Support Table 1 Parameter results of spline function terms in single-pollutant generalized additive mixed

effects models

Variable edf Ref.df F P

PM; 5.58829 5.58829 1.928018 0.07646
PMas 5.65607 5.65607 2.778079 0.01304
PMio 5.79233 5.79233 2.845904 0.00593
Black carbon 1.00005 1.00005 29.316220 <0.00001
Organic matter 1.00011 1.00011 10.463220 0.00122
Sulfate 1.00009 1.00009 10.646610 0.00110
Nitrate 1.00000 1.00000 2.322000 0.12757
Ammonium 1.00004 1.00004 6.204612 0.01275

Notes: When analyzing repeated measurement data, if Y and X are nonlinear, curve fitting (usually a spline function)
needs to be used. The generalized additive mixed effects model is a combination of mixed effects and additive
models. It can not only introduce random effects, but also use curve fitting for repeated measurements of X
(independent variables) and other covariates, which can meet the above analysis requirements. The following
parameters are used to describe the statistical information of a smooth term in the spline function model (in this
example, ‘s(pol)’, pol is the pollutant). The following is a detailed explanation of these parameters:

1. edf (Effective Degrees of Freedom):

- This value represents the complexity of this smoothing term. It is a continuous value that represents the effective
number of model parameters. For a perfectly linear relationship, edf is close to 1; for more complex smooth
relationships, edf is larger.

2. Ref.df (Reference Degrees of Freedom):

- The reference degrees of freedom are used to calculate the distribution of the test statistic 'F'. This is usually
an integer, but in some complex models it can also be a decimal. This value is usually close to “edf".
3. F (F-statistic):

- This is the F statistic used to test whether the smoothing term is significant. The larger the F statistic, the
stronger the smoothing term's ability to explain the model.

4. P (p-value):
- This is the p-value corresponding to the F statistic that tests whether the smoothing term is significant. If the p-

value is less than a certain threshold (usually 0.05), we consider the smoothing term to be significant in the model.

Support Table 2 Parameter results of spline function terms in multi-pollution generalized additive mixed

effects model

Variable edf Ref.df F P

PM; 1.000 1.000 5.063 0.02450
PMas 5.898 5.898 5.155 <0.00001
PMio 1.000 1.000 3.433 0.06390
Black carbon 7.313 7.313 3.763 <0.00001
Organic matter 5.271 5.271 3.140 0.01370
Sulfate 1.000 1.000 1.913 0.16659
Nitrate 1.000 1.000 0.169 0.68116
Ammonium 3.999 3.999 1.717 0.14043

Notes: When analyzing repeated measurement data, if Y and X are nonlinear, curve fitting (usually a spline function)

needs to be used. The generalized additive mixed effects model is a combination of mixed effects and additive



models. It can not only introduce random effects, but also use curve fitting for repeated measurements of X
(independent variables) and other covariates, which can meet the above analysis requirements. The following
parameters are used to describe the statistical information of a smooth term in the spline function model (in this
example, ‘s(pol)’, pol is the pollutant). The following is a detailed explanation of these parameters:

1. edf (Effective Degrees of Freedom):

- This value represents the complexity of this smoothing term. It is a continuous value that represents the effective
number of model parameters. For a perfectly linear relationship, edf is close to 1; for more complex smooth
relationships, edf is larger.

2. Ref.df (Reference Degrees of Freedom):

- The reference degrees of freedom are used to calculate the distribution of the test statistic "F". This is usually
an integer, but in some complex models it can also be a decimal. This value is usually close to “edf .

3. F (F-statistic):

- This is the F statistic used to test whether the smoothing term is significant. The larger the F statistic, the
stronger the smoothing term's ability to explain the model.

4. P (p-value):
- This is the p-value corresponding to the F statistic that tests whether the smoothing term is significant. If the p-

value is less than a certain threshold (usually 0.05), we consider the smoothing term to be significant in the model.

Support Table 3 Information of CMIP6 models used in this study.
(Names of CMIP6 models, the associated institutions and countries, their ensemble members used in
this study (mostly rlilp1fl for CMIP6, with different ensembles labeled in bold), and unavailable

scenarios)

CMIP6 Model Country &Institute Resolution Ensemble

China, Chinese Spirit Weather Bureau, Beijing Weather Waiting 2.81°x2.81°;month rl llp 1f1

BCC-ESM1!

Center
C:ES'\/'Z.W,A\CC:I\/I2 America, Big Country Gas Research Center 0.90°x1.25°; month I‘lllp 111
EC-Earth3- European Weather Suits Alliances, Research Institutional and 3.00°x2.00% month  r1ilp1f1
AerChem?3?® High Performance Computing Center

United States, American Country Home Oceans and Atmosphere 1.00°%x1.25°; month rli lp 111

GFDL-ESM457

Authority Earth Objects Fluid Dynamics Laboratory

IPSL-CM5A2- 3.75°x1.88% month  1lilplfl

France, Leatherel Simon Laplace Academy

INCAS?

Japan, Tokyo University Academic, National Environment 2.81°x2.81%month  r1lilp1f2
MIROC-ES2| 10-13 Research Institute and Japan Ocean Earth Technology Graduate

School
MPI-ESM-1-2- 1.88°x1.88%month  r3ilp1f1(PMyp)
Germany, Max Planck Institute of Meteorology Institute

HAM4 & rlilplfl
MRI-ESM2-015.16 Japan, Meteorological Research Institute L13°x1.13%month  rlilp1fl
NorESM2- LM17’18 Norway, Norwegian Gas Waiting Center 1.90°x 2.50°; month rlllplﬂ

UK, Natural Environment Environmental Research Committee 1.25°% 1.88°;month l‘lilplfz

UKESM1- 0-L L1920

and the Met Office

Notes: Not every model contains PM1, PMa.s, PMio, black carbon, organic matter, sulfate, nitrate and ammonium.

Data source: https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/



Support Table 4 China’s population aged 45 and above under different scen arios in 2030 and 2050

Scenario Year Age Population (thousands)
SSP1 2030 45--49 100261.6
SSP1 2030 50--54 93699.3
SSP1 2030 55--59 114295.2
SSP1 2030 60--64 116772
SSP1 2030 65--69 91351.8
SSP1 2030 70--74 65171.2
SSP1 2030 75--79 54879.3
SSP1 2030 80--84 27543.5
SSP1 2030 85--89 11879.6
SSP1 2030 90--94 4496.9
SSP1 2030 95--99 1101.8
SSP1 2030 100+ 154.4
SSp2 2030 45--49 100104.4
SSp2 2030 50--54 93474.9
SSp2 2030 55--59 113827
SSp2 2030 60--64 115898
SSp2 2030 65--69 90071.9
SSp2 2030 70--74 63492.1
SSp2 2030 75--79 52432.9
SSp2 2030 80--84 25656
SSpP2 2030 85--89 10741.8
SSpP2 2030 90--94 3946.2
SSpP2 2030 95--99 947.8
SSpP2 2030 100+ 133
SSP3 2030 45--49 100050.4
SSP3 2030 50--54 93295.4
SSP3 2030 55--59 113363.4
SSP3 2030 60--64 114994.1
SSP3 2030 65--69 88730.9
SSP3 2030 70--74 61755.9
SSP3 2030 75--79 49986
SSP3 2030 80--84 23858
SSP3 2030 85--89 9720.5
SSP3 2030 90--94 3480.2
SSP3 2030 95--99 824.7
SSP3 2030 100+ 116.6
SSP1 2050 45--49 76597.3
SSP1 2050 50--54 78356.2

SSP1 2050 55--59 97086.4
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Support Figure 23 PMj predictions under different SSPs and different development models

6—.

£
1

~
1

Black carbon concentration ( pg/ m’ )

1 1 1 1
2020 2030 2040 2050
Time

sSSPl — SSP2 = SSP3

Support Figure 24 Black carbon predictions under different SSPs



~ ~
E] =
5 87 =
=y 2 6
i i
f . !
8 8 41
: §
2 g
17] w
w 17,
T T T T T T T T
2020 2030 2040 2050 2020 2030 2040 2050
Time Time
=
50
= 6+
i
= 44
S
=
£
2]
m
P
1721
wn
T T T T
2020 2030 2040 2050
Time
~— BCC-ESM1 ~— GFDL-ESM4 ~— MIROC-ES2L ~— MRI-ESM2-0 — UKESMI-0-LL

— EC-Earth3-AerChem —— IPSL-CM5A2-INCA —— MPI-ESM-1-2-HAM —— NorESM2-LM

Support Figure 25 Black carbon predictions under different SSPs and different development

models

=)
1

>
1

Ammonium concentration (pg/ o’ )
~N
1

Ll 1 1
2020 2030 2040 2050
Time

— S8SP1 —— S8SP2 — SSP3

Support Figure 26 Ammonium predictions under different SSPs



/\/\ /\/\/\/\/\/ \
ié S V\\/ ] — / o E \
= 67 - a \
£ £ \ A
E E o
g g N
g g \
8 S s \
g g \
RS E \
= = :
S 2 -~
g g .
< <
o o
& 2 4
17 — Y = w
©n 24 ~; i NS A Iz
T T T T T T T T
2020 2030 2040 2050 2020 2030 2040 2050
Time Time
ol &
o
2
g
£ =
g \
E 4 \
8
g
2
g
<
a e
g 21 %
T T T T
2020 2030 2040 2050
Time
~ EC-Earth3-AerChem —— GFDL-ESM4 — IPSL-CM5A2-INCA

Support Figure 27 Ammonium predictions under different SSPs and different development
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Support Figure 34 China's four major geographical regions (To scientifically reflect the
socio-economic development status of different regions in China and provide a basis for
formulating regional development policies, the Chinese government has divided the
country's economic regions into four major areas: the eastern, central, western, and
northeastern regions.)
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Support Figure 35 Changes in black carbon concentrations in four major geographical
regions of China under SSP1, SSP2 and SSP3 scenarios
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Support Figure 36 Changes in ammonium concentrations in four major geographical
regions of China under SSP1, SSP2 and SSP3 scenarios
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Support Figure 37 Changes in nitrate concentrations in four major geographical regions of
China under SSP1, SSP2 and SSP3 scenarios
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Support Figure 38 Changes in organic matter in four major geographical regions of China
under SSP1, SSP2 and SSP3 scenarios
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Support Figure 39 Changes in sulfate in four major geographical regions of China under
SSP1, SSP2 and SSP3 scenarios
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Support Figure 40 Changes in PM; in four major geographical regions of China under
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Support Figure 41 Changes in PM; s in four major geographical regions of China under
SSP1, SSP2 and SSP3 scenarios
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Support Figure 43 Comparison of the impact of aging and pollutant changes on cognition
under SSP1
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Support Figure 44 Comparison of the impact of aging and pollutant changes on cognition
under SSP2
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Support Figure 45 Comparison of the impact of aging and pollutant changes on cognition
under SSP3
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Support Figure 46 Comparison of the impact of aging and pollutant changes on cognition
under SSP1 in multi-pollutant model
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Support Figure 47 Comparison of the impact of aging and pollutant changes on cognition
under SSP2 in multi-pollutant model
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Support Figure 48 Comparison of the impact of aging and pollutant changes on cognition
under SSP3  in multi-pollutant model

Total Chnarls database (25,586)

@Missing age in first round (305)

25,281
@The age of the first round is < 45 years old (4,048)

21,233
(@Missing cognitive survey in first round (9,264)

11,969

@Missing cognitive survey in second round (3,427)
8,542

(®Missing cognitive survey in third round (1,507)

Total participants (7,035)

Support Figure 49 Inclusion and exclusion flow chart
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