, 2019; Olroyd et al. 2018; Kammerer et al. 2019; Olivier et al. 2019; Liu 2020). For
745 this analysis, we assumed that the topology of Kammerer (2019) is correct, but our results would not

746 vary dramatically if other recent phylogenies were used as a reference instead. In this context,
747 *Dicynodon lacerticeps*, *Dicynodon angielczyki*, *Dapocephalus huenei*, *Dinanomodon gilli*, and
748 *Peramodon amalitzkii* all are known from faunal assemblages that are thought to span the
749 Changhsingian-Wuchiapingian boundary (i.e., the *Cistecephalus* and *Dapocephalus* Assemblage zones
750 of South Africa, the Usili Formation of Tanzania, the upper Madumabisa Mudstone Formation of
751 Zambia, and the Sokolki Subassemblage of Russia; see e.g. Viglietti et al. 2016; Sennikov & Golubev
752 2017; Angielczyk & Kammerer 2017; Angielczyk 2019; Smith 2020; Viglietti 2020; dates from
753 Rubidge et al. 2013). Permian occurrences of *Lystrosaurus* in China and South Africa seem to be
754 restricted to the Changhsingian (i.e., the Guodikeng Formation and the *Lystrosaurus maccaigi*-
755 *Moschorhinus* Subzone of the *Dapocephalus* Assemblage Zone; dates from Yang et al. 2010; Rubidge
756 et. al. 2013; Gastaldo et al. 2015; also see Liu 2018; Viglietti 2020) and thus are slightly younger. Based
757 on the radiometric dates for the Karoo Basin in Rubidge et al. (2013) and Gastaldo et al. (2015), the age
758 of this node likely falls in the 256–253 Mya range and we calibrate it at 255 Mya.

759 ***Lystrosaurus declivis* + *Lystrosaurus murrayi*:** *Lystrosaurus declivis* and *L. murrayi* are best known
760 from the Karoo Basin of South Africa, where they occur in strata assigned to the earliest Triassic
761 *Lystrosaurus declivis* Assemblage Zone (e.g., Botha & Smith 2006, 2007; Smith & Botha-Brink 2014;
762 Botha and Smith 2020; although see Gastaldo et al. 2020 for an alternative age assessment).
763 Phylogenetic relationships within the genus *Lystrosaurus* have been unstable in recent phylogenetic
764 analyses (e.g., compare Angielczyk & Kammerer 2017; Kammerer 2018, 2019; Olroyd et al. 2018;
765 Kammerer et al. 2019; Olivier et al. 2019; Liu et al. 2020). In some cases, they are reconstructed as
766 sister taxa, meaning their divergence could be as young as earliest Triassic, whereas in other cases
767 species with first occurrences in the late Permian fall between them, implying a late Permian divergence.
768 Here, we place this divergence in the late Permian (equivalent to *Lystrosaurus maccaigi*-*Moschorhinus*
769 subzone of the *Dapocephalus* Assemblage Zone) and calibrate it at 253 Mya based on the radiometric
770 date of Gastaldo et al. (2015).

771 **Gorgonopsia + Eutheriodontia:** The oldest well-characterized gorgonopsian is *Eriphostoma*
772 *microdon*, which first appears in the Capitanian *Diictodon-Styracocephalus* Subzone of the
773 *Tapinocephalus* Assemblage Zone of the Karoo Basin, South Africa (Kammerer 2014; Kammerer et al.
774 2015; Day et al. 2018; Day and Rubidge 2020), although fragmentary material has also been reported
775 from the Wordian *Eodicynodon* Assemblage Zone (Abdala & Rubidge 2008; Rubidge and Day 2020).
776 More reliable Wordian to Wordian-Capitanian records exist for Eutheriodontia, in the form of
777 therocephalians in Russia and South Africa (e.g., Abdala & Rubidge 2008; Huttenlocker & Smith 2017),
778 with *Glanosuchus macrops* and *Ictidosaurus angusticeps* from the lower Abrahamskraal Formation
779 (*Eodicynodon* Assemblage Zone) comprising the oldest occurrences of the clade (Huttenlocker & Smith
780 2017; Day et al. 2018; Rubidge and Day 2020). Dates from near the base of the Abrahamskraal

781 Formation range from 268.5–264.6 Mya (Lanci et al. 2013). We calibrate this node at 265.5 Mya, one
782 million years after our calibration for the divergence of Theriodontia from Anomodontia.

783 ***'Aloplosaurus' + Scylacocephalus + Lycaenops + Dixeyia + BP/1/155:*** Our dataset includes five African
784 gorgonopsians, but only one (*Lycaenops*; Wuchiapingian–Changhsingian) has been formally included
785 in recent phylogenetic analyses of the clade. An important result of this work is the new hypothesis that
786 African gorgonopsians form a single clade that is distinct from Russian members of the group
787 (Kammerer & Masyutin 2018a; Bendel et al. 2018). *Eriphostoma microdon* is the oldest and most
788 stemward well-characterized African gorgonopsian, occurring in the upper Abrahamskraal and lower
789 Teekloof formations in the Karoo Basin (*Tapinocephalus–Endothiodon* assemblage zones; Kammerer
790 2014; Kammerer et al. 2015; Kammerer & Masyutin 2018a; Bendel et al. 2018; Day and Rubidge 2020;
791 Day and Smith 2020). As such it provides a useful estimate of the maximum time of divergence for the
792 African specimens in our dataset. The upper *Tapinocephalus* Assemblage Zone has been dated to the
793 late Capitanian (ca. 261 Mya; Rubidge et al. 2013; Day et al. 2015; Day and Rubidge 2020), and the
794 first appearance of *Eriphostoma* is likely slightly older than the dated strata. We calibrate this node at
795 262 Mya to reflect its position between the divergence of Gorgonopsia and Eutheriodontia (see previous
796 entry) and the 261.24 Mya date for the upper *Tapinocephalus* Zone (Rubidge et al. 2013).

797 **Therocephalia + Cynodontia:** The oldest cynodont species are *Charassognathus gracilis* and
798 *Abdalodon diastematicus*, both of which are known from the Hoedemaker Member of the Teekloof
799 Formation in the Karoo Basin (lower Wuchiapingian *Tropidostoma-Gorgonops* Subzone of the
800 *Endothiodon* Assemblage Zone; Botha et al. 2007; Kammerer 2016b; age from Rubidge et al. 2013;
801 Day et al. 2015; Day and Smith 2020). Therocephalia has a deeper fossil record, with *Glanosuchus*
802 *macrops* and *Ictidosaurus angusticeps* from the lower Abrahamskraal Formation (*Eodicynodon*
803 Assemblage Zone) comprising the oldest occurrences of the clade (Huttenlocker & Smith 2017; Day et
804 al. 2018; Rubidge and Day 2020). Lanci et al. (2013) dated the lower Abrahamskraal Formation to
805 268.5–264.6 Mya, and we calibrate this node at 265 Mya to reflect these ages and also the fact that this
806 divergence must post-date the divergence of Gorgonopsia from Eutheriodontia (see above). Our
807 calibration is notably younger than statistical estimates of the root age for Cynodontia presented by
808 Lukic-Walther et al. (2019), which clustered near the Cisuralian-Guadalupian boundary. However, our
809 calibration is consistent with the known therapsid fossil record.

810 **Akidnognathidae + Baurioidea:** The therocephalians in our dataset comprise members of two major
811 clades, Akidnognathidae (*Euchambersia*, *Olivierosuchus*) and Baurioidea (*Ictidosuchoides*, *Mupashi*,
812 *Choerosaurus*, *Microgomphodon*) (e.g., Huttenlocker & Smith 2017; Liu & Abdala 2017; Kammerer
813 and Masyutin 2018b). Of these two clades, baurioids appear earlier in the fossil record, near the
814 Capitanian-Wuchiapingian boundary (e.g., cf. *Ictidosuchoides* in the South African *Lycosuchus*–
815 *Eunotosaurus* Subzone of the *Endothiodon* Assemblage Zone, *Karenites* in the Russian Kotelnich

816 Subassemblage; Huttenlocker and Smith 2017; Day and Smith 2020). The base of the *Lycosuchus*-
817 *Eunotosaurus* Subzone is constrained by a radiometric date of 260.26 Mya at the base of the Poortjie
818 Member of the Teekloof Formation (Day and Smith 2020), and we calibrate this node at 260.26 Mya.

819 ***Olivierosuchus* + *Euchambersia*:** Although it is relatively well-nested within Akidnognathidae,
820 *Euchambersia mirabilis* is one of the first members of the clade to appear in the fossil record
821 (Wuchiapingian *Cistecephalus* Assemblage Zone, Karoo Basin; Benoit et al. 2017a; Huttenlocker &
822 Smith 2017; age from Rubidge et al. 2013). Radiometric dates and revisions to Karoo litho- and
823 biostratigraphy suggest that the base of the *Cistecephalus* Assemblage zone is older the 256 Mya and
824 that the boundary between the *Cistecephalus* and *Daptocephalus* assemblage zones is slightly older
825 than 255 Mya (Rubidge et al. 2013; Viglietti et al. 2016, 2017, 2018a; Smith 2020; Viglietti 2020).
826 Therefore, we calibrate this node at 257 Mya.

827 **Common ancestor of *Ictidosuchoides* and *Microgomphodon*:** *Ictidosuchoides longiceps* is one of the
828 oldest baurioids, with well characterized records extending back to the Wuchiapingian *Tropidostoma*-
829 *Gorgonops* Subzone of the *Endothiodon* Assemblage Zone of South Africa and a potential occurrence
830 in the Capitanian-Wuchiapingian *Lycosuchus-Eunotosaurus* Subzone of the *Endothiodon* Assemblage
831 Zone (Huttenlocker & Smith 2017; Day et al. 2018; Day and Smith 2020). *Karenites ornamentatus*
832 from the Kotelnich Subassemblage in Russia is likely of similar age (Huttenlocker & Smith 2017;
833 Sennikov & Golubev 2017; Kammerer & Masyutin 2018b). The *Lycosuchus-Eunotosaurus* Subzone is
834 bracketed by radiometric dates of 260.26 Mya and 259.25 Mya (Rubidge et al. 2013; Day et al. 2015;
835 Day and Smith 2020), and we calibrate this node at 259.5 Mya.

836 **Common ancestor of *Mupashi* and *Microgomphodon*:** *Mupashi migrator*, from the upper
837 Madumabisa Mudstone Formation of Zambia, is commonly reconstructed as the sister taxon of
838 *Karenites ornamentatus* from Russia (Huttenlocker & Sidor 2016; Huttenlocker & Smith 2017; Liu &
839 Abdala 2017; Kammerer & Masyutin 2018b). *Karenites* occurs in the Kotelnich Subassemblage, which
840 is generally considered to be close to the Capitanian-Wuchiapingian boundary in age (e.g., Kurkin 2011;
841 Benton et al. 2012; Kammerer & Masyutin 2018; Sennikov & Golubev 2018), although radiometric
842 dates do not yet exist for the assemblage. We calibrate the age of this node as 259 Mya, making it
843 slightly younger than the age of the common ancestor of *Ictidosuchoides* and *Microgomphodon*.

844 **Common ancestor of *Choerosaurus* and *Microgomphodon*:** *Choerosaurus dejageri* occurs in the
845 Wuchiapingian *Tropidostoma-Gorgonops* Subzone of the *Endothiodon* Assemblage Zone of the Karoo
846 Basin (Benoit et al. 2016a; Huttenlocker & Smith 2017; Smith and Day 2020), making it one of the
847 oldest baurioids. By contrast *Microgomphodon oligocynus* dates to the Middle-?Late Triassic
848 *Langbergia-Garjainia* Subzone of the *Cynognathus* Assemblage Zone (Abdala et al. 2014;
849 Huttenlocker & Smith 2017; Hancox et al. 2020). The *Tropidostoma-Gorgonops* Subzone is thought to

850 be between 258 Mya and 256.8 Mya in age (Rubidge et al. 2013; Day et al. 2015; Day and Smith 2020).
851 We calibrate this node at 258 Mya, one million years after the age of the common ancestor of *Mupashi*
852 and *Microgomphodon*.

853 **Common ancestor of *Procynosuchus* and mammals:** There is uncertainty about the exact
854 phylogenetic placement of *Procynosuchus* (e.g., compare Botha et al. 2007; Kammerer 2016b; Van den
855 Brandt & Abdala 2018; Abdala et al. 2019; Huttenlocker and Sidor 2020; supertree results of Lukic-
856 Walther et al. 2019), which impacts on which taxa are most useful for calibrating this node. If
857 *Procynosuchus* (or a clade comprised of *Procynosuchus* and *Dvinia*) is the most stemward known
858 cynodont lineage, then the presence of *Charassognathus* and *Abdalodon* in the early Wuchiapingian
859 *Tropidostoma-Gorgonops* Subzone of the *Endothiodon* Assemblage Zone of South Africa (Day and
860 Smith 2020) implies that *Procynosuchus* must have diverged by that time. Alternatively, if
861 *Procynosuchus* is in a more nested position than *Charassognathus* and/or *Abdalodon* (or
862 *Charassognathidae sensu* Huttenlocker and Sidor 2020), then its divergence time might be closer to its
863 actual first appearance near the boundary of the *Cistecephalus* and *Dapocephalus* assemblage zones
864 (e.g., Huttenlocker et al. 2011; Kammerer 2016b, Viglietti et al. 2016; Smith 2020; Viglietti 2020). For
865 the purposes of this analysis, we assumed that *Procynosuchus* falls stemward of *Charassognathus* and
866 *Abdalodon*, and we calibrate this node at 259 Mya (i.e., near the boundary between the boundary
867 between the *Lycosuchus-Eunotosaurus* and *Tropidostoma-Gorgonops* subzones of the *Endothiodon*
868 Assemblage Zone in the Karoo Basin; dates from Rubidge et al. 2013; Day et al. 2015; Day and Smith
869 2020).

870 **Epicynodontia:** *Cynosaurus suppostus* occurs in the upper Wuchiapingian-Changhsingian
871 *Cistecephalus* and *Dapocephalus* assemblage zones of South Africa (Van den Brandt & Abdala 2018;
872 Smith 2020; Viglietti 2020) and provides a calibration point for this node. The base of the *Cistecephalus*
873 Assmeblgæ zone dates to 256.6 Mya (Rubidge et al. 2013; Viglietti et al. 2016, 2017, 2018a; Smith
874 2020), so we calibrate this node at 258 Mya, in part to accommodate additional divergences that must
875 have occurred in the latest Permian (see next two entries)

876 **Common ancestor of *Galesaurus* and mammals:** *Galesaurus planiceps* is a well characterized
877 cynodont known from the Early Triassic *Lystrosaurus declivis* Assemblage Zone of South Africa (e.g.,
878 Jasinoski & Abdala 2017a, 2017b; Butler et al. 2018; Pusch et al. 2019; Botha and Smith 2020).
879 However, the presence of the phylogenetically more deeply-nested cynodonts *Nanictosaurus* and
880 *Vetusodon* in the Changhsingian *Dapocephalus* Assemblage Zone of the Karoo Basin (e.g., Abdala et
881 al. 2019; Viglietti 2020) implies that the lineage including *Galesaurus* must have diverged in the
882 Permian as well. The base of the *Dapocephalus* Assemblage Zone is approximately 255 Mya (Rubidge
883 et al.; Viglietti 2020), and we use 257 Mya as a calibration point for this node to accommodate additional
884 divergences that must have occurred in the latest Permian (see next entry).

885 **Common ancestor of *Thrinaxodon* and mammals:** *Thrinaxodon liorhinus* is unquestionably the most
886 thoroughly studied non-mammalian cynodont, and it has a well-documented stratigraphic range in the
887 Early Triassic Palingkloof Member of the Balfour Formation and the Katberg Formation in the Karoo
888 Basin (e.g., Botha & Smith 2006; 2020) as well as the lower Fremouw Formation in Antarctica (e.g.,
889 Kitching et al. 1972; Colbert and Kitching 1977; Hammer 1990; Peecook et al. 2018b). As in the case
890 of *Galesaurus* (see previous entry), the occurrence of the phylogenetically more-nested cynodonts
891 *Nanictosaurus* and *Vetusodon* in the *Dapocephalus* Assemblage Zone (e.g., Abdala et al. 2019; Viglietti
892 2020) implies that the lineage including *Thrinaxodon* must have diverged in the Permian as well. We
893 calibrate this node at 256 Mya, reflecting the fact that the base of the *Dapocephalus* Assemblage Zone
894 is slightly younger than this age (Rubidge et al. 2013; Viglietti et al. 2016, 2017, 2018a; Viglietti 2020).

895 **Eucynodontia:** A consistent feature of analyses of cynodont phylogeny is the division of “higher”
896 cynodonts into two major clades, the extinct Cynognathia and Probainognathia, whose extant
897 representatives are mammals (e.g., see supertree in Lukic-Walther et al. 2019), which are united within
898 Eucynodontia. The strata hosting the oldest occurrences of eucynodonts, such as the lower Burgersdorp
899 Formation of the Karoo Basin (*Laingbergia-Garjainia* Subzone of the *Cynognathus* Assemblage Zone),
900 have typically been thought to be Olenekian in age (e.g., Rubidge 2005; Lucas 2010; Schneider et al.
901 2019; Hancox et al. 2020 although see further discussion in the following entry). However, depending
902 on the identity of its sister taxon, the eucynodont lineage must have diverged by the Early Triassic (e.g.,
903 if *Playcraeniellus* is the sister taxon; Abdala 2007) or the latest Permian (e.g., if *Vetusodon* is the sister
904 taxon; Abdala et al. 2019). For this analysis, we assumed the latter hypothesis is correct, and used
905 Gastaldo et al.’s (2015) radiometric date of 253.48 Mya for the *Lystrosaurus maccaigi-Moschorhinus*
906 subzone of the *Dapocephalus* Assemblage Zone to calibrate this node.

907 **Common ancestor of *Trirachodontidae* and *Massetognathus*:** The most stemward cynognathian
908 lineage in our dataset is Trirachodontidae. In addition to *Trirachodon* itself, Trirachodontidae also
909 includes the genera *Langbergia* and *Cricodon* (Sidor & Hopson 2018), and possibly *Beishanodon* and
910 *Sinognathus* from China (Liu & Abdala 2014). We treat Trirachodontidae as a clade in our phylogeny,
911 but recently Hendrickx et al. (2020) proposed that the trirachodontids may instead be a paraphyletic
912 assemblage on the stem leading to Traversodontidae. *Langbergia*, from the lower Burgersdorp
913 Formation (*Langbergia-Garjainia* Subzone of the *Cynognathus* Assemblage Zone; Hancox et al. 2020)
914 of the Karoo Basin is the stratigraphically lowest-occurring trirachodontid. Traditionally, one record of
915 *Trirachodon berryi* was suggested to have originated in this subzone (Abdala et al. 2006), but Hancox
916 et al.’s (2020) redefined *Cynognathus* zone biostratigraphy would place this specimen in the overlying
917 *Trirachodon-Kannemeyeria* Subzone. *Langbergia* also occurs stratigraphically below other stemward
918 cynognathians such as *Cynognathus* and *Diademodon* (Neveling 2004), making it the most relevant
919 record for calibrating this divergence. As noted in the previous entry, the *Laingbergia-Garjainia*

920 Subzone has generally been regarded as Olenekian in age, although it has not been radiometrically dated
921 directly. Recent radiometric dates of strata that are biostratigraphically-correlated with the *Cynognathus*
922 Assemblage Zone have raised the possibility that parts of it might be substantially younger than
923 previously thought (e.g., Ottone et al. 2014; Marsicano et al. 2016; also see discussion in Martinelli et
924 al. 2017a; Peecook et al. 2018a; Schneider et al. 2019). Detrital zircon crystals from the lower part of
925 the underlying Katberg Formation with a minimum age of 250 ± 5 Mya (Viglietti et al. 2018b) also are
926 consistent with a younger age for the *Cynognathus* Assemblage Zone. However, the wide error range
927 on the latter date and the existence of dates for other biostratigraphically-correlated strata more in
928 accordance with the traditional hypothesis (Liu et al. 2018) suggest that further work on the problem is
929 needed. For the purposes of this paper, we have maintained the assumption that subzone A of the
930 *Cynognathus* Assemblage Zone is Olenekian (Hancox et al. 2020). We calibrate this node at 248 Mya,
931 in the late Olenekian, to accommodate the possibility of an Olenekian age for at least part of the
932 underlying Katberg Formation. This is slightly younger than the statistically estimated root age of
933 249.34 Mya for Cynognathia presented by Lukic-Walther et al. (2019).

934 **Common ancestor of *Trirachodon* and *Cricodon*:** *Trirachodon berryi* is an index fossil for the
935 *Trirachodon-Kannemeyeria* Subzone of the of the *Cynognathus* Assemblage Zone of the South Africa
936 Karoo Basin (Hancox et al. 2020). The two species of *Cricodon* recognized by Hopson and Sidor (2018)
937 include occurrences in the *Trirachodon-Kannemeyeria* subzone of the *Cynognathus* Assemblage Zone
938 (*C. kannemeyeri*) as well as the overlying *Cricodon-Ufudocyclops* Subzone, the Ntawere Formation of
939 Zambia, and the Lifua Member of the Manda Beds of Tanzania (all *C. metabolus*; Hopson & Sidor
940 2018; Peecook et al. 2018a; Hancox et al. 2020). As noted in the previous entry, the age of the
941 *Cynognathus* Assemblage Zone and many biostratigraphically-correlated assemblages has been the
942 subject of recent debate. We calibrate this divergence at 247.5 Mya (latest Olenekian), slightly older
943 than the traditionally-assumed early Anisian age for the *Trirachodon-Kannemeyeria* Subzone (e.g.,
944 Hancox et al. 2020, although see discussion above).

945 **Common ancestor of *Scalenodon* and *Massetognathus*:** Traditionally, the Lifua Member of the
946 Manda Beds, which hosts the cynodont *Scalenodon angustifrons* (e.g., Liu & Abdala 2014), has been
947 considered to be Anisian–early Ladinian in age (e.g., Lucas 1998, 2010; Rubidge 2005), although no
948 radiometric dates are available for the Lifua Member or nearby biostratigraphically-correlated strata in
949 southern Africa (e.g., Ntawere Formation of Zambia, Burgersdorp Formation of South Africa). Recently
950 published radiometric dates from South American strata (Philipp et al. 2013, 2018; Ottone et al. 2014;
951 Marsicano et al. 2016; Langer et al. 2018) and the increasing number of cynodonts (including
952 *Scalenodon* itself) and other taxa shared between basins in South America and southern Africa (e.g.,
953 Abdala et al. 2013; Martinelli et al. 2017a; Melo et al. 2017; Peecook et al. 2018a) have raised the strong
954 possibility that *Scalenodon* is no older than late Ladinian and could be early Carnian in age. A Ladinian–

955 early Carnian age for *Massetognathus* is relatively certain (e.g., Marsicano et al. 2016; Schmitt et al.
956 2019). We calibrate this node at 239 Mya, reflecting the fact that the *Dinodontosaurus* Assemblage
957 Zone of Brazil (Santa Maria Supersequence) is likely older than 236–237 Mya and may fall within the
958 late Ladinian (e.g., Martinelli et al. 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019), as
959 well as the need to accommodate the divergence between *Massetognathus* and *Luangwa*, both of which
960 also are present in the *Dinodontosaurus* Assemblage Zone of Brazil (see next entry).

961 **Common ancestor of *Luangwa* and *Massetognathus*:** As its name suggests, *Luangwa* was first
962 discovered in the upper portion of the Triassic Ntawere Formation of the Luangwa Basin, Zambia (Brink
963 1963), but it was subsequently found in Brazil, Namibia, and Tanzania (Abdala & Sa-Teixeira 2004;
964 Abdala & Smith 2009; Martinelli et al. 2017a; Peecook et al. 2018a). The upper Ntawere Formation
965 was traditionally considered to be Anisian in age (Rubidge 2005), but the presence of *Luangwa* in
966 Brazilian strata radiometrically dated to near the Ladinian–Carnian boundary strongly suggest that the
967 Ntawere Formation is younger than previously appreciated (Peecook et al. 2018a; also see previous
968 entry). We calibrate this divergence at 238 Mya, reflecting the fact that the *Dinodontosaurus*
969 Assemblage zone of Brazil (Santa Maria Supersequence) is likely older than 236–237 Mya (e.g.,
970 Martinelli et al. 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019).

971 **Common ancestor of *Lumkuia* and mammals:** There has been uncertainty over the last two decades
972 as to the identity of the most stemward member of Probainognathia, the cynodont clade that includes
973 mammals as its extant representatives (e.g., compare Hopson & Kitching 2001; Liu & Olsen 2010;
974 Martínez et al. 2013a; Ruta et al. 2013; Martinelli et al. 2017a, 2017b, 2017c; Stefanello et al. 2018;
975 Lukic-Walther et al. 2019; Wallace et al. 2019). Here, we follow the hypothesis that *Lumkuia fuzzii* is
976 the most stemward probainognathian, which appears to be an emerging consensus among recent
977 analyses (also see Benoit et al. 2019). The only known specimen of *Lumkuia* was collected from the
978 *Trirachodon-Kannemeyeria* Subzone of the *Cynognathus* Assemblage Zone (Burgersdorp Formation,
979 Karoo Basin) (Hopson and Kitching 2001; Hancox et al. 2020). As noted in several entries above, the
980 *Cynognathus* Assemblage zone was traditionally regarded as Anisian (Middle Triassic) in age based on
981 biostratigraphical correlations, but new radiometric dates from South America have raised the
982 possibility of an age as young as Ladinian–Carnian (Middle–Late Triassic). Therefore, the divergence
983 between *Lumkuia* and the lineage including other probainognathians could be as early as Olenekian
984 (based on the presence of cynognathians in the record at this time and assuming a “traditional” age for
985 the *Cynognathus* zone; see entry for the common ancestor of Trirachodontidae and *Massetognathus*
986 above), or as late as Ladinian (assuming an age no older than Ladinian for most of the “classic” African
987 and South American cynodont-bearing basins) (e.g., see discussion in Martinelli et al. 2017a). We
988 calibrate this node at 244 Mya (i.e., the midpoint of the Olenekian–Ladinian age range). The difference
989 between this calibration and that for the divergence between *Trirachodon* and *Massetognathus* implies

990 the existence of a probainognathian ghost lineage following the divergence of Cynognathia and
991 Probainognathia. Our calibration is also notably younger than the statistically estimated root age of
992 251.9 Mya for Probainognathia presented by Lukic-Walther et al. (2019).

993 **Common ancestor of *Chiniquodon* and mammals:** Following the taxonomic revision of Abdala &
994 Giannini (2002), *Chiniquodon* is one of the stratigraphically and geographically widest-ranging early
995 probainognathians (see review in Abdala & Gaetano 2018; Martinelli et al. 2017a). The oldest records
996 of the genus are from the *Dinodontosaurus* Assemblage Zone (Santa Maria Supersequence) of Brazil
997 and the Chañares Formation of Argentina (e.g., Abdala & Giannini 2002; Abdala & Gaetano 2018;
998 Schmitt et al. 2019), which are late Ladian–early Carnian in age (Marsicano et al. 2016; Philipp et al.
999 2018). We calibrate this node at 238 Mya, reflecting the stratigraphic position of the *Dinodontosaurus*
1000 Assemblage Zone (Pinherios-Chiniquá sequence) below Philipp et al.’s (2018) radiometric date of 237
1001 Mya for the base of the overlying *Santacruzodon* Assemblage Zone (Santa Cruz sequence).

1002 **Common ancestor of *Riograndia* and mammals:** The ictidosaur (sensu Martinelli and Rougier 2007)
1003 *Riograndia guaibensis* is known from the *Riograndia* Assemblage Zone (Candelária Sequence, Santa
1004 Maria Supersequence) of the Paraná Basin, Brazil (e.g., Soares et al. 2011). Rocks from this assemblage
1005 zone were recently dated at 225.42 Mya (Norian) by Langer et al. (2018). This is almost certainly an
1006 underestimate of the age of this divergence, and a more likely estimate of the age is calibrated by the
1007 presence of the more stemward prozostrodonts *Prozostrodon*, *Therioherpeton*, and *Alemoatherium* in
1008 the underlying *Hyperodapedon* Assemblage Zone (e.g., Martinelli et al. 2016, 2017b; Pacheco et al.
1009 2017), which is thought to be as old as 231.4 Mya (Carnian) based on biostratigraphical correlation with
1010 the radiometrically-dated Ischigualasto Formation of Argentina (Martínez et al. 2013b). We calibrate
1011 this divergence at 234 Mya, in part to accommodate the presumably Carnian divergence of
1012 tritylodontids, brasilotontids, and mammaliaforms (see next entry).

1013 **Common ancestor of Tritylodontidae + *Pseudotherium* and mammals:**

1014 Tritylodontids are known primarily from the Jurassic and Cretaceous (e.g., Abdala & Gaetano 2018),
1015 but *Oligokyphus* has been reported from the Late Triassic (Rhaetian) of Nova Scotia and Germany
1016 (Fedak et al. 2015). However, there are older Triassic fossils that are relevant to calibrating this
1017 divergence, but the question of which specific taxa are most important depends strongly on the
1018 phylogenetic relationships assumed for tritylodontids. Two main phylogenetic positions have been
1019 proposed for tritylodontids. One posits that they are derived cynognathians (e.g., Hopson & Kitching
1020 2001; Sues & Jenkins 2006; Bonaparte & Crompton 2017; Sidor & Hopson 2018), whereas the other
1021 places them within Probainognathia, close to the base of Mammaliaformes (e.g., Abdala 2007; Liu &
1022 Olsen 2010; Ruta et al. 2013; Martinelli et al. 2016; Lukic-Walther et al. 2019; Wallace et al. 2019).
1023 Among phylogenies that place tritylodontids within Probainognathia, there also is debate concerning

1024 the branching order of tritylodontids, trithelodontids, and brasilotodontids relative to Mammaliaformes
1025 (e.g., compare Abdala 2007; Liu & Olsen 2010; Ruta et al. 2013; Martinelli et al. 2016, 2017b; Wallace
1026 et al. 2019; also see summary supertree of Lukic-Walther et al. 2019). Resolving these questions is
1027 beyond the scope of this analysis. Here, we assumed the branching order: (Trithelodontidae
1028 (Tritylodontidae (Brasilotontidae, Mammaliaformes))), consistent with the analyses of Liu & Olsen
1029 (2010), Martinelli et al. (2016), and Wallace et al. (2019).

1030 *Brasilodon* and other taxa of potential relevance to the age of this correlation (e.g.,
1031 *Botucaratherium*) co-occur with *Riograndia* in the Norian *Riograndia* Assemblage Zone of Brazil (e.g.,
1032 Martinelli et al. 2016; 2017b). *Adelobasileus* from the Tecovas Formation of Texas (Lucas and Luo
1033 1993), which is likely more closely related to mammals than *Brasilodon*, was shown as having an older
1034 occurrence by Martinelli et al. (2017b; also see e.g., Abdala and Gaetano 2018) that potentially implied
1035 a Carnian age for this divergence. However, recent work suggests a younger Norian age for
1036 *Adelobasileus* (Sarıgül 2017). *Tikitherium* and *Gondwanadon* from the Tiki Formation of India (Datta
1037 & Das 1996; Datta 2005) have been suggested to be members of Mammaliaformes (e.g., Luo & Martin
1038 2007; Debuyschere et al. 2015; see reviews in Abdala & Gaetano 2018; Martin 2018), and the Tiki
1039 Formation typically is biostratigraphically correlated with the Carnian *Hyperodapedon* Assemblage
1040 Zone and the Ischigualasto Formation (e.g., Ray et al. 2016; Bhat et al. 2018). If this correlation is
1041 correct, it would indicate that divergences between trithelodontids, tritylodontids, and mammaliforms
1042 all occurred no later than the late Carnian. The recent discovery of *Pseudotherium* in the Ischigualasto
1043 Formation (radiometrically dated to 231.4–225.9 Mya; Martínez et al. 2013b), which may be the sister
1044 taxon of Tritylodontidae (Wallace et al. 2019; although see below), provides additional support for a
1045 Carnian divergence among these lineages. Therefore, we calibrate this divergence at 233 Mya, in part
1046 to accommodate the divergences between *Brasilodon* and mammals and between *Pseudotherium* and
1047 tritylodontids (see below).

1048 **Common ancestor of *Pseudotherium* and Tritylodontidae:** Tritylodontids are primarily a post-
1049 Triassic radiation of mammaliamorphs, although their oldest records extend into the Late Triassic (see
1050 previous and following entries). The recently described species *Pseudotherium argentinus* from the
1051 Carnian Ischigualasto Formation of Argentina may be the sister taxon of Tritylodontidae, although
1052 branch support for this hypothesis is somewhat weak (Wallace et al. 2019) and ongoing research
1053 suggests an alternative phylogenetic placement (A.G. Martinelli, unpublished data). For simplicity, we
1054 assumed that *Pseudotherium* is a stem tritylodont because this is the primary hypothesis that has been
1055 presented in the literature at this time. The Ischigualasto Formation has been dated radiometrically to
1056 231.4–225.9 Mya (Martínez et al. 2013b), so we calibrate this divergence at 232 Mya.

1057 **Common ancestor of *Tritylodon* and *Oligokyphus*:** *Oligokyphus* is generally considered to be the most
1058 stemward tritylodontid (see review in Velazco et al. 2017) and is the only member of the clade that is

1059 well documented from the Late Triassic (Fedak et al. 2015). Putative tritylodontid postcrania reported
1060 from the Los Colorados Formation of Argentina, which is Norian in age (Kent et al. 2014), would
1061 constitute an even older record for the group, but a recent re-assessment found that they could only be
1062 identified as an indeterminate non-mammaliaform cynodont (Martinelli and Soares 2016; Gaetano et
1063 al. 2017). If the possible stem-tritylodontid status of *Pseudotherium* is assumed to be correct (see
1064 discussion in Wallace et al. 2019 and above) it provides an even older, potentially Carnian upper bound
1065 for divergences among tritylodontids. The locality of the McCoy Brook Formation record of
1066 *Oligokyphus* is approximately 201.45 Mya (Fedak et al. 2015), providing a minimum age for this
1067 divergence; other material of *Oligokyphus* is of likely Jurassic age or has less precise age constraints
1068 (e.g. Clemens & Martins 2014; Whiteside et al. 2016). We calibrate this divergence at 204.9 Mya, the
1069 midpoint of the Rhaetian Stage.

1070 **Common ancestor of *Brasilodon* and mammals:** *Brasilodon quadrangularis* occurs in strata assigned
1071 to the *Riograndia* Assemblage Zone of the Candelária Sequence (Santa Maria Supersequence) in the
1072 Paraná Basin, Brazil (e.g., Bonaparte et al. 2003; Martinelli et al. 2016; 2017b; Guignard et al. 2019).
1073 Rocks from this assemblage zone were recently dated at 225.42 Mya (Norian) by Langer et al. (2018).
1074 As discussed above (see entry for divergence between Tritylodontidae + *Pseudotherium* and mammals),
1075 however, divergences between trithelodontids, tritylodontids, and mammaliforms all occurred no later
1076 than the late Carnian. Therefore, we calibrate this divergence at 232 Mya, slightly older than the
1077 radiometric date for the lower Ischigualasto Formation (Martínez et al. 2013b).

1078 **Common ancestor of Morganucodonta and mammals:** Morganucodonts are best known from the
1079 latest Triassic and Early Jurassic, but Norian records of the clade also exist (Debuyschere et al. 2015).
1080 If *Gondwanadon* is a morganucodont (Datta & Das 1996; Kielan Jaworowska et al. 2004; Debuyschere
1081 et al. 2015) it would push the first appearance of the clade into the Carnian, based on the
1082 biostratigraphical correlation of the Tiki Formation with the Carnian *Hyperodapedon* Assemblage Zone
1083 and the Ischigualasto Formation (e.g., Ray et al. 2016; Bhat et al. 2018). The presence of the putative
1084 docodont or docodont relative *Tikitherium* in the Tiki Formation (Datta 2005; Luo & Martin 2007; Luo
1085 et al. 2015; Panciroli et al. 2019) also implies that morganucodonts must have diverged by the Carnian
1086 because Docodonta is consistently recovered crownward of Morganucodonta in mammaliaform
1087 phylogenetic analyses (e.g., see reviews in Abdala & Gaetano 2018; Martin 2018). We calibrate this
1088 divergence at 230.5 Mya, slightly younger than the radiometric date of 231.4 Mya for the Ischigualasto
1089 Formation, but still within the Carnian.

1090 **Common ancestor of *Morganucodon watsoni* and *Morganucodon oehleri*:** Despite early occurrences
1091 of morganucodontans as early as the late Early Rhaetian from the Howell quarry in Wales (Whiteside
1092 et al. 2016), material that can be confidently attributed to *Morganucodon watsoni* is only present at the
1093 Triassic-Jurassic transition in the St. Brides community (Whiteside et al. 2016). *Morganucodon oehleri*

1094 is known from the Zhangjia'ao Member (sensu Fang et al. 2000) of the Lufeng Formation of China
1095 (Luo and Wu 1994), which is considered to be Sinemurian in age based on biostratigraphical
1096 comparisons (e.g., Luo and Wu 1994; Sullivan et al. 2013). However, as noted above, there is
1097 considerable uncertainty about phylogenetic relationships within Morganucodonta, which complicates
1098 identifying the correct calibration point for this divergence. Therefore, we use the age of the oldest
1099 species of *Morganucodon*, *Morganucodon peyeri* from the Hallau locality in Switzerland, which is
1100 dated as late Norian to early Rhaetian (Whiteside et al. 2017). We calibrate this divergence at 207 Mya,
1101 the latest possible occurrence of *M. peyeri*.

1102 **Common ancestor of *Haldanodon* and mammals:** *Haldanodon exspectatus* is a well-studied
1103 docodont known from the Alcobaça Formation of the Guimarota coal mine of Portugal (e.g., Lillegraven
1104 and Krusat 1991; Martin 2005; 2018; Ruf et al. 2013), which is considered Kimmeridgian in age
1105 (Schudack 2000a, 2000b). *Haldanodon* is well-nested within Docodonta (Meng et al. 2015; Panciroli
1106 et al. (2019), and the oldest members of the clade date back to the Bathonian (Panciroli et al. 2019).
1107 However, the presence of the putative docodont or docodont relative *Tikitherium* in the Carnian Tiki
1108 Formation (Datta 2005; Luo & Martin 2007; Luo et al. 2015; Panciroli et al. 2019) implies a long ghost
1109 lineage for Docodonta. Therefore, we calibrate this node at 230 Mya (Carnian), slightly younger than
1110 the divergence of Morganucodonta (see above).

1111 **Common ancestor of *Morganucodon* and *Megazostrodon*:** Species of *Morganucodon* and
1112 *Megazostrodon* span the Triassic–Jurassic boundary, but the oldest records of both genera are in the
1113 Rhaetian (Debuyschere et al. 2015), providing a minimum age for their divergence. Potential records
1114 of *Hallutherium* and *Brachyzostrodon* in the Norian of Greenland and Poland (Jenkins et al. 1994; Świł
1115 et al. 2014; Debuyschere et al. 2015), and the presence of *Gondwanadon* in the Carnian of India (Datta
1116 & Das 1996), could imply an even older divergence time for *Morganucodon* and *Megazostrodon*,
1117 depending on the pattern of phylogenetic relationships within Morganucodonta. However, most
1118 mammaliaform phylogenetic analyses include few morganucodonts, leaving relationships within the
1119 clade (and even the monophyly of the clade) in question (e.g., Rougier et al. 2007; Gaetano & Rougier
1120 2012; Zhou et al. 2013; Close et al. 2015; Luo et al. 2015; Meng et al. 2015; Huttenlocker et al. 2018;
1121 Panciroli et al. 2019; also see Abdala & Gaetano 2018). Given this uncertainty, we calibrate this node
1122 at the base of the Rhaetian Stage, 208.5 Mya.

1123 **Common ancestor of *Hadrocodium* and mammals:** *Hadrocodium wui* is known from the Early
1124 Jurassic (Sinemurian) Lufeng Formation of China (Luo et al. 2001). The maximum age of this
1125 divergence is calibrated by the Carnian occurrence of the potential docodont *Tikitherium*, given that
1126 docodonts fall stemward of *Hadrocodium* in most recent mammaliaform phylogenies (e.g., Zhou et al.
1127 2013; Close et al. 2015; Luo et al., 2015; Meng et al. 2015; Huttenlocker et al. 2018). The minimum
1128 age of this divergence depends strongly on whether the clade Haramiyida falls crownward or stemward

1129 of *Hadrocodium* (e.g., compare results of Zhou et al. 2013; Close et al. 2015; Luo et al., 2015; Meng et
1130 al. 2015; Huttenlocker et al. 2018). If the former option is correct, Norian–Rhaetian occurrences of
1131 haramiyidans such as *Haramiyavia* and *Thomasia* (Hahn 1973; Jenkins et al. 1997; Clemmensen et al.
1132 2016) would imply that the lineage including *Hadrocodium* must have diverged by the Norian, whereas
1133 the latter would suggest a minimum divergence time closer to the Early Jurassic (although note that the
1134 analysis of Close et al. 2015 still implies a Triassic age for this node even when *Hadrocodium* is in a
1135 more crownward position). Resolving this phylogenetic problem is beyond the scope of this analysis.
1136 We calibrate this node at 214 Mya (late Norian), which is consistent with the case where haramiyidans
1137 are crownward of *Hadrocodium* and close to the divergence time estimate of Close et al.’s (2015) for a
1138 topology in which *Hadrocodium* occupied a more crownward position.

1139 **Common ancestor of *Dryolestes* and *Theria*:** *Dryolestes* and its closest relatives (Dryolestidae) are
1140 cladotherian mammals known from the Jurassic and Cretaceous periods. *Dryolestes* itself is best known
1141 from the Late Jurassic (Kimmeridgian–Tithonian) of Europe and North America, but other records of
1142 Dryolestidae extend back into the Middle Jurassic (see reviews in Kielan-Jaworowska et al. 2004;
1143 Martin 2018), with the Bathonian *Anthracolestes sergeii* representing the oldest well-characterized
1144 member of the clade (Averianov et al. 2014). Additional evidence for a divergence of dryolestids by the
1145 Bathonian comes from *Amphitherium*, a member of Zatheria (the clade including therian mammals)
1146 (e.g., Averianov et al. 2013; Close et al. 2015; Luo et al. 2015; Huttenlocker et al. 2018), which is known
1147 from the lower Bathonian Tayton Limestone Formation of England (Butler & Clemens 2001). We
1148 calibrate this node at the base of the Bathonian (168.3 Mya).

1149 **Common ancestor of *Captorhinidae* and *Diapsida*:** Captorhinidae is a clade of important Permian
1150 eureptiles, but only one species is known from the Carboniferous, the Gzhelian *Euconcordia*
1151 *cunninghami* from the Hamilton Quarry of Kansas (Müller & Reisz 2005; Reisz et al. 2016). However,
1152 several older (Bashkirian to Moscovian) taxa, including *Hylonomus*, *Brouffia*, and *Paleothyris* likely
1153 either fall on the captorhinid stem or diapsid stem, but have been difficult to place phylogenetically
1154 (Müller & Reisz 2006). *Hylonomus* is the oldest of these taxa and occurs in the Joggins Formation of
1155 Nova Scotia, whose estimated age range is about 319–310 Mya (Reisz and Müller 2004, van Tuinen
1156 and Hadly 2004; Benton et al. 2015). We calibrate this node at 319 Mya, which is slightly older than
1157 Benton et al.’s (2015) recommendation of 318 Mya for the age of the synapsid-sauropsid divergence.

1158 ***Captorhinus* and *Labidosaurus*:** *Labidosaurus* is a derived captorhinid that occurs in the Kungurian
1159 Arroyo Formation of Texas (*sensu* Lucas 2006; equivalent to the lower Clear Fork Group of Hentz
1160 1988) (Dodick & Modesto (1995), whereas the first occurrence of the genus *Captorhinus* is represented
1161 by records of *Captorhinus laticeps* from the Artinskian Petrolia Formation of Texas (Heaton 1979;
1162 taxonomy following Dodick & Modesto 1995; stratigraphy based on Hentz 1988; Lucas 2006;
1163 Schneider et al. 2019). Therefore, we calibrate this divergence at 286 Mya, in the mid-Artinskian.

1164 **Common ancestor of *Youngina* and *Sauria*:** *Youngina capensis* is a well-studied stemward diapsid,
1165 but recent phylogenetic analyses have differed on whether it represents a distinct lineage or a member
1166 of a larger subclade (Younginiformes), as well as the membership of that subclade when present (e.g.,
1167 Bickelmann et al. 2009; Reisz et al. 2011; Ezcurra et al. 2014; Turner et al. 2017; Simões et al. 2018).
1168 For simplicity, we treated *Youngina* as an individual lineage although the inclusion of other putative
1169 younginiforms would not result in a dramatic age increase. The earliest occurrence of *Youngina* is in
1170 strata of the Hoedemaker Member (Teekloof Formation; Karoo Basin) that are assigned to the
1171 *Tropidostoma-Gorgonops* Subzone of the *Endothiodon* Assemblage Zone (Smith & Evans 1996; Day
1172 and Smith 2020). This assemblage zone is bracketed by radiometric dates of 259.26 Mya and 256.25
1173 Mya (Day et al. 2015; Day and Smith 2020). However, this occurrence postdates the more crownward
1174 divergence of Testudines and Archosauromorphs, which occurred no later than the late Capitanian.
1175 Therefore, we calibrate this node at 263 Mya to accommodate the divergence of Testudines and
1176 Archosauromorphs.

1177 **Common ancestor of Testudines and Archosauromorphs:** Although our sample does not include any
1178 fossil turtles, the age of this node has implications for other calibrations in the diapsid portion of the
1179 tree that require some discussion. The phylogenetic position of turtles within Sauropsida has been
1180 controversial (see review in Schoch & Sues 2019). A consensus is emerging that turtles are members
1181 of Diapsida, but there is still debate over where they fall relative to lepidosauromorphs, archosaurs, and
1182 extinct lineages such as sauropterygians (e.g., Lyson et al. 2010; Field et al. 2014; Bever et al. 2015;
1183 Crawford et al. 2015; Irisarri et al. 2017; Schoch & Sues 2015; 2018; Li et al. 2018; Simões et al. 2018).
1184 Here, we follow the hypothesis that turtles are more closely related to archosaurs than lepidosaurs.

1185 The Permian archosauromorph fossil record is extremely sparse and of limited utility for
1186 calibrating this node (e.g., Ezcurra 2016; also next entry). Very little is known of the Permian portion
1187 of the turtle lineage but an increasing amount of data suggests that *Eunotosaurus africanus* from the
1188 Karoo Basin of South Africa is the oldest known stem turtle (e.g., Lyson et al. 2010; 2013; 2014, 2016;
1189 Bever et al. 2015, 2016). Day (2013) and Day et al. (2013) reported that *Eunotosaurus* occurs in the
1190 upper portion of the Abrahamskraal Formation and the Poortjie Member of the Teekloof Formation in
1191 that Karoo Basin of South Africa (equivalent to the *Eosimops-Glanosuchus* and *Diictodon-*
1192 *Styracocephalus* subzones of the *Tapinocephalus* Assemblage Zone and the *Lycosuchus-Eunotosaurus*
1193 Subzone of the *Endothiodon* Assemblage Zones; Day and Rubidge 2020; Day and Smith 2020).
1194 Occurrences of *Eunotosaurus* in the upper Abrahamskraal formation are close to the dates of 261.24–
1195 260.26 Mya (Capitanian) for the upper *Tapinocephalus* Assemblage Zone (Rubidge et al. 2013; Day et
1196 al. 2015). We calibrate this node at 262 Mya (but see discussion in Marjanović 2019).

1197 **Common ancestor of *Prolacerta* and Archosauriformes:** *Prolacerta broomi* and its sister taxon
1198 *Kadimakara australiensis* fall near the base of Archosauriformes within Archosauromorphs, and they

1199 occur in Induan (Early Triassic) strata in Antarctica, Australia, and South Africa (e.g., Ezcurra 2016;
1200 Spiekman 2018). However, the minimum age of this node is calibrated by the presence of the
1201 archosauriform *Archosaurus rossicus* in the upper Changhsingian Vyazniki Assemblage of Russia (e.g.,
1202 Sennikov & Golubev 2006; 2017). The Russian taxon *Eorasaurus olsoni* could push this divergence
1203 farther back into the Permian (Sennikov 1997; Ezcurra et al. 2014; Bernardi et al. 2015; Ezcurra 2016),
1204 but its status as an archosauriform (and even a sauropsid) has been challenged (Peecook et al. 2018c).
1205 Sennikov & Golubev (2006) considered the Vyazniki Assemblage to be transitional between more
1206 typical late Permian tetrapod assemblages and those of the Early Triassic, implying an age close to the
1207 Permo-Triassic boundary. We calibrate this node at 254 Mya, near the base of the Changhsingian
1208 Stage, although the very limited Permian archosauromorph fossil record raises the possibility that this
1209 is an underestimate.

1210

1211 **Last Appearance Datum**

1212 ***Eothyris*:** *Eothyris parkeyi* is known from a single specimen that was collected in the Petrolia Formation
1213 of Texas (Reisz et al. 2009). The Petrolia Formation has produced a tetrapod assemblage assigned to
1214 the Seymouran Land Vertebrate Faunachron (e.g., Lucas 2006; 2018), which is considered to be middle–
1215 late Artinskian in age (Schneider et al. 2019), so we calibrate this last occurrence at 287 Mya.

1216 ***Dimetrodon*:** *Dimetrodon* is a very abundant and stratigraphically long-ranging genus known from
1217 North America and Western Europe (e.g., Romer & Price 1940; Reisz 1986; Berman et al. 2001).
1218 *Dimetrodon angelensis* from the San Angelo Formation of Texas (Olson 1962) is the youngest species
1219 of *Dimetrodon*, although it is known from limited, fragmentary material. The San Angelo Formation
1220 tetrapod assemblage is assigned to the Littlecrotonian Land Vertebrate Faunauchron (Lucas 2006;
1221 2018), and the San Angelo formation is considered to be late Kungurian in age based on fusulinids that
1222 occur in the formation (Schneider et al. 2019). Therefore, we calibrate the last occurrence of *Dimetrodon*
1223 at 275 Mya.

1224 ***Hipposaurus*:** *Hipposaurus boonstrai* primarily occurs in the *Diictodon-Styracocephalus* Subzone of
1225 the *Tapinocephalus* Assemblage Zone (Abrahamskraal Formation, Karoo Basin, South Africa; Day and
1226 Rubidge 2020). The stratigraphically highest specimens of the species range at least as high as the
1227 Karelkraal Member of the Abrahamskraal Formation, and one specimen may reach the lower Poortjie
1228 Member of the overlying Teekloof Formation, although its exact stratigraphic position is uncertain (Day
1229 2013). The uppermost occurrences of *Hipposaurus* are close to the dates of 261.24–260.26 Mya for the
1230 upper *Tapinocephalus* Assemblage Zone (Rubidge et al. 2013; Day et al. 2015). Therefore, we calibrate
1231 this last occurrence at 261 Mya.

1232 **Herpetoskylax**: *Herpetoskylax hopsoni* occurs in strata of the Teekloof Formation that are assigned to
1233 the *Cistecephalus* Assemblage Zone (Karoo Basin, South Africa) (Sidor & Rubidge 2006).
1234 *Cistecephalus* Assemblage Zone strata are approximately bracketed by radiometric dates of 256.25 Mya
1235 and 255.2 Mya (Rubidge et al. 2013; Day et al. 2015; Smith 2020). We calibrate this last occurrence at
1236 255 Mya, near the end of *Cistecephalus* zone times.

1237 **Leucocephalus**: *Leucocephalus wewersi* is known from a single specimen collected in the Hoedemaker
1238 Member of the Middleton Formation (Karoo Basin South Africa), which is assigned to the
1239 *Tropidostoma-Gorgonops* Subzone of the *Endothiodon* Assemblage Zone (Day et al. 2018a; Day and
1240 Smith 2020). The *Tropidostoma-Gorgonops* Subzone is bracketed by radiometric dates of 259.26 Mya
1241 and 256.25 Mya (Rubidge et al. 2013; Day et al. 2015) and Day and Smith (2020) considered it to begin
1242 about 258 Mya, so we calibrate its last occurrence at 258 Mya.

1243 **Lemurosaurus**: *Lemurosaurus pricei* is known from rocks of the Balfour and Middleton formations
1244 (Karoo Basin, South Africa) that are assigned to the *Cistecephalus* Assemblage Zone (Sidor & Welman
1245 2003; Sidor & Rubidge 2006; Smith 2020). *Cistecephalus* Assemblage Zone strata are approximately
1246 bracketed by radiometric dates of 256.25 Mya and 255.2 Mya (Rubidge et al. 2013; Day et al. 2015;
1247 Smith 2020). We calibrate this last occurrence at 255 Mya, near the end of *Cistecephalus* zone times.

1248 **Moschops**: The genus *Moschops* is one of the more abundant tapinocephalid taxa known from the
1249 Karoo Basin of South Africa, and its stratigraphic range extends into the Karelskraal Member of the
1250 Abrahamskraal Formation (*Diictodon-Styracocephalus* Subzone of the *Tapinocephalus* Assemblage
1251 Zone) (Day 2013; Day and Rubidge 2020). Radiometric dates of 261.24 Mya to 260.26 Mya have been
1252 reported from the upper *Tapinocephalus* Assemblage Zone (Rubidge et al. 2013; Day et al. 2015), and
1253 we calibrate this last occurrence at 261 Mya.

1254 **Patranomodon**: *Patranomodon nyaphulii* is known from a single specimen collected in rocks of the
1255 Abrahamskraal Formation (Karoo Basin, South Africa) assigned to the *Eodicynodon* Assemblage Zone
1256 (Rubidge & Hopson 1996; Rubidge and Day 2020). Dates from near the base of this formation range
1257 from 268.5–264.6 Mya (Linci et al. 2013), and the upper portion of the *Tapinocephalus* Assemblage
1258 Zone has been dated to about 262–261 Mya (Day et al. 2015). We calibrate this last occurrence at 265
1259 Mya.

1260 **Eodicynodon**: *Eodicynodon oosthuizeni* occurs in the *Eodicynodon* Assemblage Zone of the
1261 Abrahamskraal Formation (Karoo Basin, South Africa), with its highest occurrence falling in the
1262 Koornplaats Member (e.g., Day 2013; Day et al. 2018). The last occurrence of *E. oosthuizeni* is
1263 stratigraphically higher than the occurrence of *Patranomodon* (Day 2013; Day et al. 2018), so we
1264 calibrate this last occurrence at 264 Mya.

1265 ***Diictodon***: Although *Diictodon feliceps* is also known from China and Zambia (Angielczyk & Sullivan
1266 2008), its full temporal range is best documented in the Karoo Basin of South Africa. There, *D. feliceps*
1267 ranges through most of the *Daptocephalus* Assemblage Zone (Viglietti et al. 2016; Viglietti 2020). This
1268 places it close to the level of Gastaldo et al.'s (2015) radiometric date of 253.48 Mya for the
1269 *Lystrosaurus maccaigi-Moschorhinus* Subzone, and we calibrate this last occurrence at 253 Mya.

1270 ***Pristerodon***: Like *Diictodon*, the temporal range of *Pristerodon mackayi* is best documented in the
1271 Karoo Basin, where its last occurrence is in the upper portion of the *Dicynodon-Theriognathus* Subzone
1272 of the *Daptocephalus* Assemblage Zone (Viglietti 2020). Therefore, we calibrate this last occurrence at
1273 253.5 Mya, slightly older than Gastaldo et al.'s radiometric date of 253.48 Mya.

1274 ***Niassodon***: The single known specimen of *Niassodon mfumukasi* was collected in the K5 Formation of
1275 the Metangula Graben (Mozambique), which was with the *Cistecephalus* Assemblage Zone of the
1276 Karoo Basin by Castanhinha et al. 2013. However, a detrital zircon-based maximum depositional age
1277 of 258.85 Mya for the K5c horizon reported by Araújo et al. (2020) implies an age close to the boundary
1278 of the South African *Lycosuchus-Eunotosaurus* and *Tropidostoma-Gorgonops* subzones of the
1279 *Endothiodon* Assemblage Zone (Day and Smith 2020). We use an age of 258 Mya to calibrate this last
1280 occurrence.

1281 ***Abajudon***: *Abajudon kaayai* has been reported from the Ruhuhu Formation (Ruhuhu Basin, Tanzania)
1282 and the Lower Madumabisa Mudstone Formation (Mid-Zambezi Basin, Zambia) (Angielczyk et al.
1283 2014a). In each area, it co-occurs with tapinocephalid dinocephalians (Simon et al. 2010; Sidor et al.
1284 2014), leading to a broad correlation with the *Tapinocephalus* Assemblage Zone of the South African
1285 Karoo Basin (Olroyd & Sidor 2017; Day and Rubidge 2020). Radiometric dates of 261.24–260.26 Mya
1286 have been reported from the upper *Tapinocephalus* Assemblage Zone (Rubidge et al. 2013; Day et al.
1287 2015; Day and Rubidge 2020) and we calibrate this last occurrence at 260 Mya, in part to accommodate
1288 our calibrations for divergence times within Endothiodontia (see above).

1289 ***Endothiodon tolani***: *Endothiodon tolani* was first described from the Ruhuhu Formation of Tanzania,
1290 where its range appears to be limited to an interval near the Guadalupian-Lopingian boundary
1291 (Angielczyk et al. 2014a; Cox & Angielczyk 2015; Olroyd & Sidor 2017). New records from the
1292 Metangula Graben of Mozambique (Macungo et al. 2020) and the mid-Zambezi Basin of Zambia (this
1293 paper) do not have precisely-constrained ages but could be as young as late Wuchiapingian
1294 (~*Cistecephalus* Assemblage Zone of the South African Karoo Basin; Castanhinha et al. 2013; Barolini
1295 et al. 2016; Araújo et al. 2020). Here, we calibrate the last occurrence of *E. tolani* at 258 Mya, reflecting
1296 its co-occurrence with *Niassodon* in the K5 Formation (see above), although we acknowledge that it
1297 may eventually be shown to have a younger last occurrence as the ages of the Mozambican and Zambian
1298 records become more certain.

1299 ***Endothiodon bathystoma***: *Endothiodon bathystoma* is stratigraphically and geographically wide-
1300 ranging (e.g., Cox 1964; Ray 2000; Boos et al. 2013; Angielczyk et al. 2014b; Cox & Angielczyk 2015;
1301 Macungo et al. 2020), but its temporal range is best constrained in the Karoo Basin of South Africa. In
1302 the Karoo, *E. bathystoma* ranges into the *Cistecephalus* Assemblage Zone (Smith et al. 2012; Smith
1303 2020), which is approximately bracketed by radiometric dates of 256.25 and 255.2 Mya (Rubidge et al.
1304 2013; Day et al. 2015; Smith et al. 2020). We calibrate this last occurrence at 256 Mya, reflecting the
1305 fact that *Endothiodon* does not appear to reach the upper *Cistecephalus* Zone in the Karoo (Viglietti et
1306 al. 2016; Smith 2020). Occurrences of *Endothiodon* in the upper Madumabisa Mudstone Formation
1307 (Zambia) and the Usili Formation (Tanzania) may imply a slightly later last occurrence because these
1308 formations may sample a time interval near the *Cistecephalus/Daptocephalus* assemblage zone
1309 boundary (Angielczyk & Kammerer 2017; Angielczyk 2019; Viglietti 2020), but the ages of those
1310 formations have not been corroborated with radiometric dates.

1311 ***Dicynodontoides***: The genus *Dicynodontoides* is known from India, South Africa, Tanzania, and
1312 Zambia (e.g., Ray & Bandyopadhyay 2003; Angielczyk et al. 2009, 2014b), but its temporal range is
1313 best constrained in the South African Karoo Basin. There, its last occurrence is very close to the
1314 traditionally-recognized Permo-Triassic boundary (Angielczyk et al. 2009; Smith & Botha-Brink 2014;
1315 Viglietti et al. 2016; Viglietti 2020). Therefore, we calibrate this last occurrence at 252 Mya.

1316 ***Kawingasaurus***: *Kawingasaurus fossilis* is known only from the Usili Formation of the Ruhuhu Basin,
1317 Tanzania (Cox 1972). Angielczyk et al. (2014b) correlated the Usili Formation with the Wuchiapingian
1318 *Cistecephalus* Assemblage Zone of the Karoo Basin, but more recent work suggests that it may
1319 encompass parts of the upper *Cistecephalus* Assemblage Zone and the lower *Daptocephalus*
1320 Assemblage Zone (Angielczyk & Kammerer 2017; Angielczyk 2019; also see Sidor et al. 2010;
1321 Kammerer 2019; Viglietti 2020). Radiometric dates from the South African Karoo Basin suggest the
1322 *Cistecephalus-Daptocephalus* zone boundary is approximately 255.2 Mya (Rubidge et al. 2013; Day et
1323 al. 2015; Smith 2020; Viglietti 2020), and Gastaldo et al. (2015) reported a date of 253.48 Mya for the
1324 *Lystrosaurus maccaigi-Moschorhinus* Subzone of the *Daptocephalus* Assemblage Zone. We calibrate
1325 this last occurrence at 254 Mya, placing it in the *Dicynodon-Theriognathus* Subzone of the
1326 *Daptocephalus* Assemblage Zone.

1327 ***Kembawacela***: *Kembawacela kitchingi* is a newly-described cistecephalid dicynodont known only from
1328 the upper Madumabisa Mudstone Formation of the Luangwa Basin (Zambia) (Angielczyk et al. 2019).
1329 Angielczyk et al. (2014b) correlated the upper Madumabisa Mudstone Formation with the
1330 Wuchiapingian *Cistecephalus* Assemblage Zone of the Karoo Basin, but more recent work suggests that
1331 it may encompass parts of the upper *Cistecephalus* Assemblage Zone and the lower *Daptocephalus*
1332 Assemblage Zone (Angielczyk & Kammerer 2017; Angielczyk 2019; also see Sidor et al. 2010; Smith
1333 2020; Viglietti 2020). Radiometric dates from the South African Karoo Basin suggest the *Cistecephalus*-

1334 *Dapocephalus* zone boundary is approximately 255.2 Mya (Rubidge et al. 2013; Day et al. 2015; Smith
1335 2020; Viglietti 2020), and Gastaldo et al. (2015) reported a date of 253.48 Mya for the *Lystrosaurus*
1336 *maccaigi-Moschorhinus* Subzone of the *Dapocephalus* Assemblage Zone. We calibrate this last
1337 occurrence at 254 Mya, placing it in *Dicynodon-Theriognathus* Subzone of the *Dapocephalus*
1338 Assemblage Zone.

1339 **Oudenodon**: *Oudenodon bainii* is a widespread dicynodont in southern Africa (e.g., Botha &
1340 Angielczyk 2007; Sidor et al. 2010; Castanhinha et al. 2013; Angielczyk et al. 2014b), and like many
1341 such taxa its temporal range is best known in the South African Karoo Basin. In the Karoo, *Oudenodon*
1342 ranges into the *Lystrosaurus maccaigi-Moschorhinus* Subzone of the *Dapocephalus* Assemblage Zone,
1343 but disappears some distance below the Permo-Triassic boundary (Smith & Botha-Brink 2014; Viglietti
1344 et al. 2016; Viglietti 2020). We calibrate this last occurrence at 253 Mya, taking into account the
1345 radiometric date of Gastaldo et al. (2015) for the *Lystrosaurus maccaigi-Moschorhinus* Subzone and
1346 the fact that the last occurrence of *Oudenodon* is stratigraphically close to that of *Diictodon* (Viglietti
1347 2020).

1348 **Aulacephalodon**: The specimen of *Aulacephalodon* used in this analysis is an undescribed specimen
1349 that originated in the upper Madumabisa Mudstone Formation of the Luangwa Basin, Zambia.
1350 Angielczyk et al. (2014b) correlated the upper Madumabisa Mudstone Formation with the
1351 Wuchiapingian *Cistecephalus* Assemblage Zone of the Karoo Basin, but more recent work suggests that
1352 it may encompass parts of the upper *Cistecephalus* Assemblage Zone and the lower *Dapocephalus*
1353 Assemblage Zone (Angielczyk & Kammerer 2017; Angielczyk 2019; also see Sidor et al. 2010; Smith
1354 2020; Viglietti 2020). The stratigraphic range of *Aulacephalodon* is better constrained in the Karoo
1355 Basin itself, where it disappears in the lower portion of the *Lystrosaurus maccaigi-Moschorhinus*
1356 Subzone of the *Dapocephalus* Assemblage Zone. Radiometric dates from the Karoo Basin suggest the
1357 *Cistecephalus-Dapocephalus* zone boundary is approximately 255.2 Mya (Rubidge et al. 2013; Day et
1358 al. 2015), and Gastaldo et al. (2015) reported a date of 253.48 Mya for the *Lystrosaurus maccaigi-*
1359 *Moschorhinus* Subzone. We calibrate this last occurrence at 254 Mya, placing it in lower *Dapocephalus*
1360 Assemblage Zone times (i.e., the *Dicynodon-Theriognathus* Subzone), reflecting its potentially slightly
1361 greater age than the youngest specimens known from the Karoo.

1362 **Lystrosaurus murrayi**: The genus *Lystrosaurus* is famous for its Pangaean geographic range (e.g.,
1363 Fröbisch 2009). These occurrences have long been thought to fall in the Early Triassic, but the exact
1364 temporal range encompassed by *Lystrosaurus*-bearing strata is somewhat uncertain, particularly in
1365 regard to whether any of the strata were deposited in the Olenekian (e.g., Rubidge 2005; Lucas 2010;
1366 Schneider et al. 2019). In the South African Karoo Basin, the last occurrence of *L. murrayi* is in the
1367 Swartberg Member of the Katberg Formation, slightly below that last occurrence of *L. declivis* in the
1368 upper Katberg Formation (both *Lystrosaurus declivis* Assemblage Zone; Botha & Smith 2006, 2007,

1369 2020). We calibrate the last occurrence of *L. murrayi* at 251.2 Mya, the boundary between the Induan
1370 and the Olenekian.

1371 ***Lystrosaurus declivis***: *Lystrosaurus declivis* has a slightly longer stratigraphic range in the South
1372 African Karoo Basin than *L. murrayi* (Botha and Smith 2006, 2007; 2020). Therefore, we calibrate its
1373 last occurrence at 251 Mya, in the early Olenekian.

1374 ***Sangusaurus***: The genus *Sangusaurus* occurs in the Lifua Member of the Manda Beds (Ruhuhu Basin,
1375 Tanzania) and the upper Ntawere Formation (Luangwa Basin, Zambia) (Angielczyk et al. 2018).
1376 Traditionally, these strata have been considered to be Anisian–early Ladinian in age (e.g., Lucas 1998,
1377 2010; Rubidge 2005; Hancox et al. 2020), but recent dating of biostratigraphically-correlated strata in
1378 South America suggests a younger, Ladinian–Carnian age may be more likely (e.g., Peecook et al.
1379 2018a). We calibrate this last occurrence at 237 Mya (latest Ladinian), although we acknowledge the
1380 uncertainty that accompanies this estimate (e.g., Schneider et al. 2019).

1381 **“*Aloposaurus*”**: This specimen (GPIT/RE/7124) has been variously assigned to the genera
1382 *Aloposaurus*, *Aelurosaurus*, and *Gorgonopsia incertae sedis* (see review in Araújo et al. 2017). It was
1383 collected in *Cistecephalus* Assemblage Zone strata in the South African Karoo Basin (Araújo et al.
1384 2017), establishing a maximum age for the specimen regardless of its taxonomic assignment. However,
1385 based on their compositions in the revisions of Sigogneau-Russell (1989) and Gebauer (2007), the
1386 genera *Aloposaurus* and *Aelurosaurus* both have stratigraphic ranges that extend into the
1387 *Dapocephalus* Assemblage Zone. We calibrate this last occurrence at 254 Mya, in the *Dicynodon-*
1388 *Theriognathus* Subzone of the *Dapocephalus* Assemblage Zone, although we acknowledge that it is
1389 somewhat uncertain until a firm taxonomic assignment exists for this specimen.

1390 ***Lycaenops***: The taxonomy of the genus *Lycaenops* was most recently reviewed by Gebauer (2007),
1391 who recognized five named species and a possible unnamed sixth species. Some more recent works
1392 (e.g., Kammerer 2016c) considered certain species historically referred to the genus but did not focus
1393 on formally revising the genus. Specimens of *Lycaenops* range into the *Lystrosaurus maccaigi-*
1394 *Moschorhinus* Subzone of the *Dapocephalus* Assemblage Zone (e.g., supplementary data of Viglietti
1395 et al. 2016; Viglietti 2020). We calibrate this last occurrence at 253 Mya, reflecting Gastaldo et al.'s
1396 (2015) date of 253.48 Mya for the *Lystrosaurus maccaigi-Moschorhinus* Subzone.

1397 ***Scylacocephalus***: The specimen in question (BP/1/216) was identified as *Scylacocephalus watermeyri*
1398 in Benoit et al. (2017b). However, the genus *Scylacocephalus* was considered a synonym of
1399 *Aelurosaurus* or *Aloposaurus* in the revisions of Sigogneau-Russell (1989) and Gebauer (2007),
1400 respectively. Based on their compositions in the revisions of Sigogneau-Russell (1989) and Gebauer
1401 (2007), the genera *Aloposaurus* and *Aelurosaurus* both have stratigraphic ranges that extend into the

1402 *Dapocephalus* Assemblage Zone. We calibrate this last occurrence at 254 Mya, in the *Dicynodon*-
1403 *Theriognathus* Subzone of the *Dapocephalus* Assemblage Zone, although we acknowledge that it is
1404 somewhat uncertain pending a revision of *Scylacocephalus* in the taxonomic framework for
1405 Gorgonopsia that is currently emerging (e.g., Kammerer 2016c, 2017; Kammerer& Masyutin 2018a).

1406 **Dixeya**: GPIT/RE/7119 was originally described as *Dixeya nasuta* by von Huene (1950). Sigogneau-
1407 Russell (1989) and Gebauer (2007) suggested that it may instead represent *Arctognathus*, but Kammerer
1408 (2015) noted that the specimen differed from more certain *Arctognathus* material and preferred to treat
1409 *Dixeya* as a valid taxon. Araújo et al. (2017) recently described the endocranial anatomy of this
1410 specimen but noted that its systematic placement was uncertain. GPIT/RE/7119 was collected in the
1411 Usili Formation of the Ruhuhu Basin, Tanzania. Based on biostratigraphy, the fossil assemblage of the
1412 Usili Formation has been considered to correlate with the *Cistecephalus* Assemblage Zone of the South
1413 African Karoo Basin (Sidor et al. 2010; Angielczyk et al. 2014a, 2014b), although recent discoveries in
1414 the correlative upper Madumabisa Mudstone Formation of the Zambian Luangwa Basin (Angielczyk
1415 & Kammerer 2017; Angielczyk 2019; also see Kammerer 2019; Smith 2020; Viglietti 2020) raise the
1416 possibility that the Usili Formation may span the *Cistecephalus*-*Dapocephalus* assemblage zone
1417 boundary. No radiometric dates exist for the Usili Formation, but radiometric dates from the Karoo
1418 Basin suggest the *Cistecephalus*-*Dapocephalus* zone boundary is approximately 255.2 Mya (Rubidge
1419 et al. 2013; Day et al. 2015; Smith 2020; Viglietti 2020), and Gastaldo et al. (2015) reported a date of
1420 253.48 Mya for the *Lystrosaurus maccaigi*-*Moschorhinus* Subzone of the *Dapocephalus* Assemblage
1421 Zone. We calibrate this last occurrence at 254 Mya, which would make it equivalent to the *Dicynodon*-
1422 *Theriognathus* Subzone of the *Dapocephalus* Assemblage Zone.

1423 **BP/1/155**: BP/1/155 is a gorgonopsian in the collections of the Evolutionary Studies Institute
1424 (University of the Witwatersrand). Benoit et al. (2016b, 2017c, 2017d) included it in their studies of
1425 therapsid endocranial anatomy and identified it as Gorgonopsia indet. The specimen was collected in
1426 strata assigned to the *Cistecephalus* Assemblage Zone in the Karoo Basin of South Africa (Benoit et al.
1427 2017c). *Cistecephalus* Assemblage Zone strata are approximately bracketed by radiometric dates of
1428 256.25 Mya and 255.2 Mya (Rubidge et al. 2013; Day et al. 2015; Smith 2020). We calibrate this last
1429 occurrence at 255 Mya, near the end of *Cistecephalus* zone times.

1430 **Euchambersia**: *Euchambersia mirabilis* is known from only two specimens that were collected in strata
1431 assigned to the *Cistecephalus* Assemblage Zone in the South African Karoo Basin (e.g., Benoit 2016).
1432 The *Cistecephalus* zone is approximately bracketed by radiometric dates of 256.25 and 255.2 Mya
1433 (Rubidge et al. 2013; Day et al. 2015; Smith 2020), and we calibrate this last occurrence at 255 Mya.

1434 **Olivierosuchus**: *Olivierosuchus parringtoni* is known from strata assigned to the Early Triassic
1435 *Lystrosaurus declivis* Assemblage Zone in the Karoo Basin, South Africa (e.g., Botha & Smith 2006;

1436 2020; Huttenlocker & Smith 2017). The *Lystrosaurus declivis* Assemblage Zone is generally considered
1437 to be Induan to potentially early Olenekian in age (e.g., Rubidge 2005; Lucas 2010; Schneider et al.
1438 2019; Botha and Smith 2020). We calibrate the last occurrence of *Olivierosuchus* at 251 Mya, in the
1439 earliest Olenekian, to accommodate this uncertainty.

1440 **Ictidosuchoides**: *Ictidosuchoides longiceps* has a long stratigraphic range in the Karoo Basin of South
1441 Africa, with its latest occurrences falling in the lower *Daptocephalus* Assemblage Zone (Viglietti et al.
1442 2016; Huttenlocker & Smith 2017). Radiometric dates from the South African Karoo Basin suggest the
1443 *Cistecephalus-Daptocephalus* zone boundary is approximately 255.2 Mya (Rubidge et al. 2013; Day et
1444 al. 2015), and Gastaldo et al. (2015) reported a date of 253.48 Mya for the upper *Daptocephalus*
1445 Assemblage Zone. We calibrate this last occurrence at 254 Mya, placing it in lower *Daptocephalus*
1446 Assemblage Zone times.

1447 **Microgomphodon**: *Microgomphodon oligocynus* is known from the Burgersdorp Formation of the
1448 South African Karoo Basin and the upper Omingonde Formation of the Namibian Otjiwarongo Basin,
1449 with the latter record representing its youngest occurrence (Abdala et al. 2014; Hancox et al. 2020). The
1450 upper Omingonde Formation is biostratigraphically correlated with the *Dinodontosaurus* Assemblage
1451 Zone of the Santa Maria Supersequence, Brazil (e.g., Abdala et al. 2013; Martinelli et al. 2017a; Melo
1452 et al. 2017; Peecook et al. 2018a). The *Dinodontosaurus* Assemblage Zone is likely older than 236–237
1453 Mya (e.g., Martinelli et al. 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019), so we
1454 calibrate the last occurrence of *Microgomphodon* at 237 Mya.

1455 **Choerosaurus**: *Choerosaurus dejageri* occurs in the Wuchiapingian *Tropidostoma-Gorgonops*
1456 Subzone of the *Endothiodon* Assemblage Zone of the Karoo Basin (Benoit et al. 2016a; Huttenlocker
1457 & Smith 2017). The *Tropidostoma-Gorgonops* Subzone is thought to be between 258 Mya and 256.8
1458 Mya in age (Rubidge et al. 2013; Day et al. 2015; Day and Smith 2020). We calibrate this last occurrence
1459 at 256.5 Mya, near what is presumably the end of *Tropidostoma-Gorgonops* Subzone time.

1460 **Mupashi**: *Mupashi migrator* is known from a single specimen collected in the upper Madumabisa
1461 Mudstone Formation of the Luangwa Basin, Zambia (Huttenlocker & Sidor 2016). Angielczyk et al.
1462 (2014b) correlated the upper Madumabisa Mudstone Formation with the Wuchiapingian *Cistecephalus*
1463 Assemblage Zone of the Karoo Basin, but more recent work suggests that it may encompass parts of
1464 the upper *Cistecephalus* Assemblage Zone and the lower *Daptocephalus* Assemblage Zone (Angielczyk
1465 & Kammerer 2017; Angielczyk 2019; also see Sidor et al. 2010; Smith 2020; Viglietti 2020).
1466 Radiometric dates from the South African Karoo Basin suggest the *Cistecephalus-Daptocephalus* zone
1467 boundary is approximately 255.2 Mya (Rubidge et al. 2013; Day et al. 2015; Smith 2020, Viglietti
1468 2020), and Gastaldo et al. (2015) reported a date of 253.48 Mya for the *Lystrosaurus maccaigi*-

1469 *Moschorhinus* subzone of the *Dapocephalus* Assemblage Zone. We calibrate this last occurrence at
1470 254 Mya, placing it in the *Dicynodon-Theriognathus* Subzone of the *Dapocephalus* Assemblage Zone.

1471 **Procynosuchus**: *Procynosuchus delaharpeae* is a geographically wide-ranging Permian cynodont (e.g.,
1472 see review in Kammerer 2016b), but its temporal range is best constrained in the Karoo Basin of South
1473 Africa. There, it ranges into the *Dicynodon-Theriognathus* Subzone of the *Dapocephalus* Assemblage
1474 Zone (Viglietti 2020). Gastaldo et al. (2015) reported a date of 253.48 Mya for the overlying
1475 *Lystrosaurus maccaigi-Moschorhinus* Subzone, so we calibrate the last occurrence of *Procynosuchus*
1476 at 253.5 Mya.

1477 **Cynosaurus**: *Cynosaurus suppostus* occurs in the upper Wuchiapingian-Changhsingian *Cistecephalus*
1478 and *Dapocephalus* assemblage zones of South Africa (Van den Brandt & Abdala 2018; Smith 2020;
1479 Viglietti 2020), and Viglietti (2020) recorded its stratigraphic range as nearly reaching the Permo–
1480 Triassic boundary. Therefore, we calibrate its last occurrence at 252 Mya.

1481 **Galesaurus**: *Galesaurus planiceps* has a short stratigraphic range in the *Lystrosaurus declivis*
1482 Assemblage Zone of the Karoo Basin (South Africa) (Botha & Smith 2006, 2020). The *Lystrosaurus*
1483 *declivis* Assemblage Zone is generally considered to be Induan to potentially early Olenekian in age
1484 (e.g., Rubidge 2005; Lucas 2010; Schneider et al. 2019; Botha and Smith 2020). We calibrate its last
1485 occurrence at 251.2 Mya, at the top of the Induan Stage.

1486 **Thrinaxodon**: *Thrinaxodon liorhinus* has a well-documented stratigraphic range that extends through
1487 the *Lystrosaurus* Assemblage Zone in the South African Karoo Basin (e.g., Botha & Smith 2006, 2020;
1488 Smith and Botha-Brink 2014), and it is also found in the biostratigraphically-correlated lower Fremouw
1489 Formation of Antarctica (e.g., Kitching et al. 1972; Colbert and Kitching 1977; Hammer 1990; Peecook
1490 et al. 2018b). The exact temporal range encompassed by *Lystrosaurus*-bearing strata is somewhat
1491 uncertain, particularly in regard to whether any of the strata were deposited in the Olenekian (e.g.,
1492 Rubidge 2005; Lucas 2010; Schneider et al. 2019). We calibrate the last occurrence of *Thrinaxodon* at
1493 251 Mya, in the earliest Olenekian, to accommodate this uncertainty.

1494 **Trirachodon**: In their recent taxonomic revision, Hopson and Sidor (2018) recognized one valid species
1495 of *Trirachodon*, *T. berryi*. *Trirachodon berryi* is best known from the *Trirachodon-Kannemeyeria*
1496 Subzone of the *Cynognathus* Assemblage Zone (Karoo Basin, South Africa; Abdala et al. 2006; Hopson
1497 & Sidor 2018; Hancox et al. 2020). Additional material from the upper Omingonde Formation of
1498 Namibia has been referred to *Trirachodon* (Keyser 1973; Smith & Swart 2002), but much of this
1499 material has been referred to other non-trirachodontid cynodonts subsequently (Abdala et al. 2006;
1500 Abdala & Smith 2009). A remaining Namibian specimen may represent *T. berryi*, but this identification
1501 is not completely certain (Abdala et al. 2006). Here, we treat the Namibian record as a valid occurrence

1502 of *Trirachodon*. The upper Omingonde Formation is biostratigraphically correlated with the
1503 *Dinodontosaurus* Assemblage Zone of the Santa Maria Supersequence of Brazil (e.g., Abdala et al.
1504 2013; Martinelli et al. 2017a; Melo et al. 2017; Peecook et al. 2018a). The *Dinodontosaurus* Assemblage
1505 zone of Brazil (Santa Maria Supersequence) is likely older than 236–237 Mya (e.g., Martinelli et al.
1506 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019), so we calibrate the last occurrence of
1507 *Trirachodon* at 237 Mya.

1508 ***Cricodon*:** Species of *Cricodon* have been reported from the *Trirachodon-Kannemeyeria* and *Cricodon-*
1509 *Ufudocyclops* subzones of the *Cynoganthus* Assemblage Zone (Karoo Basin, South Africa), the Lifua
1510 Member of the Manda Beds (Ruhuhu Basin, Tanzania), and the upper Ntawere Formation (Luangwa
1511 Basin, Zambia) (e.g., Abdala et al. 2005; Hopson & Sidor 2018; Peecook et al. 2018a; Hancox et al.
1512 2020). Traditionally, these strata have been considered to be Anisian–early Ladinian in age (e.g., Lucas
1513 1998, 2010; Rubidge 2005; Hancox et al. 2020), but recent dating of biostratigraphically-correlated
1514 strata in South America suggests a younger, Ladinian–Carnian age may be more likely (e.g., Peecook
1515 et al. 2018a). We calibrate this last occurrence at 237 Mya (latest Ladinian), although we acknowledge
1516 the uncertainty that accompanies this estimate.

1517 ***Scalenodon*:** The genus *Scalenodon* is represented by two species, *S. angustifrons* from the Tanzanian
1518 Lifua Member of the Manda Beds and *S. ribeiroae* from the *Dinodontosaurus* Assemblage Zone of the
1519 Santa Maria Supersequence, Brazil (e.g., Liu & Abdala 2014; Melo et al. 2017). The *Dinodontosaurus*
1520 Assemblage zone of Brazil (Santa Maria Supersequence) is likely older than 236–237 Mya (e.g.,
1521 Martinelli et al. 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019), so we calibrate the
1522 last occurrence of *Scalenodon* at 237 Mya.

1523 ***Luangwa*:** The genus *Luangwa* is known from the upper Ntawere Formation of Zambia, the upper
1524 Omingonde Formation of Namibia, the Lifua Member of the Manda Beds of Tanzania, and the
1525 *Dinodontosaurus* Assemblage Zone of the Santa Maria Supersequence, Brazil (Brink 1963; Abdala &
1526 Sa-Teixeira 2004; Abdala & Smith 2009; Peecook et al. 2018a). All of these units have been
1527 biostratigraphically correlated with each other (e.g., Martinelli et al. 2017a; Peecook et al. 2018a) and
1528 are likely in the range of 236–237 Mya based on the estimated age of the *Dinodontosaurus* Assemblage
1529 Zone (e.g., Martinelli et al. 2017a; Melo et al. 2017; Philipp et al. 2018; Schmitt et al. 2019). We
1530 calibrate the last occurrence of *Luangwa* at 237 Mya.

1531 ***Massetognathus*:** The genus *Massetognathus* is known from the *Massetognathus-Chanaresuchus*
1532 Assemblage Zone of the Chañares Formation (Argentina) and the *Dinodontosaurus* and *Santacruzodon*
1533 assemblage zones of the Santa Maria Supersequence (Brazil) (e.g., Schmitt et al. 2019). The maximum
1534 depositional age of the *Santacruzodon* Assemblage Zone is approximately 237 Mya (Philipp et al.
1535 2018); radiometric dates for the Chañares Formation range from approximately 236–233 Mya

1536 (Marsicano et al. 2016; Ezcurra et al. 2017). Based on the date for the upper Chañares Formation, we
1537 calibrate the last occurrence of *Massetognathus* at 233 Mya.

1538 ***Lumkuia***: *Lumkuia fuzzii* is known from a single specimen collected in the *Trirachodon-Kannemeyeria*
1539 Subzone of the *Cynognathus* Assemblage Zone (Karoo Basin, South Africa) (Hopson & Kitching 2001;
1540 Hancox et al. 2020). The *Trirachodon-Kannemeyeria* Subzone has generally been regarded as Anisian
1541 in age (e.g., Lucas 1998, 2010; Rubidge 2005; Hancox et al. 2020), although it has not been
1542 radiometrically dated directly. Recent radiometric dates of strata that are biostratigraphically-correlated
1543 with the *Cynognathus* Assemblage Zone have raised the possibility that it parts of it might be
1544 substantially younger than previously thought (e.g., Ottone et al. 2014; Marsicano et al. 2016; also see
1545 discussion in Peecook et al. 2018a). Detrital zircon crystals from the lower part of the underlying
1546 Katberg Formation with a minimum age of 250 ± 5 Mya (Viglietti et al. 2018b) also are consistent with
1547 a younger age for the *Cynognathus* Assemblage zone. However, the wide error range on the latter date
1548 and the existence of dates for other biostratigraphically-correlated strata more in accordance with the
1549 traditional hypothesis (Liu et al. 2018) suggest that further work on the problem is needed (also see
1550 Schneider et al. 2019; Hancox et al. 2020). We calibrate the last occurrence of *Lumkuia* at 242 Mya
1551 (Anisian–Ladinian boundary), although we acknowledge that that its exact age will remain uncertain
1552 until the questions surrounding the ages of many Middle–Late Triassic faunal assemblages are more
1553 firmly resolved.

1554 ***Chiniquodon***: The genus *Chiniquodon* is a geographically-widespread and temporally long-ranging
1555 probainognathian cynodont (e.g., Abdala & Gaetano 2018). The latest occurrence of *Chiniquodon* is in
1556 the Carnian–Norian Ischigualasto Formation of Argentina (e.g., Martínez & Forster 1996; Abdala &
1557 Giannini 2002; Martínez et al. 2013b). Radiometric dates of 231.4 and 225.9 Mya are available for the
1558 basal and upper Ischigualasto Formation, respectively (see review in Martínez et al. 2013b). Specimens
1559 of *Chiniquodon* are found in the lower Ischigualasto Formation (*Scaphonyx-Exaeretodon-*
1560 *Herrerasaurus* biozone; Martínez et al. 2013b), suggesting they are closer to 231 Mya in age than to
1561 225 Mya. Based on these data, we calibrate the last occurrence of *Chiniquodon* at 230 Mya (late
1562 Carnian).

1563 ***Riograndia***: *Riograndia guaibensis* is known from the *Riograndia* Assemblage Zone (Candelária
1564 Sequence, Santa Maria Supersequence) of the Paraná Basin, Brazil (e.g., Soares et al. 2011). Rocks
1565 from this assemblage zone were recently dated at 225.42 Mya (Norian) by Langer et al. (2018). We
1566 calibrate the last occurrence of *Riograndia* at 225 Mya.

1567 ***Brasilodon***: *Brasilodon quadrangularis* occurs in strata assigned to the *Riograndia* Assemblage Zone
1568 of the Candelária Sequence (Santa Maria Supersequence) in the Paraná Basin, Brazil (e.g., Bonaparte
1569 et al. 2003; Martinelli et al. 2016; 2017b; Guignard et al. 2019). Rocks from this assemblage zone were

1570 recently dated at 225.42 Mya (Norian) by Langer et al. (2018). We calibrate the last occurrence of
1571 *Brasilodon* at 225 Mya.

1572 **Pseudotherium**: The only known specimen of *Pseudotherium argentinus* was collected in the upper La
1573 Peña Member of the Ischigualasto Formation (Ischigualasto-Villa Unión Basin, Argentina), which
1574 corresponds to the lower *Scaphonyx-Exaeretodon-Herrerasaurus* biozone (Wallace et al. 2019). This is
1575 close to a radiometrically-dated horizon that has produced an age of 231.4 Mya (Carnian; Martínez et
1576 al. 2013b). Therefore, we calibrate the last occurrence of *Pseudotherium* at 231 Mya.

1577 **Tritylodon**: *Tritylodon longaevus* is best known from the upper Elliot Formation of South Africa and
1578 Lesotho, but its range may extend into the lower portion of the overlying Clarens Formation if
1579 *Tritylodontoideus maximus* is a junior synonym of *Tritylodon longaevus* (e.g., for the possible
1580 synonymy see Hopson and Kitching 1972; Gaetano et al. 2017; for stratigraphic range information see
1581 Kitching & Raath 1984; Knoll 2005; Sciscio et al. 2017; Bordy et al. 2020; Viglietti et al. 2020). For
1582 the purposes of this analysis, we assumed that the proposed synonymy is correct. Recent radiometric
1583 dates suggest that the Clarens Formation ranges in age from 190.5–186.7 Mya, with a preferred
1584 maximum depositional age of 187.5 Mya (Pliensbachian; Rademan 2018; Bordy et al. 2020; Viglietti
1585 et al. 2020). We calibrate the last occurrence of *Tritylodon* at 190 Mya, near the older end of this range,
1586 reflecting the occurrence of the '*Tritylodontoideus maximus*' specimen low in the Clarens Formation
1587 (Kitching and Raath 1984; Bordy et al. 2020; Viglietti et al. 2020). A minor increase in age would be
1588 needed if the range of *Tritylodon* is restricted to occurrences in the Elliot Formation: preferred maximum
1589 depositional ages for rock samples from the upper Elliot Formation Range from 191.1 to 202.33 Mya
1590 (Bordy et al. 2020).

1591 **Oligokyphus**: The genus *Oligokyphus* is known from North America (Sues 1985; Fedak et al. 2015),
1592 Europe (Hennig 1922; Kühne 1956), and China (Luo & Sun 1993). The youngest occurrences of the
1593 genus are from the Pliensbachian Kayenta Formation (Sues 1985; Marsh 2014) and Pliensbachian
1594 fissure-fill deposits in the United Kingdom (Kühne 1956; Whiteside et al. 2016). Marsh (2014) reported
1595 a date of 183.7 Mya (late Pliensbachian) for the Kayenta Formation, and we calibrate the last occurrence
1596 of *Oligokyphus* at 183 Mya.

1597 **Morganucodon watsoni**: The stratigraphic range of *Morganucodon watsoni* extends at least until the
1598 early Sinemurian from the St. Brides palaeo-island tetrapod community preserved in fissure fills in the
1599 United Kingdom, but it could reach the Pliensbachian based on the associated marine invertebrate fauna
1600 (Whiteside et al. 2016). We conservatively calibrate this last occurrence at 198 Mya (early Sinemurian).

1601 **Morganucodon oehleri**: *Morganucodon oehleri* is known from the Zhangjia'ao Member (*sensu* Fang
1602 et al. 2000) of the Lufeng Formation of China (Luo and Wu 1994), which is considered to be Sinemurian

1603 in age based on biostratigraphical comparisons (e.g., Luo and Wu 1994; Sullivan et al. 2013). We
1604 calibrate the last occurrence of *M. oehleri* at 191 Mya (latest Sinemurian).

1605 **Megazostrodon**: Although also known from the Rhaetian of Europe (Debuyschere et al. 2015), the
1606 youngest records of the genus *Megazostrodon* are known from the Early Jurassic of South Africa and
1607 Lesotho. *Megazostrodon rudnerae* occurs in the upper Elliot Formation (e.g., Kitching & Raath 1984;
1608 Scisio et al. 2017; Bordy et al. 2020; Viglietti et al. 2020), with some records coming from just below
1609 the contact with the overlying Clarens Formation (Gow 1986; Bordy et al. 2020). Recent radiometric
1610 dates suggest that the upper Elliot Formation spans the latest Rhaetian or Hettangian to the Sinemurian
1611 and that the Clarens Formation is Pliensbachian in age (Scisio et al. 2017; Rademan 2018; Bordy et al.
1612 2020). Therefore, we calibrate the last occurrence of *Megazostrodon* at 191 Mya (latest Sinemurian).

1613 **Haldanodon**: *Haldanodon exspectatus* is known from the Alcobaça Formation of the Guimarota coal
1614 mine of Portugal (e.g., Lillegraven and Krusat 1991; Martin 2005; 2018; Ruf et al. 2013), which is
1615 considered Kimmeridgian in age (Schudack 2000a, 2000b). We calibrate the last occurrence of
1616 *Haldanodon* at 152 Mya, at the end of the Kimmeridgian.

1617 **Hadrocodium**: *Hadrocodium wui* is known from the Zhangjia'ao Member (*sensu* Fang et al. 2000) of
1618 the Lufeng Formation of China (Luo et al. 2001), which is considered to be Sinemurian in age based on
1619 biostratigraphical comparisons (e.g., Luo and Wu 1994; Sullivan et al. 2013). We calibrate the last
1620 occurrence of *Hadrocodium* at 191 Mya (latest Sinemurian).

1621 **Dryolestes**: The genus *Dryolestes* is known from the Late Jurassic (Kimmeridgian–Tithonian) of
1622 Europe and North America (e.g., Martin 2018). The youngest records of *Dryolestes* are from high in the
1623 Brushy Basin Member of the Morrison Formation of western North America (e.g., Turner & Peterson
1624 1999; Foster 2003). Radiometric dates suggest that these occurrences are early Tithonian in age (e.g.,
1625 Trujillo et al. 2014; Trujillo & Kowallis 2015). Based on these dates, we calibrate the last occurrence
1626 of *Dryolestes* at 151 Mya (earliest Tithonian).

1627 **Diadectes**: The stratigraphically highest occurrences of the genus *Diadectes* are in the Vale Formation
1628 (*sensu* Lucas 2006; equivalent to the middle Clear Fork Group of Hentz 1988) of Texas (Kissel 2010).
1629 The Vale Formation is assigned to the Redtankian Land Vertebrate Faunachron (e.g., Lucas 2006; 2018),
1630 which is considered to be mid-Kungurian (mid-upper Leonardian) in age (Schneider et al. 2019). We
1631 calibrate the last occurrence of *Diadectes* at 276 Mya, in the early part of the late Kungurian.

1632 **Captorhinus**: The genus *Captorhinus* has a comparably long stratigraphic range in the early Permian
1633 of North America, but its latest reliable occurrences are in the Vale Formation (*sensu* Lucas 2006;
1634 equivalent to the middle Clear Fork Group of Hentz 1988) of Texas (e.g., LeBlanc et al. 2015). The
1635 Vale Formation is assigned to the Redtankian Land Vertebrate Faunachron (e.g., Lucas 2006; 2018),

1636 which is considered to be mid-Kungurian (mid-upper Leonardian) in age (Schneider et al. 2019). We
1637 calibrate the last occurrence of *Captorhinus* at 276 Mya, in the early part of the late Kungurian.

1638 ***Labidosaurus***: *Labidosaurus hamatus* occurs in the Arroyo Formation (*sensu* Lucas 2006; equivalent
1639 to the lower Clear Fork Group of Hentz 1988) of Texas (Modesto et al. 2007). The Arroyo Formation
1640 is assigned to the Redtankian Land Vertebrate Faunachron (e.g., Lucas 2006; 2018), which is considered
1641 to be mid-Kungurian (mid-upper Leonardian) in age (Schneider et al. 2019). We calibrate the last
1642 occurrence of *Labidosaurus* at 277 Mya, in the early part of the late Kungurian.

1643 ***Youngina***: The stratigraphic range of *Youngina capensis* extends into strata assigned to the *Dicynodon-*
1644 *Theriognathus* Subzone of the *Dapocephalus* Assemblage Zone in the South African Karoo Basin
1645 (Viglietti et al. 2016; Viglietti 2020). We calibrate its last occurrence at 254 Mya, taking into account
1646 that the *Cistecephalus-Dapocephalus* zone boundary is approximately 255.2 Mya (Rubidge et al. 2013;
1647 Day et al. 2015; Smith 2020; Viglietti 2020), and Gastaldo et al.'s (2015) date of 253.48 Mya for the
1648 *Lystrosaurus maccaigi-Moschorhinus* Subzone of the *Dapocephalus* Assemblage Zone.

1649 ***Prolacerta***: In the Karoo Basin, *Prolacerta broomi* occurs primarily in strata of the Katberg Formation
1650 that are assigned to the *Lystrosaurus declivis* Assemblage Zone (e.g., Botha and Smith 2006; 2020). It
1651 is also found in the biostratigraphically-correlated lower Fremouw Formation of Antarctica (e.g.,
1652 Spiekman 2018). The exact temporal range encompassed by *Lystrosaurus*-bearing strata is somewhat
1653 uncertain, particularly in regard to whether any of the strata were deposited in the Olenekian (e.g.,
1654 Rubidge 2005; Lucas 2010; Schneider et al. 2019). We calibrate the last occurrence of *Prolacerta* at
1655 251 Mya, in earliest Olenekian, to accommodate this uncertainty.

1656 Abdala, F. Redescription of *Platycraenellus elegans* (Therapsida, Cynodontia) from the Lower Triassic
1657 of South Africa, and the cladistic relationships of eutheriodonts. *Palaeontology* **50**, 591–618 (2007).

1658 Abdala, F. & Giannini N. P. Chiniquodontid cynodonts: systematic and morphometric considerations.
1659 *Palaeontology* **45**, 1151–1170 (2002).

1660 Abdala, F. & Gaetano L. C. in *The Late Triassic World. Topics in Geobiology*, vol. 46 (ed. Tanner, L)
1661 407–445 (Springer, 2018).

1662 Abdala, F. & Sá-Teixeira, A. M. A traversodontid cynodont of African affinity in the South America
1663 Triassic. *Palaeontol. Afr.* **40**, 11–22 (2004).

1664 Abdala, F. & Smith, R. M. H. A Middle Triassic cynodont fauna from Namibia and its implications for
1665 the biogeography of Gondwana. *Journal of Vertebrate Paleontology* **29**, 837–851 (2009).

1666 Abdala, F., Hancox, P. J. & Neveling, J. Cynodonts from the uppermost Burgersdorp Formation, South
1667 Africa, and their bearing on the biostratigraphy and correlation of the Triassic *Cynognathus* Assemblage
1668 Zone. *J. Vertebr. Paleontol.* **25**, 192–199 (2005).

1669 Abdala, F., Neveling, J., & Welman, J. A new trirachodontid cynodont from the lower levels of the
1670 Burgersdorp Formation (Lower Triassic) of the Beaufort Group, South Africa and the cladistic
1671 relationships of Gondwanan gomphodonts. *Zool. J. Linn. Soc.* **147**, 383–413 (2006).

1672 Abdala, F., Rubidge, B.S. & van den Heever, J. The oldest therocephalians (Therapsida, Eutheriodontia)
1673 and the early diversification of Therapsida. *Palaeontology* **51**, 1011–1024 (2008).

1674 Abdala, F., Marsicano, C. A., Smith, R. M. H. & Swart, R. Strengthening western Gondwanan
1675 correlations: a Brazilian dicynodont (Synapsida, Anomodontia) in the Middle Triassic of Namibia.
1676 *Gondwana Res.* **23**, 1151–1162 (2013).

1677 Abdala, F., Jashashvili, T., Rubidge, B. S. & van den Heever, J. in *Early Evolutionary History of the
1678 Synapsida* (eds. Kammerer, C. F., Angielczyk, K. D. & Fröbisch, J.) 209–231 (Springer, 2014).

1679 Abdala, F., Gaetano, L. C., Smith, R. M. H., & Rubidge, B. S. A new large cynodont from the late
1680 Permian (Lopingian) of the South African Karoo Basin and its phylogenetic significance. *Zool. J. Linn.
1681 Soc.* **186**, 983–1005 (2019).

1682 Amson, E. & Laurin, M. On the affinities of *Tetraceratops insignis*, an Early Permian synapsid. *Acta
1683 Palaeontol. Pol.* 56:301–312 (2011).

1684 Angielczyk, K. D. First occurrence of the dicynodont *Digalodon* (Therapsida, Anomodontia) from the
1685 Lopingian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia. *Palaeontologia Africana*
1686 53:219–225 (2019).

1687 Angielczyk, K. D. & Kammerer, C. F. The cranial morphology, phylogenetic position and biogeography
1688 of the upper Permian dicynodont *Compsodon helmoedi* van Hoopen (Therapsida, Anomodontia).
1689 *Papers Palaeontol.* 3: 513–545 (2017).

1690 Angielczyk, K. D. & Sullivan, C.: *Diictodon feliceps* (Owen, 1876), a dicynodont (Therapsida,
1691 Anomodontia) species with a Pangaean distribution. *J. Vertebr. Paleontol.* **28**, 788–802 (2008).

1692 Angielczyk, K. D. et al. Taxonomic revision and new observations on the postcranial skeleton,
1693 biogeography, and biostratigraphy of the dicynodont genus *Dicynodontoides*, the senior subjective
1694 synonym of *Kingoria* (Therapsida, Anomodontia). *J. Vertebr. Paleontol.* 29: 1174–1187 (2009).

1695 Angielczyk., K. D. et al. New dicynodonts (Therapsida, Anomodontia) and updated tetrapod
1696 stratigraphy of the Permian Ruhuhu Formation (Songea Group, Ruhuhu Basin) of southern Tanzania.
1697 *J. Vertebr. Paleontol.* **34**, 1408–1426 (2014a).

1698 Angielczyk, K.D. et al. (2014b): Permian and Triassic dicynodont (Therapsida: Anomodontia) faunas
1699 of the Luangwa Basin, Zambia: taxonomic update and implications for dicynodont biogeography and
1700 biostratigraphy. In: Kammerer C.F., Angielczyk K.D. & Fröbisch J. (eds.). Early Evolutionary History
1701 of the Synapsida. Springer, Dordrecht: 93–138.

1702 Angielczyk, K. D., Rubidge, B. S., Day, M. O. & Lin, F A reevaluation of *Brachyprosopus broomi* and
1703 *Chelydontops altidentalis*, dicynodonts (Therapsida, Anomodontia) from the middle Permian
1704 *Tapinocephalus* Assemblage Zone of the Karoo Basin, South Africa. *Journal of Vertebrate Paleontology*
1705 36: e1078342 (2016).

1706 Angielczyk, K. D., Hancox, P. J. & Nabavizadeh, A. A redescription of the Triassic kannemeyeriiform
1707 dicynodont *Sangusaurus* (Therapsida, Anomodontia), with an analysis of its feeding system. In: Sidor,
1708 C.A. & Nesbitt S. J. (eds.). *Vertebrate and Climatic Evolution in the Triassic Rift Basins of Tanzania*
1709 and Zambia. Society of Vertebrate Paleontology Memoir 17: 189–227 (2018).

1710 Angielczyk, K. D., Benoit, J., & Rubidge, B. S. A new tusked cistecephalid dicynodont (Therapsida,
1711 Anomodontia) from the upper Permian upper Madumabisa Mudstone Formation, Luangwa Basin,
1712 Zambia. *Papers in Palaeontology* (2019).

1713 Araújo, R. et al. Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium,
1714 occiput, osseous labyrinth, vasculature, and neuroanatomy. *PeerJ* 5:e3119 (2017).

1715 Araújo, R. et al. Biostratigraphic refinement of tetrapod-bearing beds from the Metangula Graben
1716 (Niassa Province, Mozambique): new radiometric dating and the first Lower Triassic tetrapod fossils
1717 from Mozambique. *Palaeontologia Africana*, 54: 56–68 (2020).

1718 Averianov, A. O., Martin T., & Lopatin, A. V. A new phylogeny for basal *Trechnotheria* and *Cladotheria*
1719 and affinities of South American endemic Late Cretaceous mammals. *Naturwissenschaften* 100:311–
1720 326 (2013).

1721 Averianov, A. O., Martin, T., and Lopatin, A. The oldest dryolestid mammal from the Middle Jurassic
1722 of Siberia. *Journal of Vertebrate Paleontology* 34:924–931 (2014).

1723 Barbolini, N. et al. Resolving the age of Madumabisa fossil vertebrates: palynological evidence from
1724 the Mid-Zambezi Basin of Zambia. *Palaeogeography, Palaeoclimatology, Palaeoecology* 457:117–128
1725 (2016).

1726 Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa:
1727 magnetostratigraphic constraints support an early Permian age for the Ecca Group. *Geophysical Journal*
1728 *International* 211:1354–1374 (2017).

1729 Bendel, E.-M et al. Cranial anatomy of the gorgonopsian *Cynariops robustus* based on CT-
1730 reconstruction. *PLoS ONE* 13(11): e0207367 (2018).

1731 Benoit, J. A review of the “venomous therocephalian” hypothesis and how multiple re-portrayals of
1732 Euchambersia have influenced its success and vice versa. *Bulletin de la Société Géologique de France*
1733 187:217–224 (2017).

1734 Benoit, J. et al. Cranial bosses of *Choerosaurus dejageri* (Therapsida, Therocephalia): earliest evidence
1735 of cranial display structures in eutheriodonts. *PLoS One* 11 (8):e0161457 (2016a).

1736 Benoit, J., Manger, P. R. & Rubidge, B. S. Palaeoneurological clues to the evolution of defining
1737 mammalian soft tissue traits. *Scientific Reports* 6:25604 (2016b).

1738 Benoit, J. et al. The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-
1739 mammalian Therapsida. *Palaeontologia Africana* 52: 58–77 (2017b).

1740 Benoit, J. et al. Reappraisal of the envenomining capacity of *Euchambersia mirabilis* (Therapsida,
1741 Therocephalia) using μ CT-scanning techniques. *PLoS One* 12(2):e0172047 (2017a).

1742 Benoit, J. et al. Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological
1743 diversity at the deep evolutionary root of mammals. *Brain, Behavior, and Evolution* **90**, 311–333
1744 (2017c).

1745 Benoit, J. et al. The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida):
1746 reassessment of the homology of the infraorbital foramen in mammalian ancestors. *Journal of*
1747 *Mammalian Evolution*. (2019).

1748 Benson, R. B. J. Interrelationships of basal synapsids: cranial and postcranial morphological partitions
1749 suggest different topologies. *Journal of Systematic Palaeontology* **10**, 601–624 (2012).

1750 Benton, M. J. et al. Preservation of exceptional vertebrate assemblages in Middle Permian
1751 fluviolacustrine mudstones of Kotel'nich, Russia: stratigraphy, sedimentology, and taphonomy.
1752 *Palaeogeography, Palaeoclimatology, Palaeoecology* 319–320:58–83 (2012).

1753 Benton, M. J., et al. Constraints on the timescale of animal evolutionary history. *Palaeontologia*
1754 *Electronica* 18.1.1FC: 1–106 (2015).

1755 Berman, D. S. Origin and early evolution of the amniote occiput: *Journal of Paleontology* 74:938–956
1756 (2000).

1757 Berman, D. S. Diadectomorphs, amniotes or not? In: Lucas, S. G. (eds.). *The Carboniferous–Permian*
1758 *Transition*. *New Mexico Museum of Natural History and Science Bulletin* 60:22–35 (2013).

1759 Berman, D. S. et al. A new species of *Dimetrodon* (Synapsida: Sphenacodontidae) from the Lower
1760 Permian of Germany records first occurrence of genus outside of North America. *Canadian Journal of*
1761 *Earth Sciences* 38: 803–812 (2001).

1762 Berman, D. S., Sumida, S. S. & Lombard, R. E. Reinterpretation of the temporal and occipital regions
1763 in *Diadectes* and the relationships of diadectomorphs: *Journal of Paleontology* 66:481–499 (1992).

1764 Bernardi, M. et al. The origin and early radiation of archosauriforms: integrating the skeletal and
1765 footprint record. *PloS One* 10(6):e0128449 (2015).

1766 Bever, G. S. et al. Evolutionary origin of the turtle skull. *Nature* 525:239–242 (2015).

1767 Bever, G. S. et al. The amniote temporal roof and the diapsid origin of the turtle skull. *Zoology* 119:471–
1768 473 (2016).

1769 Bhat, M. S., Ray, S. & Datta, P. M. A new hybodont shark (Chondrichthyes, Elasmobranchii) from the
1770 Upper Triassic Tiki Formation of India with remarks on its dental histology and biostratigraphy. *Journal*
1771 *of Paleontology* 92:221–239 (2018).

1772 Bickelmann, C., Müller, J., & Reisz, R. R. The enigmatic diapsid *Acerosodontosaurus piveteaui*
1773 (Reptilia: Neodiapsida) from the Upper Permian of Madagascar and the paraphyly of “younginiform”
1774 reptiles. *Canadian Journal of Earth Sciences* 46:651–661 (2009).

1775 Bonaparte, J. F. Los tetrápodos del sector superior de la Formación Los Colorados, La Rioja, Argentina
1776 (Triásico Superior). *Opera Lilloana* 22:87–102 (1971).

1777 Bonaparte, J. F. & Crompton, A. W. Origin and relationships of the Ictidosauria to non-mammalian
1778 cynodonts and mammals. *Historical Biology* 30:174–182 (2017).

1779 Bonaparte, J. F. et al. The sister group of mammals: small cynodonts from the Late Triassic of Southern
1780 Brazil. *Revista Brasileira de Paleontologia* 5:5–27 (2003).

1781 Boos, A. D. S. et al. On the presence of the late Permian dicynodont *Endothiodon* in Brazil.
1782 *Palaeontology* 56:837–848 (2013).

1783 Boos, A. D. S. et al. A tapinocephalid dinocephalian (Synapsida, Therapsida) from the Rio do Rasto
1784 Formation Paraná Basin, Brazil): taxonomic, ontogenetic and biostratigraphic considerations. *Journal*
1785 of South American Earth Sciences

1786 Boos, A. D. S. et al. A new dicynodont (Therapsida, Anomodontia) from the Permian of southern Brazil
1787 and its implications for bidentalian origins. *PLoS One* 11(5): e0155000 (2016).

1788 Bordy, E. M. et al. A chronostratigraphic framework for the upper Storberg Group: implications for the
1789 Triassic-Jurassic boundary in southern Africa. *Earth-Science Reviews* 203:103120 (2020).

1790 Botha, J. & Angielczyk, K. D. An integrative approach to distinguishing the Late Permian dicynodonts
1791 *Oudenodon bainii* and *Tropidostoma microtrema* (Therapsida: Anomodontia). *Palaeontology* 50: 1175–
1792 1209 (2007).

1793 Botha J. & Smith, R. M. H. Rapid vertebrate recovery in the Karoo Basin of South Africa following the
1794 end-Permian extinction. *Journal of African Earth Sciences* 45:502–514 (2006).

1795 Botha, J. & Smith, R. M. H. *Lystrosaurus* species composition across the Permo-Triassic Boundary in
1796 the Karoo Basin of South Africa. *Lethaia* 40, 125–137 (2007).

1797 Botha, J., Abdala, F. & Smith, R. The oldest cynodont: new clues on the origin and early diversification
1798 of the Cynodontia. *Zoological Journal of the Linnean Society* 149:477–492 (2007).

1799 Botha, J., & Smith R. M. H. Biostratigraphy of the *Lystrosaurus declivis* Assemblage Zone (Beaufort
1800 Group, Karoo Supergroup), South Africa. *South African Journal of Geology* 123:207–216 (2020).

1801 Brocklehurst, N. et al. A re-description of '*Mycterosaurus*' *smithae*, an early Permian eothyridid, and
1802 its impact on the phylogeny of pelycosaurian-grade synapsids. *PLoS One* 11(6): e0156810 (2016b).

1803 Butler, E., Abdala, F., & Botha-Brink, J. Postcranial morphology of the Early Triassic epicynodont
1804 *Galesaurus planiceps* (Owen) from the Karoo Basin, South Africa. *Papers in Palaeontology* 5, 1–32
1805 (2018).

1806 Butler, P. M. & Clemens, W. A. Dental morphology of the Jurassic holotherian mammal *Amphitherium*,
1807 with a discussion of the evolution of mammalian post-canine dental formulae. *Palaeontology* 44, 1–20
1808 (2001).

1809 Carroll, R. L. The earliest reptiles. *Journal of the Linnean Society, Zoology* 45, 61–83 (1964).

1810 Castanhinha, R. et al. Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid
1811 genus from the Upper Permian of Mozambique. *PLoS One* 8 (12):e80974 (2013).

1812 Clemens, W. A. & Martin, T. Review of the non-tritylodontid synapsids from bone beds in the Rhaetic
1813 Sandstone, southern Germany. *Paläontologische Zeitschrift* 88:461–479 (2014).

1814 Clemmensen, L. B. et al. The vertebrate-bearing Late Triassic Fleming Fjord Formation of central
1815 Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. In: Kear, B.P.,
1816 Lindgren, J., Hurum, J.H., Milà, J., & Vajda, V. (eds.). *Mesozoic biotas of Scandinavia and its Arctic*
1817 *Territories*. Geological Society of London, Special Publication 434:31–47 (2016).

1818 Close, R. A. et al. Evidence for a mid-Jurassic adaptive radiation in mammals. *Current Biology* 25,
1819 2137–2142 (2015).

1820 Colbert, E. H. & Kitching, J. W. Triassic cynodont reptiles from Antarctica. *American Museum*
1821 *Novitates* 2611:1–30 (1977).

1822 Conrad, J. & Sidor, C. A. Re-evaluation of *Tetraceratops insignis* (Synapsida: Sphenacodontia). *Journal*
1823 *of Vertebrate Paleontology* 31(abstract volume), 42A (2001).

1824 Cox, C. B. On the palate, dentition and classification of the fossil reptile *Endothiodon* and related
1825 genera. *American Museum Novitates* 2171: 1–25 (1964).

1826 Cox, C. B. A new digging dicynodont from the upper Permian of Tanzania. In: Joysey, K.A. & Kemp,
1827 T.S. (eds.). *Studies in Vertebrate Evolution*. Oliver and Boyd, Edinburgh: 173–189 (1972).

1828 Cox, C. B. & Angielczyk, K. D. A new endothiodont dicynodont (Therapsida, Anomodontia) from the
1829 Permian Ruhuhu Formation (Songea Group) of Tanzania and its feeding system. *Journal of Vertebrate*
1830 *Paleontology* 35:e935388 (2015).

1831 Crawford, N. G. et al. A phylogenomic analysis of turtles. *Molecular Phylogenetics and Evolution*
1832 83:250–257 (2014).

1833 Datta, P. M. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian)
1834 Tiki Formation, South Rewa Gondwana Basin, India. *Journal of Vertebrate Paleontology* 25:200–207
1835 (2005).

1836 Datta, P. M. & Das, D. P. Discovery of the oldest fossil mammal from India. *Indian Minerals* 50:217–
1837 222 (1996).

1838 David, R. et al. Assessing morphology and function of the semicircular duct system: introducing new
1839 in-situ visualization and software toolbox. *Sci. Rep.* 6, 32772 (2016).

1840 Day, M. O. Middle Permian continental biodiversity changes as reflected in the Beaufort Group of South
1841 Africa: a bio- and lithostratigraphic review of the Eodicynodon, Tapinocephalus and Pristerognathus
1842 Assemblage Zones. Unpublished PhD dissertation, University of the Witwatersrand, Johannesburg
1843 (2013).

1844 Day, M. et al. Biostratigraphic correlation in the Karoo: the case of the Middle Permian parareptile
1845 *Eunotosaurus*. South African Journal of Science **109** (2013).

1846 Day, M. O. et al. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from
1847 the tetrapod record of the Karoo Basin, South Africa. Proceedings of the Royal Society B 282: 20150834
1848 (2015).

1849 Day, M. O., Rubidge, B. S. & Abdala, F. A new mid-Permian burnetiamorph therapsid from the main
1850 Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha. Acta Palaeontologica
1851 Polonica 61:701–719 (2016).

1852 Day, M. O. et al. A new species of burnetiid (Therapsida, Burnetiamorpha) from the early
1853 Wuchiapingian of South Africa and implications for the evolutionary ecology of the family Burnetiidae.
1854 Papers in Palaeontology **4**, 453–475 (2018a).

1855 Day, M. O. et al. Evolutionary rates of mid-Permian tetrapods from South Africa and the role of
1856 temporal resolution in turnover reconstruction. Paleobiology **44**, 347–367 (2018b).

1857 Day, M. O. & Rubidge, B. S. Biostratigraphy of the *Tapinocephalus* Assemblage Zone (Beaufort Group,
1858 Karoo Supergroup), South Africa. South African Journal of Geology **123**, 149–164 (2020).

1859 Day, M. O. & Smith, R. M. H. Biostratigraphy of the *Endothiodon* Assemblage Zone (Beaufort Group,
1860 Karoo Supergroup), South Africa. South African Journal of Geology **123**, 165–180 (2020).

1861 Debuyschere, M., Gheerbrant, E. & Allain, R. Earliest known European mammals: a review of the
1862 Morganucodonta from Saint-Nicolas-de-Port (Upper Triassic, France). Journal of Systematic
1863 Palaeontology 13:825–855 (2015).

1864 Dodick, J. T. & Modesto, S. P. The cranial anatomy of the captorhinid reptile *Labidosaurikos meachami*
1865 from the lower Permian of Oklahoma. Palaeontology 38:687–711 (1995).

1866 Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the
1867 systematics of proterosuchian archosauriforms. PeerJ 4:e1778 (2016).

1868 Ezcurra, M. D. et al. Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea.
1869 Nature Ecology and Evolution 1:1477–1483 (2017).

1870 Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: Reassessing the
1871 Permian saurian fossil record and the timing of the crocodile-lizard divergence. *PLoS One* **9**, e89165
1872 (2014).

1873 Fang, X. et al. Division of Lower, Middle, and Upper Jurassic subdivision in the Lufeng Area, Yunnan.
1874 Proceedings of the Third National Stratigraphical Conference of China. Beijing, Geological Publishing
1875 House: 208–214 (2000).

1876 Fedak, T. J., Sues, H.-D., & Olsen, P. E. First record of the tritylodontid cynodont *Oligokyphus* and
1877 cynodont postcranial bones from the McCoy Brook Formation, of Nova Scotia, Canada. *Canadian
1878 Journal of Earth Sciences* **52**:244–249 (2015).

1879 Field, D. J. et al. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not
1880 lepidosaur, affinity for turtles. *Evolution & Development* **16**:189–196 (2014).

1881 Ford, D. P. & Benson, R. B. J. A redescription of *Orovenator mayorum* (Sauropsida, Diapsida) using
1882 high-resolution µCT, and the consequences for early amniote phylogeny. *Papers in Palaeontology*
1883 **5**:197–239 (2019).

1884 Foster, J. R. Paleoecological analysis of the vertebrate fauna of the Morrison Formation (Upper
1885 Jurassic), Rocky Mountain Region, U.S.A. *New Mexico Museum of Natural History and Science
1886 Bulletin* **23**:1–95 (2003).

1887 Fröbisch, J. Composition and similarity of global anomodont-bearing tetrapod faunas. *Earth-Science
1888 Reviews* **95**: 119–157 (2009).

1889 Garland, T. The relation between maximal running speed and body mass in terrestrial mammals. *Journal
1890 of Zoology*, **199**(2):157-170 (1983).

1891 Gastaldo, R. A. et al. The base of the *Lystrosaurus* Assemblage Zone, Karoo Basin, predates the end-
1892 Permian extinction. *Nature Communications* **11**:1428 (2020).

1893 Gauthier, J., Kluge, A. J. & Rowe, T. Amniote phylogeny and the importance of fossils. *Cladistics* **4**:
1894 105–209 (1988).

1895 Gaetano, L. C. & Rougier, G. W. First amphilestid from South America. A molariform from the Jurassic
1896 Cañadon Asfalto Formation, Patagonia, Argentina. *Journal of Mammalian Evolution* **19**:235–248
1897 (2012).

1898 Gaetano, L. C., Abdala F. & Govender R. The postcranial skeleton of the Lower Jurassic *Tritylodon*
1899 *longaevis* from southern Africa. *Ameghiniana* **54**:1–35 (2017).

1900 Gastaldo, R. A. et al. Is the vertebrate-defined Permian-Triassic boundary in the Karoo Basin, South
1901 Africa, the terrestrial expression of the end-Permian marine event? *Geology* 43:939–942 (2015).

1902 Gebauer, E. V. I. Phylogeny and evolution of the Gorgonopsia with a special reference to the skull and
1903 skeleton of GPIT/RE/7113 ('*Aelurognathus*' *parringtoni*). Unpublished PhD Dissertation, Eberhard-
1904 Karls-Universität Tübingen, Tübingen (2007).

1905 Golubev, V. K. Dinocephalian stage in the history of the Permian tetrapod fauna of Eastern Europe.
1906 *Paleontological Journal* 49:1346–1352 (2015).

1907 Gow, C. E. A new skull of *Megazostrodon* (Mammalia, Triconodonta) from the Elliot Formation (Lower
1908 Jurassic) of southern Africa. *Palaeontologia Africana* 20:13–23 (1986).

1909 Guignard, M. L., Martinelli, A. G., & Soares, M. B. The postcranial anatomy of *Brasildodon*
1910 *quadrangularis* and the acquisition of mammaliaform traits among non-mammaliaform cynodonts. *PLoS*
1911 ONE 14(5):e0216672 (2019).

1912 Hahn, G. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den
1913 Multituberculaten. *Palaeontographica, Abteilung A* 142:1–15 (1973).

1914 Hammer, W. R. *Thrinaxodon* from Graphite Peak, central Transantarctic Mountains, Antarctica.
1915 *Antarctic Journal of the United States* 25:37–38 (1990).

1916 Hancox, P. J., Neveling, J., & Rubidge, B. S. Biostratigraphy of the *Cynognathus* Assemblage Zone
1917 (Beaufort Group, Karoo Supergroup), South Africa. *South African Journal of Geology* 123:217–238
1918 (2020).

1919 Heaton, M. J. Cranial anatomy of primitive captorhinid reptiles from the Late Pennsylvanian and Early
1920 Permian Oklahoma and Texas. *Oklahoma Geological Survey Bulletin* 127:1–84 (1979).

1921 Henrickx et al. A new traversodontid cynodont with a peculiar postcanine dentition from the
1922 Middle/Late Triassic of Namibia and dental evolution in basal gomphodonts. *Journal of Systematic*
1923 *Palaeontology* 18(20):1669–1706 (2020).

1924 Hennig, E. Die Säugerzähne des württembergischen Rhät-Lias-Bonebeds. *Neues Jahrbuch für*
1925 *Mineralogie, Geologie und Paläontologie, Beilage-Band* 46:181–267 (1922).

1926 Hentz, T. F. Lithostratigraphy and paleoenvironments of Upper Paleozoic continental red beds, north-
1927 central Texas: Bowie (new) and Wichita (revised) groups. *Texas Bureau of Economic Geology Report*
1928 *of Investigations* 170:1–55 (1988).

1929 Hopson, J. A. & Kitching, J. W. A revised classification of cynodonts (Reptilia: Therapsida)
1930 *Palaeontologia Africana* 14:71–85 (1972).

1931 Hopson, J. A. & Kitching, J. W. A probainognathian cynodont from South Africa and the phylogeny of
1932 nonmammalian cynodonts. *Bulletin of the Museum of Comparative Zoology* 156:3–35 (2001).

1933 Huene, F. von. Die Theriodontier des ostafrikanischen Ruhuhu-Gebietes in der Tübinger Sammlung.
1934 *Neues Jahrbuch für Geologie und Paläontologie* 92:47–136 (1950).

1935 Huttenlocker, A. K. & Sidor, C. A. The first karenitid (Therapsida, Therocephalia) from the upper
1936 Permian of Gondwana and the biogeography of Permo-Triassic therocephalians. *Journal of Vertebrate
1937 Paleontology* 36:e1111897 (2016).

1938 Huttenlocker, A. K. & Smith, R. M. H. New whaitsioids (Therapsida: Therocephalia) from the Teekloof
1939 Formation of South Africa and therocephalian diversity during the end-Guadalupian extinction. *PeerJ*
1940 5:e3868 (2017).

1941 Huttenlocker, A. K., Sidor, C. A. & Smith, R. M. H. A new specimen of *Promoschorhynchus*
1942 (Therapsida: Therocephalia: Akidnognathidae) from the Lower Triassic of South Africa and its
1943 implications for theriodont survivorship across the Permo-Triassic boundary. *Journal of Vertebrate
1944 Paleontology* 31:405–421 (2011b).

1945 Huttenlocker, A. K. et al. Late-surviving stem mammal links the lowermost Cretaceous of North
1946 America and Gondwana. *Nature* 558:108–112 (2018).

1947 Huttenlocker, A. K. & Sidor, C. A. A basal nonmammaliaform cynodont from the Permian of Zambia
1948 and the origins of mammalian endocranial and postcranial anatomy. *Journal of Vertebrate Paleontology*.
1949 DOI: 10.1080/02724634.2020.1827413 (2020).

1950 Irisarri, I. et al. Phylogenomic consolidation of the jawed vertebrate timetree. *Nature Ecology &*
1951 *Evolution* 1:1370–1378 (2017).

1952 Jasinoski, S. C. & Abdala, F. Cranial ontogeny of the Early Triassic basal cynodont *Galesaurus*
1953 *planiceps*. *The Anatomical Record* 300:353–381 (2017a).

1954 Jasinoski, S. C. & Abdala, F. Aggregations and parental care in the Early Triassic basal cynodonts
1955 *Galesaurus planiceps* and *Thrinaxodon liorhinus*. *PeerJ* 5:e2875 (2017b).

1956 Jenkins, F. A. Jr., Crompton, A. W. & Downs, W. R. Mesozoic mammals from Arizona: New evidence
1957 on mammalian evolution. *Science* 222:1233–1235 (1983).

1958 Jenkins, F. A. Jr. et al. Late Triassic continental vertebrates and depositional environments of the
1959 Fleming Fjord Formation, Jameson Land, East Greenland. *Meddelelser om Grønland* 32:3–25 (1994).

1960 Jenkins, F. A. Jr. et al. Haramiyids and Triassic mammalian evolution. *Nature* 385:715–718 (1997).

1961 Kammerer, C. F. A redescription of *Eriphostoma microdon* Broom, 1911 (Therapsida, Gorgonopsia)
1962 from the Tapinocephalus Assemblage Zone of South Africa and a review of Middle Permian
1963 gorgonopsians. In: Kammerer, C.F., Angielczyk, K.D. & Fröbisch, J. (eds.). *Early Evolutionary History*
1964 of the Synapsida., 171–184 (Springer, 2014).

1965 Kammerer, C. F. Cranial osteology of *Arctognathus curvimola*, a short-snouted gorgonopsian from the
1966 late Permian of South Africa. *Papers in Palaeontology* 1:41–58 (2015).

1967 Kammerer, C. F. Two unrecognized burnetiamorph specimens from historical Karoo collections.
1968 *Palaeontologia Africana* 50: 64–75 (2016a).

1969 Kammerer, C. F. A new taxon of cynodont from the *Tropidostoma* Assemblage Zone (upper Permian)
1970 of South Africa, and the early evolution of Cynodontia. *Papers in Palaeontology* 2:387–397 (2016b).

1971 Kammerer, C. F. Systematics of the Rubidgeinae (Therapsida: Gorgonopsia). *PeerJ* 4: e1608 (2016c).

1972 Kammerer, C. F. Anatomy and relationships of the South African gorgonopsian Arctops (Therapsida,
1973 Theriodontia). *Papers in Palaeontology* 3: 583–611 (2017).

1974 Kammerer, C. F. The first skeletal evidence of a dicynodont from the lower Elliot Formation of South
1975 Africa. *Palaeontologia Africana* 52: 102–128 (2018).

1976 Kammerer, C. F. Revision of the Tanzanian dicynodont *Dicynodon huenei* (Therapsida: Anomodontia)
1977 from the Permian Usili Formation. *PeerJ* 7:e7420 (2019).

1978 Kammerer, C. F. & Masyutin, V. Gorgonopsian therapsids (*Nochnitsa* gen. nov. and *Viatkogorgon*) from
1979 the Permian Kotelnich locality of Russia. *PeerJ* 6:e4954 (2018a).

1980 Kammerer, C. F. & Smith, R. M. H. An early geikiid dicynodont from the *Tropidostoma* Assemblage
1981 Zone (late Permian) of South Africa. *PeerJ* 5:e2913 (2017).

1982 Kammerer, C. F., Smith, R. M. H., Day, M. O. & Rubidge, B. S. New information on the morphology
1983 and stratigraphic range of the mid-Permian gorgonopsian *Eriphostoma microdon* Broom, 1911. *Papers*
1984 in *Palaeontology* 1:201–221 (2015).

1985 Kammerer, C. F. et al. A new kannemeyeriiform dicynodont (*Ufudoclylops mukanelai*, gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone, Triassic of South Africa, with implications for biostratigraphic correlation with other African Triassic faunas. *Journal of Vertebrate Paleontology*. DOI: 10.1080/02724634.2019.1596921 (2019).

1989 Kent, D. V. et al. Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetostratigraphy of the Los Colorados Formation (Argentina). *Proceedings of the National Academy of Sciences* 111:7958–7963 (2014).

1992 Keyser, A. W. A new Triassic vertebrate fauna from South West Africa. *Palaeontologia Africana* 16:1–15 (1973).

1994 Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z.-X. Mammals from the Age of Dinosaurs. Columbia University Press, New York (2004).

1996 Kissel, R. Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha). Unpublished Ph.D. dissertation, University of Toronto (2010).

1998 Kissel, R. A. & Reisz, R. R. *Ambedua pusillus*, new genus, new species, a small diadectid (Tetrapoda: Diadectomorpha) from the Lower Permian of Ohio, with a consideration of diadectomorph phylogeny. *Annals of Carnegie Museum* 73:197–212 (2004b).

2001 Kissel, R. A. & Reisz, R. R. Synapsid fauna of the Upper Pennsylvanian Rock Lake Shale near Garnett, Kansas and the diversity pattern of early amniotes. In: Arratia, G., Wilson, M.V.H. & Cloutier, R. (eds.). 2003 Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag Dr. Friedrich Pfeil, Munich: 409–428 (2004b).

2005 Kitching, J. W. & Raath, M. A. Fossils from the Elliot and Clarens formations (Karoo Sequence) of the northeastern Cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. *Palaeontologia Africana* 25:111–125 (1984).

2008 Kitching J. W. et al. *Lystrosaurus* Zone (Triassic) fauna from Antarctica. *Science* 175:524–527 (1972).

2009 Knoll, F. The tetrapod fauna of the Upper Elliot and Clarens formations in the main Karoo Basin (South Africa and Lesotho). *Bulletin de la Société géologique de France* 176: 81–91 (2005).

2011 Kruger, A. et al. *Lende chiweta*, a new therapsid from Malawi, and its influence on burnetiamorph phylogeny and biogeography. *Journal of Vertebrate Paleontology* 35:e1008698 (2015).

2013 Kühne, W. G. The Liassic therapsid *Oligokyphus*. Trustees of the British Museum, London (1956).

2014 Kumar, S. et al. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. *Mol Biol Evol*
2015 (2017).

2016 Kurkin, A. A. Permian anomodonts: paleobiogeography and distribution of the group. *Paleontological*
2017 *Journal* 45:432–444 (2011).

2018 Lenci, L. et al. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. *Earth*
2019 *and Planetary Science Letters* 375:123–134 (2013).

2020 Langer, M. C., Ramezani, J. & Da Rosa, Á. A. S. U-Pb age constraints on dinosaur rise from south
2021 Brazil. *Gondwana Research* 57:133–140 (2018).

2022 Laurin, M. & Piñeiro, G. H. A reassessment of the taxonomic position of mesosaurs, and a surprising
2023 phylogeny of early amniotes. *Frontiers in Earth Science* 5:88 (2017).

2024 Laurin, M. & Reisz, R. R. A reevaluation of early amniote phylogeny. *Zoological Journal of the Linnean*
2025 *Society* 113: 165–223 (1995).

2026 Laurin, M. & Reisz, R. R. A new perspective on tetrapod phylogeny. In: Sumida, S.S. & Martin, K.L.M.
2027 (eds.). *Amniote Origins: Completing the Transition to Land*. Academic Press, San Diego: 9–59 (1997).

2028 LeBlanc, A. R. H. et al. Multiple tooth-rowed captorhinids from the early Permian fissures fills of the
2029 Bally Mountain Locality of Oklahoma. *Vertebrate Anatomy, Morphology, Palaeontology* 1:35–49
2030 (2015).

2031 Lee, M. S. Y. & Spencer P. S. Crown-clades, key characters, and taxonomic stability: when is an amniote
2032 not an amniote? In: Sumida, S.S. & Martin, K.L.M. (eds.). *Amniote Origins: Completing the Transition*
2033 *to Land*. 61–84 (Academic Press, 1997).

2034 Li, C., et al. A Triassic stem turtle with an edentulous beak. *Nature* 560:476–479 (2018).

2035 Lillegraven, J. A. & Krusat, G. Cranio-mandibular anatomy of *Haldanodon exspectatus* (Docodonta;
2036 Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian
2037 characters. *Contributions to Geology, University of Wyoming* 28:39–138 (1991).

2038 Liu, J. New progress on the correlation of Chinese terrestrial Permo-Triassic strata. *Vertebrata*
2039 *PalAsiatica* 56:327–342 (2018).

2040 Liu, J. & Abdala, F. Phylogeny and taxonomy of the Traversodontidae. In: Kammerer, C.F., Angielczyk,
2041 K.D. & Fröbisch, J. (eds.). *Early Evolutionary History of the Synapsida*. 255–279 (Springer, 2014).

2042 Liu, J. & Abdala, F. The tetrapod fauna of the upper Permian Naobaogou Formation of China: 1.

2043 *Shiguaignathus wangi* gen. et sp. nov., the first akidognathid therocephalian from China. PeerJ 5:e4150

2044 (2017).

2045 Liu, J. & Bever, G. S. The last diadectomorph sheds light on Late Palaeozoic tetrapod biogeography.

2046 Biology Letters 11:20150100 (2015).

2047 Liu, J. & Olsen, P. E. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). Journal

2048 of Mammalian Evolution 17:151–176 (2010).

2049 Liu, J., Rubidge, B. S. & Li, J. New basal synapsid supports Laurasian origin for therapsids. Acta

2050 Palaeontologica Polonica 54:393–400 (2009).

2051 Liu, J., Rubidge, B. S. & Li, J. A new specimen of *Biseridens qilianicus* indicates its phylogenetic

2052 position as the most basal anomodont. Proceedings of the Royal Society B 277:285–292 (2010).

2053 Liu, J. et al. High precision temporal calibration of Middle Triassic vertebrate biostratigraphy: U=Pb

2054 zircon constraints for the Sinokannemeyeria Fauna and *Yonghesuchus*. Vertebrata Palasiatica 56:16–24

2055 (2018).

2056 Liu, J. *Taoheodon baizhijuni*, gen. et sp. nov. (Anomodontia, Dicynodontoida), from the upper Permian

2057 Sunjiagou Formation of China and its implications. J. Vertebr. Paleontol. (2020).

2058 Lucas, S. G. Global tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology,

2059 Palaeoecology 143:347–384 (1998).

2060 Lucas, S. G. Global Permian tetrapod biostratigraphy and biochronology. In: Lucas, S.G., Cassinis, G.

2061 & Schneider, J.W. (eds.). Non-marine Permian Biostratigraphy and Biochronology. Geological Society

2062 of London, Special Publication 265: 65–93 (2006).

2063 Lucas, S. G. The Triassic timescale based on nonmarine tetrapod biostratigraphy and biogeography. In:

2064 Lucas, S.G. (ed.). The Triassic Timescale. Geological Society of London, Special Publication 334:447–

2065 500 (2010).

2066 Lucas, S. G. Permian tetrapod biochronology, correlation and evolutionary events. In: Lucas, S.G. &

2067 Shen, S.Z. (eds.). The Permian Timescale. Geological Society of London, Special Publication 450: 405–

2068 444 (2018).

2069 Lucas, S. G. & Luo, Z.-X. *Adelobasileus* from the Upper Triassic of west Texas: the oldest mammal.

2070 Journal of Vertebrate Paleontology 13:309–334 (1993).

2071 Lukic-Walther, M. et al. Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and
2072 the impact of taxonomic practice and research history on diversity estimates. *Paleobiology* 45:56–69
2073 (2019).

2074 Luo, Z. & Sun A. *Oligokyphus* (Cynodontia: Tritylodontidae) from the lower Lufeng Formation (lower
2075 Jurassic) of Yunnan, China. *Journal of Vertebrate Paleontology* 13:477–482 (1995).

2076 Luo, Z.-X. & Martin, T. Analysis of molar structure and phylogeny of docodont genera. *Bulletin of
2077 Carnegie Museum of Natural History* 39:27–47 (2007).

2078 Luo, Z.-X. & Wu, X.-C. The small tetrapods of the Lower Lufeng Formation, Yunnan, China. In: Fraser,
2079 N.C. & Sues, H.-D. (eds.). *In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods*. Cambridge
2080 University Press, Cambridge: 251–270 (1994).

2081 Luo, Z.-X., Crompton, A. W., & Sun, A.-L. A new mammaliaform from the Early Jurassic and evolution
2082 of mammalian characteristics. *Science* 292:1535–1540 (2001).

2083 Luo, Z.-X., et al. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia
2084 and their ramifications for basal mammal evolution. *Proceedings of the National Academy of Sciences*
2085 112:E7101–7109 (2015).

2086 Lyson, T. R. et al. Transitional fossils and the origin of turtles. *Biology Letters* 6:830–833 (2010).

2087 Lyson, T. R. et al. Evolutionary origin of the turtle shell. *Current Biology* 23:1113–1119 (2013).

2088 Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. *Nature Communications* 5:5211
2089 (2014).

2090 Lyson, T. R. et al. Fossorial origin of the turtle shell. *Current Biology* 26:1887–1894 (2016).

2091 Macungo, Z. et al. *Endothiodon* (Therapsida, Anomodontia) specimens from the middle/late Permian
2092 of the Metangula Graben (Niassa Province, Mozambique) increase complexity to the taxonomy of the
2093 genus. *Journal of African Earth Sciences* (2020).

2094 Maddin, H. C. et al. Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care
2095 in amniotes. *Nature Ecology & Evolution* 4:50–56 (2019).

2096 Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version
2097 3.51 <http://www.mesquiteproject.org>. (2018).

2098 Mann, A. & Paterson, R. S. Cranial osteology and systematics of the enigmatic early 'sail-backed'
2099 synapsid *Echinerpeton intermedium* Reisz, 1972, and a review of the earliest pelycosaurs. *Journal of*
2100 *Systematic Palaeontology* (2019).

2101 Mann, A., et al. Reassessment of historic 'microsaurs' from Joggins, Nova Scotia, reveals hidden
2102 diversity in the earliest amniote ecosystem. *Papers in Palaeontology* (2020)

2103 Marjanović, D. Recalibrating the transcriptomic timetree of jawed vertebrates. *BioRxiv* preprint. (2019)

2104 Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision
2105 and expansion of the largest published relevant data matrix. *PeerJ* 6:e5565 (2019).

2106 Marsh, A. D. Preliminary U-Pb detrital zircon dates from the Kayenta Formation of Arizona: *Paleo Bios*
2107 32(1, Suppl.): 10 (2014).

2108 Marsicano, C. A. et al. (2016) The precise temporal calibration of dinosaur origins. *Proceedings of the*
2109 *National Academy of Sciences* 113:509–513.

2110 Martin, T. Postcranial anatomy of *Haldanodon exspectatus* (Mammalia, Docodonta) from the Late
2111 Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. *Zool. J. Linn. Soc.*
2112 145:219–248 (2005).

2113 Martin, T. Mesozoic mammals – early mammalian diversity and ecomorphological adaptations. In:
2114 Zachos, F.E., & Asher, R. (eds.) *Handbook of Zoology: Mammalia: Mammalian Evolution, Diversity,*
2115 *and Systematics*. De Gruyter, Berlin: 199–299 (2018).

2116 Martinelli, A. G. & Rougier, G. M. On *Chaliminia musteloides* (Eucynodontia Triheledontidae) from
2117 the Late Triassic of Argentina, and the phylogeny of Ictidosauria. *Journal of Vertebrate Paleontology*
2118 27:442–460 (2007).

2119 Martinelli, A. G., Soares, M. B. & Schwanke, C. Two new cynodonts (Therapsida) from the Middle-
2120 early Late Triassic of Brazil and comments on South American probainognathians. *PLoS ONE*
2121 11:e0162945 (2016).

2122 Martinelli, A. G. & Soares, M. B. Evolution of South American cynodonts. *Contribuciones del Museo*
2123 *Argentino de Ciencias Naturales "Bernardino Rivadavia"* 6: 183-197 (2016).

2124 Martinelli, A. G. et al. The African cynodont *Aleodon* (Cynodontia, Probainognathia) in the Triassic of
2125 southern Brazil and its biostratigraphic significance. *PLoS ONE* 12(6):e0177948 (2017a).

2126 Martinelli, A. G. et al. A new cynodont from the Santa Maria Formation, south Brazil, improves Late
2127 Triassic probainognathian diversity. *Papers in Palaeontology* 3:301–423 (2017b).

2128 Martinelli, A. G. et al. The Triassic eucynodont *Candelariodon barberenai* revisited and the early
2129 diversity of stem prozostrodontians. *Acta Palaeontologia Polonica* 62:527–542 (2017c).

2130 Martínez, R. N. & Forster, C. A. The skull of *Probelesodon sanjuanensis*, sp. nov., from the Late Triassic
2131 Ischigualasto Formation of Argentina. *Journal of Vertebrate Paleontology* 16:285–291 (1996).

2132 Martínez, R. N., Fernandez, E., & Alcober, O. A. A new non-mammaliaform eucynodont from the
2133 Carnian-Norian Ischigualasto Formation, northwestern Argentina. *Revista Brasileira de Paleontologia*
2134 16:61–76 (2013a).

2135 Martínez, R. N., et al. Vertebrate succession in the Ischigualasto Formation. In: Sereno, P.C. (ed.). *Basal*
2136 *sauropodomorphs and the vertebrate fossils record of the Ischigualasto Formation (Late Triassic:*
2137 *Carnian-Norian) of Argentina*. *Society of Vertebrate Paleontology Memoir* 12:10–30 (2013b).

2138 Melo, T. P., Martinelli, A. G., & Soares, M. B. A new gomphodont cynodont (Traversodontidae) from
2139 the Middle-Late Triassic *Dinodontosaurus* Assemblage Zone of the Santa Maria Supersequence, Brazil.
2140 *Palaeontology* 60:571–582 (2017).

2141 Meng, Q.-J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification.
2142 *Science* 347:764–768 (2015).

2143 Modesto, S. P. et al. The skull and palaeoecological significance of *Labidosaurus hamatus*, a captorhinid
2144 reptile from the Lower Permian of Texas. *Zoological Journal of the Linnean Society* 149:237–262
2145 (2007).

2146 Müller, J. & Reisz, R. R. An early captorhinid reptile (Amniota, Eureptilia) from the Upper
2147 Carboniferous of Hamilton, Kansas. *Journal of Vertebrate Paleontology* 25:561–568 (2005).

2148 Müller, J. & Reisz, R. R. The phylogeny of early eureptiles: comparing parsimony and Bayesian
2149 approaches in the investigation of a basal fossil clade. *Systematic Biology* 55:503–511 (2006).

2150 Neveling, J. Stratigraphic and sedimentological investigation of the contact between the *Lystrosaurus*
2151 and the *Cynognathus* assemblage zones (Beaufort Group: Karoo Supergroup). *Council for Geoscience*
2152 *Bulletin* 137:1–165 (2004).

2153 Olivier, C. et al. New dicynodonts (Therapsida, Anomodontia) from near the Permo-Triassic boundary
2154 of Laos: implications of dicynodont survivorship across the Permo-Triassic mass extinction and the
2155 paleobiogeography of Southeast Asian blocks. *Journal of Vertebrate Paleontology* (2019)

2156 Olroyd, S. L. & Sidor, C. A. A review of the Guadalupian (middle Permian) global tetrapod fossil record.
2157 Earth-Science Reviews 171:538–597 (2017).

2158 Olroyd, S. L., Sidor, C. A. & Angielczyk, K. D. New materials of the enigmatic dicynodont *Abajudon*
2159 *kaayai* (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian
2160 of Zambia. Journal of Vertebrate Paleontology (2018).

2161 Olson, E. C. Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R. Transactions of the American
2162 Philosophical Society New Series 52: 3–224 (1962).

2163 Ottone, E. G. et al. A new Late Triassic age from the Puesto Viejo Group (San Rafael depocenter,
2164 Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana.
2165 Journal of South American Earth Sciences 56:186–199 (2014).

2166 Pacheco, C. P. et al. *Prozostrodon brasiliensis*, a probainognathian cynodont from the Late Triassic of
2167 Brazil: second record and improvements on its dental anatomy. Historical Biology 30:475–485 (2017).

2168 Panciroli, E., Benson, R. B. J. & Luo, Z.-X. The mandible and dentition of *Borealestes serendipitus*
2169 (Docodonta) from the Middle Jurassic of Skye, Scotland. Journal of Vertebrate Paleontology (2019).

2170 Pardo, J. D. et al. Hidden morphological diversity among early tetrapods. Nature 546:642–645 (2017).

2171 Peecook, B. R. et al. Updated geology and vertebrate paleontology of the Triassic Ntawere Formation
2172 of northeastern Zambia, with special emphasis on the archosauromorphs. In: Sidor, C.A. & Nesbitt S.
2173 J. (eds.). Vertebrate and Climatic Evolution in the Triassic Rift Basins of Tanzania and Zambia. Society
2174 of Vertebrate Paleontology Memoir 17:8–38 (2018a).

2175 Peecook, B. R., Smith, R. M. H. & Sidor, C. A. A novel archosauromorph from Antarctica and an
2176 updated review of a high-latitude vertebrate assemblage in the wake of the end-Permian mass extinction.
2177 Journal of Vertebrate Paleontology 28(6):e1536664 (2018b).

2178 Peecook, B. R. Vertebral osteology of *Hipposaurus boonstrai* (Therapsida, Biarmosuchia) from the
2179 middle Permian of South Africa, with implications for the evolution of Archosauromorpha. Journal of
2180 Vertebrate Paleontology, Program and Abstracts, 2018, 195–196 (2018c).

2181 Philipp, R. P. et al. Proveniência por U-Pb LA-ICP-MS em zircão detritico e idade de deposição da
2182 Formação Santa Maria, Triássico da Bacia do Paraná, RS: evidências da estruturação do Arco do Rio
2183 Grande; pp. 154–157 in VIII Symposium International on Tectonics–XIV Simpósio Nacional de
2184 Estudos Tectônicos 2013, 19–23 May 2013, Chapada dos Guimarães, Mato Grosso (2013).

2185 Philipp, R. P. et al. Middle Triassic SW Gondwana paleogeography and sedimentary dispersal revealed
2186 by integration of stratigraphy and U-Pb zircon analysis: The Santa Cruz Sequence, Paraná Basin, Brazil.
2187 Journal of South American Earth Sciences 88:216–237 (2019).

2188 Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA
2189 sequencing. Nature 526:569–573 (2015).

2190 Pusch, L. C., Kammerer, C. F., & Fröbisch, J. Cranial anatomy of the early cynodont *Galesaurus*
2191 *planiceps* and the origin of mammalian endocranial characters. Journal of Anatomy 234:592–
2192 621(2019).

2193 Rabbitt, R. D., Damiano, E. R. & Grant, J. W. Biomechanics of the semicircular canals and otolith
2194 organs. In The vestibular system (pp. 153–201). Springer, New York, NY (2004).

2195 Rademan, Z. Radiometric dating and stratigraphic reassessment of the Elliot and Clarens formations;
2196 near Maphutseng and Moyeni, Kingdom of Lesotho, southern Africa. Unpublished Master's thesis,
2197 University of Stellenbosch (2018).

2198 Ray, S. Endothiodont dicynodonts from the Late Permian Kundaram Formation, India. Palaeontology
2199 43:375–404 (2000).

2200 Ray, S. & Bandyopadhyay, S. Late Permian vertebrate community of the Pranhita-Godavari Valley,
2201 India. Journal of Asian Earth Sciences 21:643–654 (2003).

2202 Ray, S. et al. Vertebrate fauna from the Late Triassic Tiki Formation of India: new finds and their
2203 biostratigraphic implications. The Palaeobotanist 65:47–59 (2016).

2204 Reisz, R. R. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the
2205 Museum of Comparative Zoology 144:27–62 (1972).

2206 Reisz, R. R. Pelycosauria. Handbuch der Paläoherpetologie 17A: Gustav Fischer Verlag, Stuttgart
2207 (1986).

2208 Reisz, R. R. The cranial anatomy of basal diadectomorphs and the origin of amniotes. In: Anderson, J.
2209 S. & Sues, H.-D. (eds.). Major Transitions in Vertebrate Evolution. Indiana University Press,
2210 Bloomington:228–252 (2007).

2211 Reisz, R. R. & Fröbisch, J. The oldest caseid synapsid from the late Pennsylvanian of Kansas, and the
2212 evolution of herbivory in terrestrial vertebrates. PLoS One 9: e94518 (2014).

2213 Reisz, R. R. & Müller, J. Molecular timescales and the fossil record: a paleontological perspective.
2214 Trends in Genetics 20:237–241 (2004).

2215 Reisz, R. R., Godfrey, S. J. & Scott, D. *Eothyris* and *Oedaleops*: do these Early Permian synapsids from
2216 Texas and New Mexico form a clade? Journal of Vertebrate Paleontology 29: 39–47 (2009).

2217 Reisz, R. R., Haridy, Y. & Müller, J. *Euconcordia* nom. nov., a replacement name for the captorhinid
2218 eureptile *Concordia* Müller and Reisz, 2005 (non Kingsley, 1880), with new data on its dentition.
2219 Vertebrate Anatomy Morphology Paleontology 3:1–6 (2016).

2220 Reisz, R. R., Modesto, S. P. & Scott, D. M. A new Early Permian reptile and its significance in early
2221 diapsid evolution. Proceedings of the Royal Society B 278:3731–3737 (2011).

2222 Romer, A. S. & Price, L. I. Review of the Pelycosauria. Geological Society of America Special Papers
2223 28: 1–538 (1940).

2224 Rougier, G. W. et al. New Jurassic mammals from Patagonia, Argentina: a reappraisal of
2225 australosphenidan morphology and interrelationships. American Museum Novitates 3566:1–54 (2007).

2226 Rubidge, B. S. Re-uniting lost continents—fossil reptiles from the ancient Karoo and their wanderlust.
2227 South African Journal of Geology 108:135–172 (2005).

2228 Rubidge, B. S. & Hopson, J. A. A primitive anomodont therapsid from the base of the Beaufort Group
2229 (Upper Permian) of South Africa. Zoological Journal of the Linnean Society 117: 115–139 (1996).

2230 Rubidge, B. S. et al. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-
2231 Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41: 363–366 (2013).

2232 Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group,
2233 Karoo Supergroup), South Africa. South African Journal of Geology 123:141–148 (2020).

2234 Ruf, I., Luo, Z.-X., & Martin, T. Reinvestigation of the basicranium of *Haldanodon exspectatus*
2235 (Mammaliaformes, Docodonta). Journal of Vertebrate Paleontology 33:382–400 (2013).

2236 Ruta, M. & Coates, M. I. Dates, nodes, and character conflict: addressing the lissamphibian origin
2237 problem. Journal of Systematic Palaeontology 5:69–122 (2007).

2238 Ruta, M. et al. The radiation of cynodonts and the ground plan of mammalian morphological diversity.
2239 Proceedings of the Royal Society Series B 280: 20131865 (2013).

2240 Ruta, M., Coates, M. I. & Quicke, D. L. J. Early tetrapod relationships revisited. *Biological Reviews*
2241 78:215–345 (2003).

2242 Sarigül, V. New archosauromorph fragments from the Dockum Group of Texas and assessment of the
2243 earliest dinosaurs in North America. *Historical Biology* 30:1059–1079 (2017).

2244 Schmitt, M. R. et al. On the occurrence of the traversodontid *Massetognathus ochagaviae* (Synapsida,
2245 Cynodontia) in the early Late Triassic *Santacruzodon* Assemblage Zone (Santa Maria Supersequence,
2246 southern Brazil): Taxonomic and biostratigraphic implications. *Journal of South American Earth
2247 Sciences* 93:36–50 (2019).

2248 Schneider, J. W. et al. Late Paleozoic–early Mesozoic continental biostratigraphy — links to the
2249 Standard Global Chronostratigraphic Scale. *Palaeoworld*. (2019).

2250 Schoch, R. R. & Sues, H.-D. A Middle Triassic stem-turtle and the evolution of the turtle body plan.
2251 *Nature* 523:584–587 (2015).

2252 Schoch, R. R. & Sues, H.-D. Osteology of the Middle Triassic stem-turtle *Pappochelys rosinae* and the
2253 early evolution of the turtle skeleton. *Journal of Systematic Palaeontology* 16:927–965 (2018).

2254 Schoch, R. R. & Sues, H.-D. The origin of the turtle body plan: evidence from fossils and embryos.
2255 *Palaeontology* (2019).

2256 Schudack, M. Geological setting and dating of the Guimarota beds. Pp. 21–26 in T. Martin and B. Krebs
2257 (eds.), Guimarota: a Jurassic Ecocystem. (Verlag Dr. Friedrich Pfeil, 2000a).

2258 Schudack, M. Ostracods and charophytes from the Guimarota beds. Pp. 33–36 in T. Martin and B. Krebs
2259 (eds.), Guimarota: a Jurassic Ecocystem (Verlag Dr. Friedrich Pfeil, 2000b).

2260 Sciscio, L. et al. Magnetostratigraphy across the Triassic-Jurassic boundary in the main Karoo Basin.
2261 *Gondwana Res.* 177–192 (2017).

2262 Sennikov, A. G. An enigmatic reptile from the Upper Permian of the Volga River Basin. *Paleontological
2263 Journal* 31:94–101 (1997).

2264 Sennikov, A. G. & Golubev, V. K. Vyazniki Biotic Assemblage of the terminal Permian. *Paleontological
2265 Journal* 40 (suppl.4):S475–S481 (2006).

2266 Sennikov, A. G. & Golubev, V. K. Sequence of Permian tetrapod faunas of Eastern Europe and the
2267 Permian-Triassic ecological crisis. *Paleontological Journal* 51, 600–611 (2017).

2268 Sidor, C. A. & Hopson, J. A. Ghost lineages and “mammalness”: assessing the temporal pattern of
2269 character acquisition in the Synapsida. *Paleobiology* 24:254–273 (1998).

2270 Sidor, C. A. & Hopson, J. A. *Cricodon metabolus* (Cynodontia: Gomphodontontia) from the Triassic
2271 Ntawere Formation of northeastern Zambia: patterns of tooth replacement and a systematic review of
2272 the Trirachodontidae. In: Sidor, C.A. & Nesbitt S. J. (eds.). *Vertebrate and Climatic Evolution in the*
2273 *Triassic Rift Basins of Tanzania and Zambia*. Society of Vertebrate Paleontology Memoir 17:39–64
2274 (2018).

2275 Sidor, C. A. & Rubidge, B. S. *Herpetoskylax hopsoni*, a new biarmosuchian (Therapsida: Biarmosuchia)
2276 from the Beaufort Group of South Africa. In: Carrano, M.T., Gaudin, T.J., Blob, R.W. & Wible, J.R.
2277 (eds.). *Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles*.
2278 University of Chicago Press, Chicago: 76–113 (2006).

2279 Sidor, C. A. & Smith, R. M. H. A second burnetiamorph therapsid from the Permian Teekloof Formation
2280 of South Africa and its associated fauna. *Journal of Vertebrate Paleontology* 27: 420–430 (2007).

2281 Sidor, C. A. & Welman, J. A second specimen of *Lemurosaurus pricei* (Therapsida: Burnetiamorpha).
2282 *Journal of Vertebrate Paleontology* 23: 631–642 (2003).

2283 Sidor, C. A. et al. Tapinocephalids (Therapsida, Dinocephalia) from the Permian Madumabisa
2284 Mudstone Formation (Lower Karoo, Mid-Zambezi Basin) of southern Zambia. *Journal of Vertebrate*
2285 *Paleontology* 34: 980–986 (2014).

2286 Sidor, C. A. et al. Tetrapod fauna of the lowermost Usili Formation (Songea Group, Ruhuhu Basin) of
2287 southern Tanzania, with a new burnetiid record. *Journal of Vertebrate Paleontology* 30: 696–703 (2010).

2288 Sigogneau-Russell, D. Theriodontia I. *Handbuch der Paläoherpetologie* 17B. Gustav Fischer Verlag,
2289 Stuttgart (1989).

2290 Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps.
2291 *Nature* 557:706–709 (2018).

2292 Simon, R. V. et al. First record of a tapinocephalid (Therapsida: Dinocephalia) from the Ruhuhu
2293 Formation (Songea Group) of southern Tanzania. *Journal of Vertebrate Paleontology* 30: 1289–1293
2294 (2010).

2295 Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic
2296 evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South
2297 Africa. *Palaeogeography, Palaeoclimatology, Palaeoecology* 15: 99–118 (2014).

2298 Smith, R. M. H. & Evans, S. E. New material of *Youngina*: evidence of juvenile aggregation in Permian
2299 diapsid reptiles. *Palaeontology* 39:289–303 (1996).

2300 Smith, R. M. H. & Keyser, A. W. Biostratigraphy of the *Tropidostoma* Assemblage Zone. In: Rubidge,
2301 B.S. (ed.). *Biostratigraphy of the Beaufort Group (Karoo Supergroup)*. South African Committee for
2302 Stratigraphy Biostratigraphic Series 1:18–22 (1995).

2303 Smith, R. M. H. & Swart, R. Changing fluvial environments and vertebrate taphonomy in response to
2304 climatic drying in a mid-Triassic rift valley fill: the *Omingonde* Formation (Karoo Supergroup) of
2305 central Namibia. *Palaios* 17:249–267 (2002).

2306 Smith, R. M. H., Rubidge, B. S. & Sidor, C. A. A new burnetiid (Therapsida: Biarmosuchia) from the
2307 upper Permian of South Africa and its biogeographic implications. *Journal of Vertebrate Paleontology*
2308 26:331–343 (2006).

2309 Smith, R. M. H., Rubidge, B. S. & van der Walt, M. Therapsid biodiversity patterns and environments
2310 of the Karoo Basin, South Africa. In: Chinsamy-Turan, A. (ed.). *Forerunners of Mammals: Radiation,*
2311 *Histology, Biology*. Indiana University Press, Bloomington and Indianapolis: 223–246 (2012).

2312 Smith, R. M. H. Biostratigraphy of the *Cistecephalus* Assemblage Zone (Beaufort Group, Karoo
2313 Supergroup), South Africa. *South African Journal of Geology* 123:181–190 (2020).

2314 Soares, M. B., Schultz, C. L., & Horn, B. L. D. New information on *Riograndia guaibensis* Bonaparte,
2315 Ferigolo & Ribeiro, 2001 (Eucynodontia, Trithelodontidae) from the Late Triassic of southern Brazil:
2316 anatomical and biostratigraphic implications. *Anais da Academia Brasileira de Ciências* 83:329–354
2317 (2011).

2318 Spiekman, S. N. F. A new specimen of *Prolacerta broomi* from the lower Fremouw Formation (Early
2319 Triassic) of Antarctica, its biogeographical implications and a taxonomic revision. *Scientific Reports*
2320 8:17996 (2018).

2321 Spindler, F. Reviewing the question of the oldest therapsid. – *Paläontologie, Stratigraphie, Fazies* (22),
2322 *Freiberger Forschungshefte*, C 548: 1–7 (2014).

2323 Spindler, F., Falconnet, J. & Fröbisch, J. *Callibrachion* and *Datheosaurus*, two historical and previously
2324 mistaken basal caseasaurian synapsids from Europe. *Acta Palaeontologica Polonica* 61:597–616 (2016).

2325 Spindler, F. The skull of *Tetraceratops insignis* (Synapsida, Sphenacodontia). *Palaeovertebrata* 43(1)-e1
2326 (2020).

2327 Stefanello, M. et al. Skull anatomy and phylogenetic assessment of a large specimen of Ecteniniidae
2328 (Eucynodontia; Probainognathia) from the Upper Triassic of southern Brazil. *Zootaxa* 4457:351–378
2329 (2018).

2330 Sues, H.-D. First record of the tritylodontid *Oligokyphus* (Synapsida) from the lower Jurassic of western
2331 North America. *Journal of Vertebrate Paleontology* 5:328–335 (1985).

2332 Sues, H.-D. & Jenkins, F. A. The postcranial skeleton of *Kayentatherium wellesi* from the Lower
2333 Jurassic Kayenta Formation of Arizona and the phylogenetic significance of postcranial features. In:
2334 Carrano, M. T., Gaudin, T.J., Blob, R.W. & Wible, J.R. (eds.). *Amniote Paleobiology: Perspectives on*
2335 *the Evolution of Mammals, Birds, and Reptiles*. University of Chicago Press, Chicago: 114–152 (2006).

2336 Suh, A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves.
2337 *Zoologica Scripta* 45:50–62 (2016).

2338 Sullivan, C. et al. Pelvic morphology of a tritylodontid (Synapsida: Eucynodontia) from the Lower
2339 Jurassic of China, and some functional and phylogenetic implications. *Comptes Rendus Palevol*
2340 12:505–518 (2013).

2341 Sumida, S. S. & Berman, D. S. The pelycosaurian (Amniota: Synapsida) assemblage from the Late
2342 Pennsylvanian Sangre de Cristo formation of central Colorado. *Annals of Carnegie Museum* 62:293–
2343 310 (1993).

2344 Sumida, S. S., Lombard, R. E., & Berman, D. S. Morphology of the atlas-axis complex of the late
2345 Paleozoic tetrapod suborders Diadectomorpha and Seymouriamorpha: *Philosophical Transactions of*
2346 *the Royal Society of London B* 336:259–273 (1992).

2347 Świło, M. Niedźwiedzki, G. & Sulej, T. Mammal-like tooth from the Upper Triassic of Poland. *Acta*
2348 *Palaeontologia Polonica* 59:815–820 (2014).

2349 Tattersall, G. J. et al. Seasonal reproductive endothermy in tegu lizards. *Science advances*,
2350 2(1):e1500951 (2016).

2351 Tohver, E. et al. Magnetostratigraphic constraints on the age of the lower Beaufort Group, western
2352 Karoo Basin, South Africa, and a critical analysis of existing U-Pb geochronological data.
2353 *Geochemistry, Geophysics, Geosystems* 3649–3665(2015).

2354 Trujillo, K. C. & Kowallis, B. J. Recalibrated legacy $40\text{Ar}/39\text{Ar}$ ages for the Upper Jurassic Morrison
2355 Formation, Western Interior, U.S.A. *Geology of the Intermountain West* 2:1–8 (2015).

2356 Trujillo, K. C. et al. A U/Pb age for the Mygatt-Moore Quarry, Upper Jurassic Morrison Formation,
2357 Mesa County, Colorado. *Volumina Jurassica* 12:107–114 (2014).

2358 Turner, A. H., Pritchard, A. C., & Matzke, N. J. Empirical and Bayesian approaches to fossil-only
2359 divergence times: a study across three reptile clades. *PLoS One* 12(2):e0169885 (2017).

2360 Turner, C. E. & Peterson, F. Biostratigraphy of dinosaurs in the Upper Jurassic Morrison Formation of
2361 the Western Interior, U.S.A. In Gillette, D.D. (ed.). *Vertebrate Paleontology in Utah*. Utah Geological
2362 Survey Miscellaneous Publication 99-1:77–114 (1999).

2363 van Tuinen, M. & Hadly, E. A. Error in estimation of rate and time inferred from the early amniote
2364 fossil record and avian molecular clocks. *Journal of Molecular Evolution* 59:267–276 (2004).

2365 Van den Brandt, M. J. & Abdala, F. Cranial morphology and phylogenetic analysis of *Cynosaurus*
2366 *suppostus* (Therapsida, Cynodontia) from the upper Permian of the Karoo Basin, South Africa.
2367 *Palaeontologia Africana* 52:201–221 (2018).

2368 Velazco, P. M., Buczek, A. J., & Novacek, M. J. Two new tritylodontids (Synapsida, Cynodontia,
2369 Mammaliamorpha from the Upper Jurassic, southwestern Mongolia. *American Museum Novitates*
2370 3874:1–35 (2017).

2371 Viglietti, P.A. et al. The *Daptocephalus* Assemblage Zone (Lopingian), South Africa: A proposed
2372 biostratigraphy based on a new compilation of stratigraphic ranges. *Journal of African Earth Sciences*
2373 113:153–164 (2016).

2374 Viglietti, P. A., Rubidge, B. S., & Smith, R. M. H. Revised lithostratigraphy of the upper Permian
2375 Balfour and Teekloof formations of the main Karoo Basin, South Africa. *South African Journal of*
2376 *Geology* 120:45–60 (2017).

2377 Viglietti, P. A., Smith, R. M. H., & Rubidge, B. S. Changing palaeoenvironments and tetrapod
2378 populations in the *Daptocephalus* Assemblage Zone (Karoo Basin, South Africa) indicate early onset
2379 of the Permo-Triassic mass extinction. *Journal of African Earth Sciences* 138:102–111 (2018a).

2380 Viglietti, P. A. et al. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo
2381 Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo
2382 foreland Basin. *Journal of African Earth Sciences* 143:59–66 (2018b).

2383 Viglietti, P. A. Biostratigraphy of the *Daptocephalus* Assemblage Zone (Beaufort Group, Karoo
2384 Supergroup), South Africa. *South African Journal of Geology* 123:191–206 (2020).

2385 Viglietti, P. A. et al. Biostratigraphy of the *Massospondylus* Assemblage Zone (Stormberg Group, Karoo
2386 Supergroup), South Africa. *South African Journal of Geology* 123:149–262 (2020).

2387 Wallace, R. V. S., Martínez, R. & Rowe, T. First record of a basal mammaliamorph from the early Late
2388 Triassic Ischigualasto Formation of Argentina. *PLoS ONE* 14(8):e0218791 (2019).

2389 Whiteside, D. I. et al. The Late Triassic and Early Jurassic fissure faunas from Bristol and South Wales:
2390 stratigraphy and setting. *Palaeontologia Polonica* 67:257–287 (2016).

2391 Yang, W. et al. Depositional environments and cyclo- and chronostratigraphy of uppermost
2392 Carboniferous–Triassic fluvial–lacustrine deposits, southern Bogda Mountains, NW China — a
2393 terrestrial paleoclimatic record of mid-latitude Pangea. *Global and Planetary Change* 73:15–113 (2010).

2394 Zhou, C.-F. et al. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations.
2395 *Nature* 500:163–167 (2013).