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I. THEORETICAL ANALYSIS

A. General process of quantum metrology

The primary objective of quantum metrology is to precisely estimate unknown physical quantit-
ies by utilizing quantum resources, such as quantum entanglement. The general process of quantum
metrology includes the following steps: state preparation, parameter encoding, measurement, and
estimation. The probe state pg evolves under the given dynamics, which depend on the unknown
parameters & = (x1,- - ,Zy), resulting in the encoded state p(z). To extract information about the
parameters Z, we perform a set of positive operator-valued measures (POVMs), represented as {I1;},
on the state p(Z), obtaining a set of probability distributions P;(Z), where P;(&) is the probability
of obtaining the measurement result i. Finally, we construct the estimators Zest = (T1,,, """ » Treg)
based on the probabilities of the measurement outcomes. For multi-parameter quantum estimat-
ing, the performance of locally unbiased estimators is quantified by the covariance matrix, where
the jk-th element gives

[Cov(D)]jr = B [(Tjesy = 5) (Thew — T)] - (S1)

The estimation precision for multiple parameters is quantified by the sum of variances, which

corresponds to the sum of the diagonal terms of the covariance matrix. The covariance matrix is
lower bounded by

Cov(z) > %F(jl (S2)

which is known as the Cramér-Rao bound. Here n is the number of measurement repetitions, and

F¢ is the Fisher information matrix (FIM) with jk-th element calculated as follows:
_ 1 (0P(2) (0P(2)

The Cramér-Rao bound is achievable for a large number of repetitions by using the maximum

likelihood estimator (MLE). The quantum Cramér-Rao bound (QCRB) further constrains the

covariance matrix:

1 1
Cov(z) > HFC_l > —F,'. (S4)

n

Here Fy is the quantum Fisher information matrix (QFIM). For parameters encoded in pure states

|1z), Fo can be expressed as:
[FQla;z, = 4Re ((0j92]0k ) — (09 |¢Vs) (V2 |0k1z)) - (S5)

More specifically, consider a pure probe state |¢y) undergoes a unitary process U;, the encoded
state |¢z) = Uz

o). Define the generator of U; corresponding to unknown parameter x; as

By,

s =107 (95,Us) (56)
Then, the quantum Fisher information matrix in Eq.(S5) can be expressed in terms of the gener-

ators,

[FQ]ZL’JIIC = 2<¢0|{h177h$k}|¢0> - 4<¢0|h1’] |w0></‘/)0|hl’k |w0> (87)



Here {-, -} denotes the anti-commutator. According to QCRB, the precision of estimating multiple
parameters is lower bound by nTr(Cov(#)) > Tr(F5') > Tr(Fél). Hence, finding the maximal
QFIM and the optimal measurement that saturates the QCRB leads to the ultimate precision of
estimation. For multi-parameter quantum estimation, the necessary and sufficient condition for
saturating the quantum Cramér-Rao bound in pure states is the weak commutativity condition,
which is

Im [(0y,%3|02,%3)] = 0,Vz;, zp. (S8)

To achieve the best precision for estimating unknown parameters z, it is crucial to optimize
every step of the process. This includes optimizing the initial state, adding additional controls,
and performing the optimal measurement that saturates the quantum Cramér-Rao bound. In
the control-enhanced sequential scheme, the total system evolution is described by Uy = (U.Usz)",
where Uj; represents the system dynamics over encoding time 7', and U, denotes the control applied
after each encoding time 7. The optimal control strategy involves selecting U, = U;, as derived
in [1]. With the implementation of N cycles of optimal control, the quantum Fisher information
matrix becomes N 2FQ, reaching the Heisenberg limit. Here, Fy denotes the QFIM for N = 1
without control, as adding only one control at the end of evolution cannot change the QFIM. To
streamline the analysis, we examine the (maximal) QFIM for sensing strategies without control in
the following sections. For cases with optimal control, the QFIM can be obtained by multiplying
by N2.

B. Sensing of a remote vector field

We consider the estimation of three components of a remote vector field, described in spherical

coordinates (B, 0, ¢) as B = (B sin 6 cos ¢, B sin 6 sin ¢, B cos 0), instead of in Cartesian coordinates

B = (B, By, B,). Estimating the vector field components B = (B, By, B.,) thus corresponds to
simultaneously estimating the parameters & = (B,0,¢). For each sensor qubit at time T, the

U. = e—iE'O'T _ e—iBTn~a'
s = =

evolution can be represented by with n = (sin 6 cos ¢, sin 0 sin ¢, cos 6).

The generator for x; € {B,0, ¢} is given by

hB =CcpnNp - o

hg = cong - o (S9)
h¢ =CpNgy - O
with
cg =T, cg=sin(BT), c4=sin(BT)sind (S10)

np =n = (sinf cos ¢, sin O sin ¢, cos 9)
ng = cos(BT)ny — sin(BT)n, (S11)
ng = sin(BT)n; + cos(BT)ns



where n1 = Jgn = (cosf cos ¢, cosfsing, —sinf), ng = n x n; = (—sing,cosp,0). It is easy
to verify that m, mny, no are orthogonal to each other. There exists a unitary transformation

BT o\ o b 0
U, =¢e"2 ™% "2%¢7"2% guch that

ng-o = UTO'ZUTT, ng-o = UTamU:, ng o= UTUyUTT, (512)

Assume the initial probe state is [¢)g4), where the ancilla system is introduced. Then using Eq.(S7),
we obtain the QFIM as
T? - (Tr(pshp))®  —Tr(pshs) Tr(psho) —Tr(pshp) Tr(pshy)
Fo =4 | = Tr(pshp) Tr(pshe) sin*(BT) — (Tx(pshe))” —Tr(pshe) Tr(pshe) (513)
—Tr(pshp) Tr(pshg) — Tr(pshe) Tr(pshg)  sin®(BT)sin® 6 — (Tr(pshg))?
where ps = Tra(|tvsa)(sa|) denotes the reduced state by tracing out the ancilla system. The
maximal QFIM, denoted as Fox, is
T2 0 0
F5™ =4 0 sin?(BT) 0 : (S14)
0 0 sin®(BT) sin” 0
FG'** represents the upper limit of the QFIM under optimal conditions. This is because Foer —
Fg is always a positive semi-definite matrix, a property that signifies no other state can yield
a higher QFIM value. The maximal QFIM is achieved when choosing pg = %I , indicating that
the optimal initial state for maximizing the QFIM is a maximally entangled state, denoted as
[vsa) = % (|00) 4 |11)). The projective measurement in the Bell basis is the optimal measurement

that saturates the quantum Cramér-Rao bound, which is given as
Mo = [0 (@], Moy =[07) (@], Mg = [0 (. 2= |u) (e (s15)
where the Bell states are given by:

1 1

BT = \/5(|oo>+|11>), |®7) = ﬁ(\00>—|11>), 10
o) = % (lo1) + [10)), |¥-) = % (01) — 10)).
The probability of the measurement results in the Bell basis
Poo = Tr(p(B, 6, ) Moo) = cos®(BT)
Po1 = Tr(p(B, 0, ¢)Mo;) = sin®(BT) cos? 0 (s17)
Pyo = Tr(p(B, 0, ¢) Myg) = sin®(BT) sin? 0 cos® ¢
Py = Tr(p(B, 0, ¢)My1) = sin?(BT) sin? § sin” ¢

where p(B,0,¢) = (Us @ I)|1hsa) (54| (U ® I) is density matrix for the evolved state. Based on
the probability distribution, by using Eq.(S3), it is straightforward to verify the classical Fisher
information matrix equals the quantum Fisher information matrix, thereby saturating the quantum

Cramér-Rao bound. The estimated precision limits for vector components are given by:

5B, > L sz > 1 L

— R 7 . S— S18
est = 47172 st = 45in?(BT) Pest 2 4sin®(BT) sin? 0 (818)
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Following the error propagation formula, we calculate:

0By, = sinf cos ¢ Begt + B c0s 0 cos ¢p00est, — B sin 0 sin ¢pddest
0By, = sinfsin ¢pdBegi + B cos 0 sin ¢p0beg, + B sin 6 cos ¢pddest (519)
0B, . = co800Best — B sin 000

Zest

The summation of squared deviations gives the precision limits for estimating three components
of a vector field:
6B92:est + 5B§est + 5B§est = 6B2

2+ B200%, + B%sin® 0502,

B? (S20)
>
~4T?  2sin*(BT)

C. Sensing of the gradients between vector fields

In this section, we consider the estimation of the gradients between two remote vector fields,
expressed as VB =B, — By = (VB,,VB,,VB,). For each sensor qubit, the Hamiltonian Hj is
given by H; = §j~o' = Bj,0,+Bjyoy+Bj.0., where Ej = (Bjs, Bjy, Bj.) represents the vector field
components and o = (0, 0y,0,) denotes the spin vector. Alternatively, in spherical coordinates,
the Hamiltonian is represented as H; = Bjn; - o, where n; = (sin 6, cos ¢;,sin ; sin ¢;, cos 8;) and

B; = \/ szx + BJQ.y + BJQ.Z represents the magnitude of the vector field. The evolution at time 7" can

be represented by Us; = eiByoT — o=iBjn;-oT fo, j=1,2.

We evaluate the precision of two strategies for estimating vector field gradients. The first
strategy employs non-local entanglement, directly estimating the vector field gradient by lever-
aging entanglement across the sensor network. The second uses local entanglement, measuring each
vector field independently at the two locations and then calculating the gradient. Our compar-
ison highlights the precision benefits of distributed quantum sensing, with non-local entanglement

offering distinct advantages for accurate gradient estimation.

1. Non-local entanglement

Utilizing non-local entanglement enables the direct and simultaneous estimation of spatial gradi-
ents, potentially giving higher precision. In this approach, we introduce a 4-qubit non-local en-
tangled state as the probe state, |¥g) = %(|0011> —[1100)), to directly estimate gradients along
three directions. The first two qubits and the last two qubits are sent to two separate sensor modules
(module B and C in the main text), respectively. The total evolution of the dynamics is expressed as
Us = Us1 @Ug1 ®@Uso®@U2, which gives the evolved state as Us|Wy), containing the information of the
spatial gradients. Denote the sum of two vector fields as S B = B) + By = (3. By, 3. By,>" B.).
The components of the vector field can then be rewritten as

_ 2Byt VB,
9 )

B,—-VB
By, By, = %7 for p € {x,y, z}. (S21)



To effectively estimate the gradients, denoted as VB , it is also necessary to acquire information
about the sum of the vector fields, denoted here as $° B. This information is crucial for adaptively
implementing control strategies. Such control strategies essentially reduce the problem of estim-
ating general gradients VB to estimating VB = (0,0,0), indicating By = By = B. This can be
realized by adding compensation to the vector fields if the gradients are non-zero. Therefore, we
benchmark the performance of our estimation protocol at zero-gradient, and the comparison of
different strategies will also be made under this assumption.

Under the dynamics governed by Us, the quantum Fisher information matrix for simultaneously

estimating & = (Vg, > é) is given by
F_ 0
Fo - ( ) , (522)
0 F,

where this matrix is block-diagonal,with F_ and F; representing the QFIM for estimating VB =
(VB,,VB,,VB.) and 3. B = (3 B,, Y. B,, 3. B.), respectively, which are given by

(Folvs,ve, [Folvs,vs, [Fqlvs,vs.
F_=|[Fglvs,vB, [FQlvs,vs, [Fglvs,vaB. |- (S23)

[Folvs,vs. [Folvs,vs. [Folvs.va.

with

4
[FolvB, v, =51 (B2T*(B® + 3B2) + sin®(BT)(B; + B? + 6B, B, B.T + 3B, sin’(BT)))

3B.B. sin(2BT)
t— B
[FQlve,vE, :% (BoT*(B® + 3B2) +sin®(BT) (B2 + B? — 6B, B, B.T + 3B2sin®(BT)))

(-4BBy sin®(BT) + B, B.(—4BT + sin(2BT)),

3By B. sin(2BT)
B

4 :

[Folvp.vp. =57 (BXT*(B® + 3B2) + sin’(BT)(B; + By))

% (AB(B + B2)B2T + (B2 + B2)?sin(2BT)) ,
(S24)
[Folvs.va, :% (B.B,T?(B® + 3B?) — sin®(BT)(4B. B, + 3B.T(B} — B})))
3sin(2BT)
BG
4B, 2/ 2 2 . 2
= g1 (BT*(B? +3B%) — sin (BT)(B; — 3B, B.T))

3sin(2BT)
+ _ 7

(4BB, sin®(BT) + B, B.(—4BT + sin(2BT))

(2BB. sin*(BT)(B2 — B}) + B.B,(-4BB-T + (B? + B?)sin(2BT))),

[FQlvB.vE.

(2BB, sin*(BT)(B: + B}) + B.B-(2BT(B* — 2B2) — (B® — B?)sin(2BT))) ,

B6
4AB. ,
[Folvs, s, =7 (ByT*(B + 3B2) — sin® (BT)(B, + 3B, B.T))
- % (2BB. sin®(BT)(B; + By) — By B:(2BT(B* — 2B%) — (B* — BY)sin(2BT))) ,
and

[Fols B,y B, [Fols B,y B, [FQly B, v B.
Fy = [Folsb.xB, Folss, s, Folse,sb. |- (525)
[Fols B, s B. [Fols B, 8. [FQly B. v B.

(@)



with
4 272 2 2 .2

[Fols . s B =z (B:T*(B; + B,) + B.sin®(BT)(B. — 2B.B,T))

sin(2BT)

T

4 .

[Fals 5,55, =57 (B2T*(BZ + B}) + B.sin®*(BT)(B. + 2B, B,T))

sin(2BT)

T g

4 :

[Fels B. 5 B. :ﬁ(Bi + By)(BZT? + sin®(BT))

n sin(2BT)

Bﬁ
4T .
[Fols 5. 25, =5 (B.B,T (B + B;) + B.sin®(BT)(B} — B}))

+ sin(2BT)

B6
4B, 2,152 2 .2
(Fals: 5. 5.5, =2 (B,T*(B? + BY) — sin*(BT)(B, + B,B.T))

_ sin(2BT)

BG
4Bz 2 2 2 .2
[FQly B,y B, = B (ByT*(B; + B,) — sin”(BT)(By — B, B:T))

sin(2BT)
.

Since the QFIM takes a block diagonal form, the estimation of the sum vector Zé does not

(ABB2B2T + 4BB, By B. sin’(BT) + (B*B; — B2B?)sin(2BT)) ,
(ABB.B:T — 4BB, B, B. sin®(BT) + (B*B. — B, B?)sin(2BT)),
(B2 + B)) (ABB2T + (B> + B})sin(2BT)) 26)

(4BB.ByB:T — 2BB. sin®(BT)(B — B.) — B, B, sin(2BT)(B” + B?)) ,

(2BB.B.T(B* — 2B2) + (B2 + B}) (2BBy sin’(BT) — B, B. sin(2BT))),

(2BB,B.T(B* — 2B?) — (B2 + B;) (2BB, sin®(BT) + B, B. sin(2BT))) .

influence the precision of estimating the gradients VB , which can be expressed as:

4B? — 3B? N 5B? + 3B2
168272 16sin*(BT)’

(5VB<75est )2 + (6VB?/est )2 + (5VBzest )2 Z Tr (F—_l) = (827)

where B = /B2 + B2+ B2. We can verify that the weak commutativity condition in Eq.(S8)
is satisfied, indicating the existence of a set of POVM that saturates the QCRB, achieving this
precision.

For easier experimental realization, we consider performing local separable measurements on
each sensor module (B and C). Specifically, one can choose the projective measurement in Bell

basis on each sensor module as follows:
My, = |(I)+> <(I)+" Iy, = |(I)7> <q>7|7 Iy, = |\Il+> <\Ij+|7 Iy, = |\Ili> <\I’7|7 (528)

where X € {B,C} denoted the sensor module and the Bell states are given in Eq.(516). This
construction forms 16 measurement basis 1y = Ilg, ® ll¢;, Vi,j € {00,01, 10,11}, satisfying
> k{0000, 1111} e = 1. The probability distribution of the measurement outcome under {IIj}
I |¥;) for k € {0000,0001,---,1111}, where |¥;) = Ug|Wy) is the evolved state.
For certain measurement outcomes, such as {0011,0111,1011,1100,1101,1110,1111}, P = 0 re-
gardless of the real values of VB,,VB,, VB,, indicating no information about the parameters can

be obtained from these outcomes. In contrast, for k£ € {0000,0101,1010}, P, = 0 specifically at

gives P, = (U;

the zero-gradient, where VB = (0,0,0). Even in this scenario, where the probability distribu-
tion equals zero at specific values, the probability distribution still contains implicit parameter

information.



The classical Fisher information matrix (CFIM) depends on the derivative of P with respect
to @i, x; € {VB;,VBy,VB.,> B;,> By,> B.}, calculated as follows:

1 (9Pk apk
chac; Z <8xz>(3xj>
(O (V3 |11 V3)) (Ox; (Ve [Tk |Vz))
) (529

Z
(0203 IHk|‘I’ )) Re ((9; W |11, | Vz))

where k£ € {0000, 0001, 0010,0100,0101, 0110, 1000, 1001, 1010}. Specifically, at VB, =0,VB, =0
and VB, = 0, P, = (U;|II;|¥;) = 0, Re ((0z;U3|I|¥;)) = 0 for k € {0000,0101,1010}. In
these cases, the term is of the form % which needs to be calculated via limit. For these term,
[FClase; can be calculated when the parameters VB,,VB, and VB, are displaced by an ar-
bitrary small disturbance, replacing |W;) with [Us) + S0, d2;|0,Vs), where 1 = VB,, 9 =
VBy,x3 = VB,,z4 = Y By, x5 = Y By, x6 = »_ B,. Thus, it can be verified that for Vz;,z; €
{VB.,VBy,VB;,5 By, By, > B:},

301 Doty 40w, 61, Re (0 W3 [Ty, |01, Uz)) Re (D, U3 I, [0 05))

[FC]a:iwj = Z

Ky lezl Zlg:l oy, 0, <8$11\I/$|Hk1‘8$l2 i>
- (W[, |s)
= [FQ]ll/’iJ/’j

where k1 € {0000,0101,1010} and ko € {0001,0010,0100,0110,1000,1001}. This demonstrates
that the QCRB can be saturated by performing local projective measurement in the Bell basis on

each sensor module, indicating the precision in Eq.(S27) is achievable.

Here, we also provide the precision achievable in estimating two components of gradients, spe-
cifically VB, and VB, using the same non-local entangled probe state |¥y). The quantum Fisher
information matrix for simultaneously estimating VB, VB,, > B, By also takes the block di-
agonal form in Eq.(522), with F_ and F given by

_ (Felvs.vs, [Folve,vs, _ (FolsB. B, [Fols .8,
Fo= , P, = : (S31)
[Folvs.vs, [Folvs,vs, [Fols B,y 8, [Foly B, 58,



where

_4B2T? N B2 (16sin*(BT) — 3sin*(2BT))

[Folvs. v, 52 B ;
4B2T?  BZ(16sin*(BT) — 3sin®(2BT))
[Folv,vB, = T 5 ,
4B,B,T®> B.B, (16sin*(BT) — 3sin*(2BT))
Folve,ve, =—p5— - B ’ (S32)
4B2T?  B2sin®*(2BT)
[FQ]Z B, > By — B2 B )
4B2T*  B2sin?(2BT)
[Foly B, s 8, = éz + B4 J
ol _4B,B,T* BB, sin?(2BT)
QILB. B, =7 p2 BA ;

with B= /B2 + Bf/. The quantum Cramér-Rao bound can be saturated by performing projective
measurement in Bell basis on each sensor module, where the proof of optimal measurement is similar
to the three-component case and is omitted for brevity. Hence, the precision of estimating gradients
is -

1
VB2 VB > '
Tew T + 4 (1 + 351n2(BT)) sin?(BT)

Yest — 4T2

(S33)

2. Local entanglement

To estimate the gradients between remote vector fields, a straightforward approach is to first
estimate each vector field independently, then calculate the gradient. In this method, we use a
2-qubit locally entangled state to estimate the three components of each vector field. The unitary
dynamics governing this system is represented by U, ® Uy, where U, = e *BT™% The analysis of

precision limits follows [2]. The generator corresponding to the parameter z; € {B, 0, ¢} is

Goy =i (Ul @ U]) (00,Us @ U + Uy @ 8,,U5)
:hxj ®I2+12®hzj

(S34)

where h; is given in Eq.(S9). By Eq.(S7), the diagonal elements of QFIM can be expressed as the

variance of the generators G,
(FQlaye, = 4(A%Ga,) =4 ((G2) — (Ga)?) 4 (835)
where the term <G§j> and (G,;)? can be expanded as

(G2)=(hs, @I) + (T @ h2) + 2(hy; ® ha,) = 265 + 265 Taa,

(S36)
(Gay)? =3 (rD 413

Here 74,4, = Tr[pss(na, - o) ® (ng, - o)], where pgg is the density matrix for the probe state and
n,, are detailed in Eq.(S11). rg.) = Tr[pg)nxj - o] and rg) = Tr[pg)nrj - o], where pgl) and p(SQ)

are the reduced matrices of pgg the first and second qubits.



For each parameter z; € {B,0, ¢}, we have (53:?6 > m, thus

st

wB(SBit + weéeit + w¢6¢§st

1 wp Wo . We
AQG A2G9> (A2Gy)
wp/T? we/ sin?(BT) wgy/ sin? (BT) sin 62
M) o M@
2+2TBB— ?”B +7’B> 2+2r99—(r9 +ry ) 2+2r¢¢—(r¢ +r¢)
1 wpg/T? wg/ sin?(BT)  wg/sin®(BT)sin 2 (S37)
4 2+27"BB 2+ 2rgg 2421y
2
VWEB VU
( + |sm BT)| + | sin(BT) sm@\)
- 4(2+27‘BB +2+27"09 +2+27”¢¢)
2
N NS
( =+ ‘SIH(BT)‘ + |sn1(BT;/)smO|>
32

where the inequality a) follows from the Cauchy-Schwarz inequality, and the inequality b) uses the
fact that rpp + 199 + 744 < 1. To prove this fact, we write a general two-qubit state p as
I4—|—Z7~l UZ®I+ZT(2)I®U +Z7“lpa;®ap} (S38)
p L,p
where I,p € {x,y,z}. Let pss = (U, ® UT),O(U;r ® UTT), by using the properties in Eq.(S12),
we have 15, = Tr[p(oy ® 02)] = Trlpgs (ne-o@ng-0o)] = rep, ryy = Tr[p(oy ® oy)] =
Trpss (ng -0 @ng-0)] = 149 and r,, = Tr[p(o, ® 0.)] = Tr[pss(np-o @np-0o)| = rpp.
Since the density matrix p is always positive semi-definite, let rl( ) = =0, 7"(2) =0forVi,p € {z,y, 2z},
and 7, = 0 for [ # ¢, we have all the eigenvalues of p are non-negative, which gives the following

constraints:
Tox + Tyy T 722 <1
T2z = Tgx — Tyy S 1
(S39)
Tyy — Tae — Tzz <1
Tox — Tyy — Tzz <1

The first inequality is equivalent to rpp + rgg + 744 < 1. Hence, the lower bound on the figure of

merit can be obtained as:

(7" + oy + cémy e\)2
w8 Blst + wpdfs, +wedpisy > 35 (540)
which can be saturated when
3YWBs __ VWe Ve
TOpt - T | sin(BT)| | sin(BT) sin 0|
N SN S
| sin(BT)] | sin(BT) sin 6|
5 m _ V@E _ w5
TOpt Y sin(BT)| T | sin(BT) sin 0| (841)
00— s Nan Ne
T + | sin(BT)] + | sin(BT) sin 0|
g Vs Juw
opt [sin(BT)sin0] T | sin(BT)]|
o6 = VOB Yy Vo
| sin(BT)] | sin(BT) sin 0|

10



and rg) + rg) = rél) + rém = r((bl) + rf) = 0. The lower bound can be saturated when the reduced

two-qubit state takes the form:

p= I4+7"BBnB oc@np-o+ry tng -0 @my - 0'+7“¢¢n¢ o®ng- ol (542)

n
indicating that this bound is unachievable without the introduction of an ancillary system. From
the error propagation formula in Eq.(S20), we set wp = 1,wp = B* w, = B?sin 20, then the
precision limits of estimating three components of a vector field is

1 /1 2B 2
B? 32 B? — ) . 4
6 Test + 5 Y + 6 Zest — 32 ( + SIH(BT)|) (S 3)

Without loss of generality, we set By = By = B’) the precision limit for estimating gradients
VB = B, — By = (VB,,VB,,VB,) is
SVB2_ +0VB2  +6VB2 > 116 (1 + |SH12£T)|)2. (S44)
It is important to note that achieving the ultimate precision as outlined in Eq.(S44) requires
the use of an ancillary system, making this bound unattainable in practice. To ensure a fair
comparison, we introduce a reference precision using maximally entangled states, represented by
the probe state |¢) = %(|OO) + [11)). The QFIM for estimating & = {B,0,¢} by maximally
entangled states is
[Folp [Folpe [Folse
Fo=| [Folso [Foleo [FQlos (545)
[Folss [Folos [Folss
with
[Folpp =4T (3 4 cos(20) + 2 cos(2¢) sin” ),
[Foleo =2sin®*(BT) (3 4 3 cos(2BT) cos(2) + 2sin® ¢ + cos®(BT) (2 — 4 cos(20) sin® ¢)
+4 cos 0sin(2BT) sin(2¢)) ,
[Folee =2sin®(BT) sin® 0 (2 + 2sin®(BT) + 2sin” 6 + 2sin® ¢ + cos(2BT) (cos(26) — 3 cos(2¢))
+2sin?(BT) cos(26) cos(2¢) — 4sin(2BT) cos § sin(2¢)) ,
[Folpe =4AT (2sin®(BT) sin 0sin(2¢) — sin(2BT) sin(26) sin® ¢)
[Folpe = — 16T sin(BT) sin® §sin ¢ (cos(BT) cos ¢ + sin(BT) cos fsin ¢) ,
[Flop =2sin®(BT) (sin(2BT) sin 6 ((3 + cos 20) cos(2¢) + 2sin® #) — 2 cos(2BT) sin(26) sin(2¢)) ,

(546)

which is a singular matrix. This means we cannot simultaneously estimate three components of the
vector fields. Instead, we consider the optimal precision of estimating three parameters respectively,

expressed as (5:63 L2 ﬁ for x; € {B,0, ¢}, then we have the total precision for estimating
Tje;

three components of a vector field as
+ B%662,,

§B. . +0B; +0B:  =0BZ, + BZ%sin? 06¢?

1 B2 B2sin? 0 (547)
> + + .
[Folee  [FQles  [FQles

est
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Thereby the corresponding precision for estimating the gradients is

282 2B2sin% 0

Foloo  [Foles (548)

2
2 2 2 >
OVB;, +0VBje +0VBL, 2 G 1

However, this precision is unachievable, which is a reference precision that equals the summation
of the optimal precision for single-parameter estimation.
Now we turn the focus on estimating two components of gradients, & = (VB,;,VB,). By a

similar analysis as Eq.(S37), we have

1 wR w
6B? 562 >- d
wpdBj,  +wedd = (<A2G3> + (A2G)

1 wp/T? wgy/ sin?(BT)

- 2 2
4 2+ 2rpp — (7"591) + 7'?) 24 2rpp — (r((;) + r(f)) (S49)
1 [ wg/T? wy/ sin®(BT)

>— +

T4\ 2+ 2rpgp 2+2T¢¢

1 wp We
>a) - =4+ —
= 4 <4T2 4sin2(BT))
The inequality a) is obtained by using the properties in Eq.(S39), which gives rpp < 1 and

r¢s < 1. Moreover, 199 > —1 and by subtitude rgp = 144 = 1 into constraints in Eq.(539) gives

the condition 799 < —1. Hence, the inequality b) is saturated when

rgh =1, bt =1, =1, (S50)

and rg) + rg) = 7‘((;) + r(f) = 0. The corresponding optimal probe state is

1
p:1[I4+n3-o-®nB-a—n9-0®n9~a+n¢-a®n¢~a]:|d)opt><1/10pt| (S51)

Here 6 = T and [top) = % (|+5)®% — |-B)®?), where |+p) are the eigenstates of the generator
hp corresponding to the maximal and minimal eigenvalues respectively. With the optimal probe

state, we can obtain the maximal QFIM for estimating & = {B, ¢} as

(16T 0
Fg™ = -y (S52)
0 16sin“(BT)

Measurement in the Bell basis, as detailed in Eq.(S15), is the optimal measurement strategy that
saturates the quantum Cramér-Rao bound. Hence, the bound in Eq.(S49) is achievable. By setting
wp =1 and wy = B2, the corresponding precision of estimating two components of the vector field

is

1 B?
§B2 6B2  =0BZy + B*5¢iy > S53
Test + Yest est + (best - 16T2 + 16 sinz(BT)7 ( )
thereby the ultimate precision for estimating the gradients under this strategy is
1 B?
§VB;_, +0VB; (S54)

>
Yest — 8T2 8 Sin2 (BT)
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It is worth mentioning that the optimal probe state in Eq.(S51) depends on the unknown parameters
B and ¢. However, the values of these parameters generally are not known as a priory. Instead,
we must rely on estimated values, denoted as Best and ¢est, which need to be adaptively updated
in practice.

For easier experiment implementation, here, we also provide the precision of estimating gradient
by using the maximally entangled state |¢)) = % (|00) 4 |11)). The QFIM for estimating & =
{B, ¢} by using maximally entangled state is

( 1672 cos? ¢ —4T sin(2BT) sin(2¢) )
Fo=

S55
—4T sin(2BT) sin(2¢) 7 — 8 cos(2BT) + 2 cos(4BT) cos? ¢ — cos(2¢) (855)

The quantum Cramér-Rao bound can be saturated by using the projective measurement in Bell
basis, as described in Eq.(S15). Hence, we have

1 —cos?(BT) cos® ¢
1672 sin?(BT) cos? ¢’

1
~ 16sin*(BT)

§BZ, = [Cov(®)n > [Fy'n
(S56)
502 = [Cov(E)]az > [Fél]zz

Then the precision of estimating two components of the vector field by maximally entangled states

is

1 1 — cos?(BT) cos? ¢ B?
6B2  +06B.  =6BX, + B*¢2, > (
Test Yest est sy = 16sin?(BT) T2 cos? ¢ sin?(BT)
, ) ) ) (S57)
B 1 (B — cos*(BT) Bz N B )
~ 16sin?(BT) 1282 sin?(BT) /)
Similarly, the precision for estimating the gradients by maximally entangled states is
1 B? — cos*(BT)B? B?
§VB2  +6VB. > ( z ) . S58
Test Yest = 8sin?(BT) B3 sin®(BT) 5

8. Strategy comparison

In addition to the two gradient-sensing approaches discussed above—direct gradient estimation
using non-local entanglement (NLE) and a two-step approach that first estimates each vector
field with local entanglement (LE) separately before calculating the gradient—we also consider
an alternative approach based on the remote sensing (RS) described in the first section. In this
approach, the remote magnetic fields at each location are estimated independently, with the central
module serving as an ancilla, and the gradient is calculated from the separate field estimates. For
a more comprehensive comparison, we also present the precision of gradient estimation achievable
with this alternative strategy. The comparison is made under the condition that the resource
allocation is identical, with each sensor module containing two sensors. In the following tables, we
list the precision achieved by various strategies for estimating gradients in two and three directions,
respectively.

In the main text, we have provided a detailed theoretical and experimental comparison of

various strategies for estimating a two-component gradient. For completeness, Figure S1 gives the
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Strategy Initial state Precision Optimality | Achievability
- 1B—3B2 5824382
NLE |7 (|0011) — [1100)) 168777 " 16sin*(BT) N A
1 1 5
RS | LU0 T11) | gkt pbom Y :
Ko | bl | Y [N
LE AL 16 \T | sin(BT)]|
: 3 282 2BZ%sin? 0
-+ (j00) + |11 + N N
\/E (| > | >) [FQ}BB [FQ]QF? [FQ]QW’

Table S1. The precision for estimating gradients along x,y and z directions.

Strategy Initial state Precision Optimality | Achievability
1 1 B
NLE 7 (|0011) — |1100)) oz + (173502 (BT)) s (BT) N Y
I 1 B
RS 25 (100) +11)) T ¥ e Y Y
2
LE % (|+B>®2 B ‘7B>®2> 8% + SSing(BT) Y Y
1 1 B2 —cos?>(BT)B2 B2
V2 (100) +[11)) 8sin?(BT) < T2B2 + sinZ(BT)> N Y

Table S2. The precision for estimating gradients along x and y directions.

comparison of strategies for estimating a three-component gradient. To ensure a fair comparison,

we include the precision limit of Strategy LE utilizing maximally entangled states.

employing the theoretically unachievable lower bound of Strategy LE, as derived in Eq.(544), may
not seem fair, it still highlights the enhanced precision of Strategy NLE across certain parameter
value ranges. For example, at B = 1 and 0§ = 7/2, Strategy NLE demonstrates higher precision
than Strategy LE during short encoding times 7. Notably, despite the initial state of Strategy
NLE not being optimal, and hence not achieving the highest possible precision, it still surpasses
the best precision achievable by strategies without non-local entanglement. This emphasizes the

significant advantages of distributed quantum sensing, demonstrating its superiority in achieving

enhanced precision.
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Fig. S1. Comparing different strategies for estimating a 3-component gradient. The z-component
and y-component of the gradient are set of equivalent proportions. The stars mark the parameter set:
B = 0.5, T = 0.57; the diamonds mark the parameter set: B =1, T = 1.57. a, The advantage of NLE at
6 = w/4 when B and T are varying. b, The precision limits of three strategies around B = 0.5, T = 0.57.
Left: 6 and T are fixed, B is varying from 0.05 to 1.25. Middle: B and T are fixed, B, is varying from —0.5
to 0.5. Right: B and 0 are fixed, T is varying from 0.17 to 1.97. ¢, The precision limits of three strategies
around B = 1, T = 1.57. Left: 6 and T are fixed, B is varying from 0.05 to 1.25. Middle: B and T are
fixed, B, is varying from —0.9 to 0.9. Right: B and 6 are fixed, T is varying from 0.17 to 1.97. d, The
advantage of NLE at B = 1 when B, and T are varying. In a and d, the left panels exhibit the gain of
NLE over RS; the middle panels exhibit the gain of NLE over LE; the right panels exhibit the product of
the gain of NLE over RS and the gain of NLE over LE.
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Fig. S2. Strategies comparison for gradient estimation of a 2-component vector field. a-c,
Schematic diagrams of different strategies: (a) Distributed sensing with non-local entanglement (NLE);
(b) Remote sensing (RS) with an ancilla qubit; (¢) Sensing with local entanglement (LE). d, Parameter
range where NLE outperforms RS and LE. The minimum precision gain of NLE over RS and LE(B) across
different B and T values, is calculated by their theoretical precision. e-f, Comparison of the precision
(Xicfey §2VB,..,) of the three strategies. (e) Precision versus B for the three strategies at T = 1.57 and
N = 1. (f) Impact of T on estimation precision at B =1 and N = 1. (g) Estimation precision versus N for
the three strategies at T' = 1.5m and B = 1. The solid and dashed curves: the theoretical precision bound.
LE(B): local entanglement strategy using Bell state as the probe state, and Bell measurement. LE(O): local
entanglement strategy using the optimal probe state and measurement.
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II. EXPERIMENTAL IMPLEMENTATION

A. Device information
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Fig. S3. The experimental setup. a, The microwave control and measurement system built for this
experiment. b, The schematic diagram of the room-temperature electronics chassis, cryogenic wiring and
superconducting quantum network inside of the dilution refrigerator. Right panel: the legend of the devices.

We implement the distributed quantum metrology experiment utilizing a modular quantum
computing platform composed of five superconducting quantum chips, each integrated with four
qubits. The inter-chip connectivity is facilitated by high-quality aluminum superconducting coaxial
cables, where a gmon coupler is positioned between the qubits engaged in communication and the
cable, enabling tunable coupling strength. Furthermore, an impedance transformer is designed on
chip to significantly mitigate the stray loss on the communication channels [3]. In Fig. S3, we show
the comprehensive structure of the experimental setup. The distributed quantum processors are
sheltered in the 10 mK environment, nestled beneath the mixing chamber of a dilution refrigerator.
The microwave cables connecting the superconducting quantum chips serve as the conduit for sig-
nal transmission and reception between the quantum processors (see the bottom part of the middle

panel) and the customized integrated electronic channels (see the left photograph). The electron-
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ics is primarily composed of digital-to-analog converters (DAC) and analog-to-digital converters
(ADC), which orchestrate the generation, manipulation and readout of quantum control signals.
The generation of XY control signals (single-qubit rotation) is facilitated by IQ mixing of the MHz
output of the DACs and the GHz microwave carrier from a local oscillator (LO). Concurrently,
the Z control signals (qubit frequency modulation) originate from DC and pulse signals output of
the DACs. The XY signals and Z signals belonging to each qubit are combined with a custom-
ized diplexer in room temperature. The readout pulses are generated by another set of DACs,
LO and IQ mixers, these devices up-convert the probe photons to match the readout resonator
frequencies, conversely, the emitted photonic signals from the readout resonators are amplified and
down-converted, finally being sampled by the ADCs, completing the readout cycle and providing a
digital record of the measurement data. For higher control and readout quality, we deploy multiple
filters across different temperature zones within the experimental setup (see the middle panel), the

legends detailing the components of these stages are shown in the adjacent panel on the right.

Node A B C

Qubit Q1 | Q2 | Qs | Qs | Q5 | Qs
widle/2m (GHz) | 4.551| 5.019| 4.477| 4.959| 4.937| 4.393
Wread/2m (GHz) |5.629 | 5.692 | 5.686 | 5.627 | 5.688 | 5.621
Ec/2m (MHz) |—-212|—-200|—210 | —225 | —210 | —229

Foo 0.94 [ 0.94 | 0.88 | 0.86 | 0.92 | 0.90

Fi 0.91 [ 0.90 | 0.87 | 0.83 | 0.88 | 0.89

Ty (us) 102 | 184 | 26.8 | 14.3 | 25.3 | 26.2

Tor (1s) 1.52 | 4.77 | 242 | 4.72 | 3.58 | 4.02

Tor (1s) 5.49 |10.95|11.49|15.18 | 15.57 | 14.45

SQG RB fid(%)] 99.96 | 99.91 | 99.95 | 99.47 [ 99.80 [ 99.75
CZ XEB fid(%)| 9850 97.30 98.40

Table S3. Device information

The experiment in this work involves three distributed quantum processors, each containing
two qubits. We list the basic information of these six qubits in Table S3. All qubits are designed
to be operated across a frequency range of 4.1 ~ 5.1 GHz, and idled at staggered frequencies.
The resonator frequencies are also staggered for independent readout. The anharmonicity F¢ is a
parameter determined by the capacitance of each qubit, it is instrumental in shaping the interaction
essential for the construction of CZ gates. Fyy and Fi; are the state preparation and measurement
(SPAM) fidelity for |0) and |1). 77 parameter denotes the energy relaxation time of each qubit,
Tor and Thg represent the dephasing time characterized by Ramsey experiment and spin echo

experiment, respectively.
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B. Gate performance

We calibrate the CZ gates with a standard protocol[4]. We obtain CZ gate pulse with 36 ns
plateau and 10 ns flattop rising and falling edges, and this gate is benchmarked using cross-entropy
benchmarking (XEB) experiment [5], the fidelity turns out to be 98.1% in average.

The state transfer operation is calibrated by vacuum Rabi experiments between the inter-chip
cable and the communication qubit to synchronize the frequencies of two qubits connecting on
either side of the cable, aligning them to resonance. Concurrently, we tune the pulses applied on
the tunable couplers to achieve an optimal coupling strength, reaching a low reflection loss[3]. The
averaged transferred state fidelity measured by quantum state tomography is ~ 98.4%.

The control-signal sequence is implemented by gate sets in U(3) formalism: Us(a,3,A) =
R.(B)Rx(m/2)R,(a) Ry(—m/2)R.(N). The gate set consists of three Z gates with three independent
angles (A, a, #). These Z gates are interleaved with an X/2 gate and a —X /2 gate. The single qubit
gates (SQG) are benchmarked by randomized benchmarking (RB) experiment, and we obtain an
averaged fidelity: 99.81%.

C. Implementation of distributed sensing in quantum circuits

The NLE strategy for gradient metrology is realized as illustrated in Fig. S4. We construct a
three-node sensor network comprising modules A, B, C. Initially, We generate a Bell pair between
@1 and Q2 on module A, then simultaneously transfer one qubit of this pair from @1 to Q3 on
module B and another from @5 to @5 on module C. Immediately thereafter, we apply CNOT gates
on both B and C, and obtain the GHZ state across module B and C, with a fidelity of 80.36% (see
Fig. S4(c)). The probe state |¥g) is prepared by applying additional X gates on @3 and @4, and a
Z gate on @3, achieving a fidelity of 76.16% (see Fig. S4(d)). Subsequently, we encode the spatially
distributed vector field on sensor chips B and C with U(3)-formalism gate sets, where B is acting
on both Q3 and @y, B, is acting on both Q5 and Qg. Following the encoding process, we conduct
Bell measurement on both modules B and C. Under optimal control, the ideal final state |V ;) has
equivalent occupation on [0010) and [1000), the fidelity obtained from experiment is 75.20% (see
Fig. S4(e)). The information carried on the sensors are decoded into the probability distribution
in measurement basis (see Fig. S4(f) for Pyp19). The oscillation period over gradient components
VB, and VB, are observed to reduce with increasing sequential copies N.

The error in this sequence primarily stems from the control error when synchronously transfer-
ring two entangling states. The control error is estimated to be 11.44% for generating the non-local
GHZ state, the decoherence error throughout this 340 ns sequence is approximately 8.34%, estim-
ated by numerical simulation. These two parts yields an estimated fidelity of 80.22%, which is
closed to our experimental result of 80.36%. The non-local entangling state across two chips,

which are not directly connected, is more fragile to environmental noise. The effective decoherence
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Fig. S4. a, A brief schematic diagram of NLE metrology strategy for gradient. b, The detailed quantum
circuit of (a). ¢, The remote four-qubit GHZ state generated across three modules. d, The four-qubit probe
state |¥o) = %(\0011} —|1100)). e, The reference final state |V ) = %(|0010> —|1000)) after step III, with
no control and signal units inserted into the circuit. f, The probability oscillation observed when scanning
parameter VB, or VB, for different IV, the encoding time is fixed at T = 0.27.

rate of the probe state is estimated to be 80 x 27 kHz by numerical analysis. As a consequence,
the fidelity values of |W) are 69.27%, 63.81%, 58.78%, 54.15% for N = 1 ~ 4, respectively. These

values are higher than the confidence threshold ~ 50% for entanglement.

Demonstrating RS strategy requires two pairs of distributed nodes (A— B and A —C) with high-
quality connection. We take A-B as an example (Fig. Sba), we transfer the local entanglement
(indicated by the blue shadow) to a remote node, thereby establishing the cross-module entangle-
ment (indicated by the red shadow). In our conception, the metrology of a local field through a
sensor network comprising a central measurement module and multiple sensor modules spatially
positioned for sensing. The quantum circuit is illustrated in Fig. S5(b). Initially, we generate a
local Bell state on chip A, and subsequently transfer this entangled state from ()2 on chip A to
Q3 on module B, resulting in a cross-node Bell state between )1 and Q3. Immediately following
the probe state preparation, we use (J3 as the sensor qubit, (J1 as the ancillary qubit. Assisted
with dynamical decoupling sequence on @)1 and 2, the inter-module entanglement is preserved

from fast decoherence, until the quantum state on @3 is retrieved back to ()2. The last step of this
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Fig. S5. a, A brief schematic diagram for sensing a local vector field at a certain position with two nodes A
and B. b, The quantum circuit diagram for a. I: state preparation, II: encoding, III: measurement. c, Ref
(no ctrl): the density matrix with no signal-control sequence, measured after step II. N = 1 ~ 4: the density
matrices with N = 1,2, 4, 8, measured after step II. d, Opt return: the density matrix with no signal-control
sequence, measured after step III.

process involves applying a Bell measurement on )1, (). Under the optimal control conditions,
step II behaves as an identity operator. We proceed to conduct quantum state tomography on
module A after the encoded quantum state is retrieved. Fig. S5(c) shows the extracted real part

of density matrices from Qo and Q3.

The reference circuit, devoid of control and signal encoding in step II, achieves a final state fidel-
ity of 91.15%. For N = 1,2, 4, 8 in step I, we attain state fidelities of 88.13%, 84.37%, 79.02%, 70.46%,
respectively. The reference final state is presented in the rightmost panel, the state fidelity is
90.52%. In this sequence, control error from the CNOT gates and state transfer operations
amounts to 8.7%, the control error from each U, or U, unit is 0.79% in average, while the average

decoherence error per unit is 2.55%, stemming from an effective decoherence rate of 41.1 x 27 KHz.

A straightforward feature of the relation between control-signal layer N and the estimated
precision can be captured by the oscillation period of probability under Bell measurement. As is
shown in Fig. S6, the period of Pyy profile near the optimal control parameters decreases at a rate
proportional to N. Scanning each single parameter is analogous to a single-parameter-estimation
process, wherein the quantum Fisher information is determined by the derivative of probability
with respect to the parameter to be estimated. Therefore, this allows us to have an intuitive
perception of the enhancement from sequential strategy. Moreover, the encoding time T is also
periodically correlated to the probability distribution, and this correlation depends on the signal
parameters. For example, when the signal is set to (B,6,¢) = (1,7/4,7/4), the period of Py
profile at T' = 7,27 stays invariant with respect to the parameters 6 and ¢, regardless of N. In
contrast, at 7' = 0.5m or T" = 1.5m, the oscillation period changes more dramatically, indicating

that the sequential strategy is effective there.
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Fig. S6. The probability oscillation with three parameters and encoding time 7. a, For a fixed
signal, we scan control parameter B, and encoding time 7T for different N. b, We scan control parameter 6.
and encoding time T for different N. ¢, We scan control parameter ¢. and encoding time T for different V.

To implement LE strategy, we generate local Bell state on node B and C, signals and controls
are simultaneously acting on two pairs of sensor qubits. The sequence ends with Bell measurement

on B and C, which is similar to RS strategy.
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III. EXTENDED DATA

A. Extended data for sensing of remote vector fields
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Fig. S7. The likelihood function landscape at N =4 and N = 8. Stars: the location of the optimal
control parameters. a, The landscape for parameter B and ¢ at N = 4. b, The landscape for parameter
B and ¢ at N = 8. ¢, The landscape for parameter § and ¢ at N = 4. d, The landscape for parameter 6
and ¢ at N = 8. We post the theoretical landscape and experimental result, and mark the optimal control
parameters.

We benchmark the sensor-ancilla network by analyzing the landscape of the likelihood function
L' near the optimal control parameters, the results are shown over two variables in Fig. S7. Spe-
cifically, the panels depict £/'(B, ¢) in Fig. S7a,b and £'(6, ¢) in Fig. S7c,d. The optimal control
parameters, marked with a star in each panel, correspond to the expected estimation results. As
N increases, the boundary area of the likelihood landscape contracts, demonstrated for N = 4 in
Fig. S7Ta,c and N = 8 in Fig. S7b,d. The agreement between theoretical and experimental results
ensures that the estimated parameters not only align with the observed data but also adhere to
the underlying physical model.

The Fig. S8 illustrates the complete MLE result for sensing the three-component vector field.
The density amplitude in each panel represents the count of distribution normalized by the integral
of distribution at NV = 1. These results demonstrate that increasing the number of sequential copies
enhances the precision of simultaneous three-parameter estimation. However, unavoidable experi-
mental errors introduce a bias of up to +3.45% in the averaged estimation results, deviating from
the actual vector field parameters. These errors can distort the likelihood landscape, affecting the
efficiency of the MLE process. Moreover, fluctuation in experimental noise lead to inhomogeneous
probability distributions, increasing the risk of convergence to local rather than global minima.
Despite these challenges, the optimal strategy we implement facilitates a flat region around the
optimal control parameters, and the use of multiple initial values mitigates the impact of local

minima [6]. This approach improves the robustness and reliability of the estimation process [7].
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We apply the same benchmarking approach to a two-component vector field. As is shown in
Fig. S9, the contraction of the likelihood function landscape with increasing N is evident. The

parameters to be estimated in this case are set as B = (‘2[, ‘2[, 0), corresponding to |B| = 0.5.

B. Extended data for distributed sensing of vector field gradient

We experimentally evaluate the performance of NLE strategy for simultaneously estimating
the three components of the gradient. In this scheme, we set B = (%, é, \2[) the normalized
distributions of the estimators VB, , VB, and VB, are shown in Fig. S10a (for T' = 0.57)

and Fig. S10b (for T' = 1.57).
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When estimating the gradient of a two-component vector field VE = (VB,,VBy), the field
amplitudes are expressed as a function of gradient VB and sum Zé at two distinct positions,
with B; = (X.B + VB)/2 and By = (3B — VB)/2. The full dataset, presented in Fig. 2 of the
main text, is shown in Fig. S11, where the = and y components are plotted separately. The signal
parameters are chosen as S.B = (v/2/2,1/2/2,0) and VB = (0,0,0). The encoding times are set
to T'= 0.57 (Fig. Slla) and T' = 1.57 (Fig. S11b).

C. The influence of noise

Different types of noise in quantum system have impact to the precision of the gradiometer.
The effects of noisy channels in quantum parameter estimation have been discussed in previous
studies [8-13]. In our work, the dominant sources of noise are control errors and dephasing. We
numerically simulate the relationship between these noise types and the precision of the estimation.
Fig. S12a shows the sum of variance in the estimated gradient as a function of different dephasing
rates I'y, while Fig. S12b depicts the effect of varying gate errors €, on the precision. The dephasing

noise is modeled using a thermal channel, and gate errors are incorporated through a Pauli noise
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channel. These simulations are conducted using the Qiskit framework [14].

To mitigate the effects of noise, we apply error mitigation (EM) techniques [15] during data

post-processing. For the NLE strategy, non-local entangled states are particularly sensitive to en-

vironmental noise. However, EM significantly improves performance, as demonstrated in Fig. S13.
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