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I. THEORETICAL ANALYSIS

A. General process of quantum metrology

The primary objective of quantum metrology is to precisely estimate unknown physical quantit-

ies by utilizing quantum resources, such as quantum entanglement. The general process of quantum

metrology includes the following steps: state preparation, parameter encoding, measurement, and

estimation. The probe state ρ0 evolves under the given dynamics, which depend on the unknown

parameters x̂ = (x1, · · · , xn), resulting in the encoded state ρ(x̂). To extract information about the

parameters x̂, we perform a set of positive operator-valued measures (POVMs), represented as {Πi},

on the state ρ(x̂), obtaining a set of probability distributions Pi(x̂), where Pi(x̂) is the probability

of obtaining the measurement result i. Finally, we construct the estimators x̂est = (x1est , · · · , xnest)

based on the probabilities of the measurement outcomes. For multi-parameter quantum estimat-

ing, the performance of locally unbiased estimators is quantified by the covariance matrix, where

the jk-th element gives

[Cov(x̂)]jk = E [(xjest − xj)(xkest − xk)] . (S1)

The estimation precision for multiple parameters is quantified by the sum of variances, which

corresponds to the sum of the diagonal terms of the covariance matrix. The covariance matrix is

lower bounded by

Cov(x̂) ≥ 1

n
F−1
C (S2)

which is known as the Cramér-Rao bound. Here n is the number of measurement repetitions, and

FC is the Fisher information matrix (FIM) with jk-th element calculated as follows:

[FC ]xjxk
=
∑
i

1

Pi(x̂)

(
∂Pi(x̂)

∂xj

)(
∂Pi(x̂)

∂xk

)
(S3)

The Cramér-Rao bound is achievable for a large number of repetitions by using the maximum

likelihood estimator (MLE). The quantum Cramér-Rao bound (QCRB) further constrains the

covariance matrix:

Cov(x̂) ≥ 1

n
F−1
C ≥ 1

n
F−1
Q . (S4)

Here FQ is the quantum Fisher information matrix (QFIM). For parameters encoded in pure states

|ψx̂⟩, FQ can be expressed as:

[FQ]xjxk
= 4 Re (⟨∂jψx̂|∂kψx̂⟩ − ⟨∂jψx̂|ψx̂⟩ ⟨ψx̂|∂kψx̂⟩) . (S5)

More specifically, consider a pure probe state |ψ0⟩ undergoes a unitary process Ux̂, the encoded

state |ψx̂⟩ = Ux̂|ψ0⟩. Define the generator of Ux̂ corresponding to unknown parameter xj as

hxj
= iU†

x̂

(
∂xj

Ux̂

)
. (S6)

Then, the quantum Fisher information matrix in Eq.(S5) can be expressed in terms of the gener-

ators,

[FQ]xjxk
= 2⟨ψ0|{hxj , hxk

}|ψ0⟩ − 4⟨ψ0|hxj |ψ0⟩⟨ψ0|hxk
|ψ0⟩. (S7)
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Here {·, ·} denotes the anti-commutator. According to QCRB, the precision of estimating multiple

parameters is lower bound by nTr(Cov(x̂)) ≥ Tr(F−1
C ) ≥ Tr(F−1

Q ). Hence, finding the maximal

QFIM and the optimal measurement that saturates the QCRB leads to the ultimate precision of

estimation. For multi-parameter quantum estimation, the necessary and sufficient condition for

saturating the quantum Cramér-Rao bound in pure states is the weak commutativity condition,

which is

Im
[
⟨∂xj

ψx̂|∂xk
ψx̂⟩
]

= 0,∀xj , xk. (S8)

To achieve the best precision for estimating unknown parameters x̂, it is crucial to optimize

every step of the process. This includes optimizing the initial state, adding additional controls,

and performing the optimal measurement that saturates the quantum Cramér-Rao bound. In

the control-enhanced sequential scheme, the total system evolution is described by UN = (UcUx̂)N ,

where Ux̂ represents the system dynamics over encoding time T , and Uc denotes the control applied

after each encoding time T . The optimal control strategy involves selecting Uc = U †
x̂, as derived

in [1]. With the implementation of N cycles of optimal control, the quantum Fisher information

matrix becomes N2FQ, reaching the Heisenberg limit. Here, FQ denotes the QFIM for N = 1

without control, as adding only one control at the end of evolution cannot change the QFIM. To

streamline the analysis, we examine the (maximal) QFIM for sensing strategies without control in

the following sections. For cases with optimal control, the QFIM can be obtained by multiplying

by N2.

B. Sensing of a remote vector field

We consider the estimation of three components of a remote vector field, described in spherical

coordinates (B, θ, ϕ) as B⃗ = (B sin θ cosϕ,B sin θ sinϕ,B cos θ), instead of in Cartesian coordinates

B⃗ = (Bx, By, Bz). Estimating the vector field components B⃗ = (Bx, By, Bz) thus corresponds to

simultaneously estimating the parameters x̂ = (B, θ, ϕ). For each sensor qubit at time T , the

evolution can be represented by Us = e−iB⃗·σT = e−iBTn·σ with n = (sin θ cosϕ, sin θ sinϕ, cos θ).

The generator for xj ∈ {B, θ, ϕ} is given by

hB = cBnB · σ

hθ = cθnθ · σ

hϕ = cϕnϕ · σ

(S9)

with

cB = T, cθ = sin(BT ), cϕ = sin(BT ) sin θ (S10)

nB = n = (sin θ cosϕ, sin θ sinϕ, cos θ)

nθ = cos(BT )n1 − sin(BT )n2

nϕ = sin(BT )n1 + cos(BT )n2

(S11)
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where n1 = ∂θn = (cos θ cosϕ, cos θ sinϕ,− sin θ), n2 = n × n1 = (− sinϕ, cosϕ, 0). It is easy

to verify that n, n1, n2 are orthogonal to each other. There exists a unitary transformation

Ur = ei
BT
2

n·σe−iϕ
2
σze−i θ

2
σy such that

nB · σ = UrσzU
†
r , nθ · σ = UrσxU

†
r , nϕ · σ = UrσyU

†
r , (S12)

Assume the initial probe state is |ψSA⟩, where the ancilla system is introduced. Then using Eq.(S7),

we obtain the QFIM as

FQ = 4


T 2 − (Tr(ρShB))

2 −Tr(ρShB) Tr(ρShθ) −Tr(ρShB) Tr(ρShϕ)

−Tr(ρShB) Tr(ρShθ) sin2(BT ) − (Tr(ρShθ))
2 −Tr(ρShθ) Tr(ρShϕ)

−Tr(ρShB) Tr(ρShϕ) −Tr(ρShθ) Tr(ρShϕ) sin2(BT ) sin2 θ − (Tr(ρShθ))
2

 (S13)

where ρS = TrA(|ψSA⟩⟨ψSA|) denotes the reduced state by tracing out the ancilla system. The

maximal QFIM, denoted as Fmax
Q , is

Fmax
Q = 4


T 2 0 0

0 sin2(BT ) 0

0 0 sin2(BT ) sin2 θ

 . (S14)

Fmax
Q represents the upper limit of the QFIM under optimal conditions. This is because Fmax

Q −
FQ is always a positive semi-definite matrix, a property that signifies no other state can yield

a higher QFIM value. The maximal QFIM is achieved when choosing ρS = 1
2I, indicating that

the optimal initial state for maximizing the QFIM is a maximally entangled state, denoted as

|ψSA⟩ = 1√
2

(|00⟩ + |11⟩). The projective measurement in the Bell basis is the optimal measurement

that saturates the quantum Cramér-Rao bound, which is given as

M00 =
∣∣Φ+

〉 〈
Φ+
∣∣ , M01 =

∣∣Φ−〉 〈Φ−∣∣ , M10 =
∣∣Ψ+

〉 〈
Ψ+
∣∣ , M11 =

∣∣Ψ−〉 〈Ψ−∣∣ , (S15)

where the Bell states are given by:∣∣Φ+
〉

=
1√
2

(|00⟩ + |11⟩) ,
∣∣Φ−〉 =

1√
2

(|00⟩ − |11⟩) ,∣∣Ψ+
〉

=
1√
2

(|01⟩ + |10⟩) ,
∣∣Ψ−〉 =

1√
2

(|01⟩ − |10⟩) .
(S16)

The probability of the measurement results in the Bell basis

P00 = Tr(ρ(B, θ, ϕ)M00) = cos2(BT )

P01 = Tr(ρ(B, θ, ϕ)M01) = sin2(BT ) cos2 θ

P10 = Tr(ρ(B, θ, ϕ)M10) = sin2(BT ) sin2 θ cos2 ϕ

P11 = Tr(ρ(B, θ, ϕ)M11) = sin2(BT ) sin2 θ sin2 ϕ

(S17)

where ρ(B, θ, ϕ) = (Us ⊗ I)|ψSA⟩⟨ψSA|(U †
s ⊗ I) is density matrix for the evolved state. Based on

the probability distribution, by using Eq.(S3), it is straightforward to verify the classical Fisher

information matrix equals the quantum Fisher information matrix, thereby saturating the quantum

Cramér-Rao bound. The estimated precision limits for vector components are given by:

δB2
est ≥

1

4T 2
, δθ2est ≥

1

4 sin2(BT )
, δϕ2est ≥

1

4 sin2(BT ) sin2 θ
(S18)
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Following the error propagation formula, we calculate:

δBxest
= sin θ cosϕδBest +B cos θ cosϕδθest −B sin θ sinϕδϕest

δByest = sin θ sinϕδBest +B cos θ sinϕδθest +B sin θ cosϕδϕest

δBzest = cos θδBest −B sin θδθest

(S19)

The summation of squared deviations gives the precision limits for estimating three components

of a vector field:
δB2

xest
+ δB2

yest
+ δB2

zest = δB2
est +B2δθ2est +B2 sin2 θδϕ2est

≥ 1

4T 2
+

B2

2 sin2(BT )
.

(S20)

C. Sensing of the gradients between vector fields

In this section, we consider the estimation of the gradients between two remote vector fields,

expressed as ∇B⃗ = B⃗1 − B⃗2 = (∇Bx,∇By,∇Bz). For each sensor qubit, the Hamiltonian Hj is

given by Hj = B⃗j ·σ = Bjxσx+Bjyσy+Bjzσz, where B⃗j = (Bjx, Bjy, Bjz) represents the vector field

components and σ = (σx, σy, σz) denotes the spin vector. Alternatively, in spherical coordinates,

the Hamiltonian is represented as Hj = Bjnj ·σ, where nj = (sin θj cosϕj , sin θj sinϕj , cos θj) and

Bj =
√
B2

jx +B2
jy +B2

jz represents the magnitude of the vector field. The evolution at time T can

be represented by Usj = e−iB⃗j ·σT = e−iBjnj ·σT for j = 1, 2.

We evaluate the precision of two strategies for estimating vector field gradients. The first

strategy employs non-local entanglement, directly estimating the vector field gradient by lever-

aging entanglement across the sensor network. The second uses local entanglement, measuring each

vector field independently at the two locations and then calculating the gradient. Our compar-

ison highlights the precision benefits of distributed quantum sensing, with non-local entanglement

offering distinct advantages for accurate gradient estimation.

1. Non-local entanglement

Utilizing non-local entanglement enables the direct and simultaneous estimation of spatial gradi-

ents, potentially giving higher precision. In this approach, we introduce a 4-qubit non-local en-

tangled state as the probe state, |Ψ0⟩ = 1√
2
(|0011⟩ − |1100⟩), to directly estimate gradients along

three directions. The first two qubits and the last two qubits are sent to two separate sensor modules

(module B and C in the main text), respectively. The total evolution of the dynamics is expressed as

US = Us1⊗Us1⊗Us2⊗Us2, which gives the evolved state as US|Ψ0⟩, containing the information of the

spatial gradients. Denote the sum of two vector fields as
∑
B⃗ = B⃗1 + B⃗2 = (

∑
Bx,

∑
By,

∑
Bz).

The components of the vector field can then be rewritten as

B1p =

∑
Bp + ∇Bp

2
, B2p =

∑
Bp −∇Bp

2
, for p ∈ {x, y, z}. (S21)
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To effectively estimate the gradients, denoted as ∇B⃗, it is also necessary to acquire information

about the sum of the vector fields, denoted here as
∑
B⃗. This information is crucial for adaptively

implementing control strategies. Such control strategies essentially reduce the problem of estim-

ating general gradients ∇B⃗ to estimating ∇B⃗ = (0, 0, 0), indicating B⃗1 = B⃗2 = B⃗. This can be

realized by adding compensation to the vector fields if the gradients are non-zero. Therefore, we

benchmark the performance of our estimation protocol at zero-gradient, and the comparison of

different strategies will also be made under this assumption.

Under the dynamics governed by US, the quantum Fisher information matrix for simultaneously

estimating x̂ = (∇B⃗,
∑
B⃗) is given by

FQ =

(
F− 0

0 F+

)
, (S22)

where this matrix is block-diagonal,with F− and F+ representing the QFIM for estimating ∇B⃗ =

(∇Bx,∇By,∇Bz) and
∑
B⃗ = (

∑
Bx,

∑
By,

∑
Bz), respectively, which are given by

F− =


[FQ]∇Bx∇Bx

[FQ]∇Bx∇By
[FQ]∇Bx∇Bz

[FQ]∇Bx∇By [FQ]∇By∇By [FQ]∇By∇Bz

[FQ]∇Bx∇Bz
[FQ]∇By∇Bz

[FQ]∇Bz∇Bz

 , (S23)

with

[FQ]∇Bx∇Bx =
4

B4

(
B2

xT
2(B2 + 3B2

z) + sin2(BT )(B2
y +B2

z + 6BxByBzT + 3B2
y sin

2(BT ))
)

+
3BxBz sin(2BT )

B6

(
−4BBy sin

2(BT ) +BxBz(−4BT + sin(2BT )
)
,

[FQ]∇By∇By =
4

B4

(
B2

yT
2(B2 + 3B2

z) + sin2(BT )(B2
x +B2

z − 6BxByBzT + 3B2
x sin

2(BT ))
)

+
3ByBz sin(2BT )

B6

(
4BBx sin

2(BT ) +ByBz(−4BT + sin(2BT )
)

[FQ]∇Bz∇Bz =
4

B4

(
B2

zT
2(B2 + 3B2

z) + sin2(BT )(B2
x +B2

y)
)

+
3 sin(2BT )

B6

(
4B(B2

x +B2
y)B

2
zT + (B2

x +B2
y)

2 sin(2BT )
)
,

[FQ]∇Bx∇By =
4

B4

(
BxByT

2(B2 + 3B2
z)− sin2(BT )(4BxBy + 3BzT (B

2
x −B2

y))
)

+
3 sin(2BT )

B6

(
2BBz sin

2(BT )(B2
x −B2

y) +BxBy(−4BB2
zT + (B2 +B2

z) sin(2BT ))
)
,

[FQ]∇Bx∇Bz =
4Bz

B4

(
BxT

2(B2 + 3B2
z)− sin2(BT )(Bx − 3ByBzT )

)
+

3 sin(2BT )

B6

(
2BBy sin

2(BT )(B2
x +B2

y) +BxBz(2BT (B2 − 2B2
z)− (B2 −B2

z) sin(2BT ))
)
,

[FQ]∇By∇Bz =
4Bz

B4

(
ByT

2(B2 + 3B2
z)− sin2(BT )(By + 3BxBzT )

)
− 3 sin(2BT )

B6

(
2BBx sin

2(BT )(B2
x +B2

y)−ByBz(2BT (B2 − 2B2
z)− (B2 −B2

z) sin(2BT ))
)
,

(S24)

and

F+ =


[FQ]∑Bx

∑
Bx

[FQ]∑Bx
∑

By
[FQ]∑Bx

∑
Bz

[FQ]∑Bx

∑
By

[FQ]∑By
∑

By
[FQ]∑By

∑
Bz

[FQ]∑Bx
∑

Bz
[FQ]∑By

∑
Bz

[FQ]∑Bz
∑

Bz

 , (S25)
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with

[FQ]∑Bx
∑

Bx =
4

B4

(
B2

xT
2(B2

x +B2
y) +Bz sin

2(BT )(Bz − 2BxByT )
)

+
sin(2BT )

B6

(
4BB2

xB
2
zT + 4BBxByBz sin

2(BT ) + (B2B2
y −B2

xB
2
z) sin(2BT )

)
,

[FQ]∑By
∑

By =
4

B4

(
B2

yT
2(B2

x +B2
y) +Bz sin

2(BT )(Bz + 2BxByT )
)

+
sin(2BT )

B6

(
4BB2

yB
2
zT − 4BBxByBz sin

2(BT ) + (B2B2
x −B2

yB
2
z) sin(2BT )

)
,

[FQ]∑Bz
∑

Bz =
4

B4
(B2

x +B2
y)(B

2
zT

2 + sin2(BT ))

+
sin(2BT )

B6
(B2

x +B2
y)

(
4BB2

zT + (B2
x +B2

y) sin(2BT )
)

[FQ]∑Bx
∑

By =
4T

B4

(
BxByT (B

2
x +B2

y) +Bz sin
2(BT )(B2

x −B2
y)
)

+
sin(2BT )

B6

(
4BBxByB

2
zT − 2BBz sin

2(BT )(B2
x −B2

y)−BxBy sin(2BT )(B2 +B2
z)
)
,

[FQ]∑Bx
∑

Bz =
4Bz

B4

(
BxT

2(B2
x +B2

y)− sin2(BT )(Bx +ByBzT )
)

− sin(2BT )

B6

(
2BBxBzT (B

2 − 2B2
z) + (B2

x +B2
y)

(
2BBy sin

2(BT )−BxBz sin(2BT )
))

,

[FQ]∑By
∑

Bz =
4Bz

B4

(
ByT

2(B2
x +B2

y)− sin2(BT )(By −BxBzT )
)

− sin(2BT )

B6

(
2BByBzT (B

2 − 2B2
z)− (B2

x +B2
y)

(
2BBx sin

2(BT ) +ByBz sin(2BT )
))

.

(S26)

Since the QFIM takes a block diagonal form, the estimation of the sum vector
∑
B⃗ does not

influence the precision of estimating the gradients ∇B⃗, which can be expressed as:

(δ∇Bxest )
2

+ (δ∇Byest )
2

+ (δ∇Bzest )
2 ≥ Tr

(
F−1
−
)

=
4B2 − 3B2

z

16B2T 2
+

5B2 + 3B2
z

16 sin2(BT )
, (S27)

where B =
√
B2

x +B2
y +B2

z . We can verify that the weak commutativity condition in Eq.(S8)

is satisfied, indicating the existence of a set of POVM that saturates the QCRB, achieving this

precision.

For easier experimental realization, we consider performing local separable measurements on

each sensor module (B and C). Specifically, one can choose the projective measurement in Bell

basis on each sensor module as follows:

ΠX00 =
∣∣Φ+

〉 〈
Φ+
∣∣ , ΠX01 =

∣∣Φ−〉 〈Φ−∣∣ , ΠX10 =
∣∣Ψ+

〉 〈
Ψ+
∣∣ , ΠX11 =

∣∣Ψ−〉 〈Ψ−∣∣ , (S28)

where X ∈ {B, C} denoted the sensor module and the Bell states are given in Eq.(S16). This

construction forms 16 measurement basis Πk = ΠBi ⊗ ΠCj , ∀i, j ∈ {00, 01, 10, 11}, satisfying∑
k∈{0000,··· ,1111} Πk = I. The probability distribution of the measurement outcome under {Πk}

gives Pk = ⟨Ψx̂|Πk|Ψx̂⟩ for k ∈ {0000, 0001, · · · , 1111}, where |Ψx̂⟩ = US|Ψ0⟩ is the evolved state.

For certain measurement outcomes, such as {0011, 0111, 1011, 1100, 1101, 1110, 1111}, Pk = 0 re-

gardless of the real values of ∇Bx,∇By,∇Bz, indicating no information about the parameters can

be obtained from these outcomes. In contrast, for k ∈ {0000, 0101, 1010}, Pk = 0 specifically at

the zero-gradient, where ∇B⃗ = (0, 0, 0). Even in this scenario, where the probability distribu-

tion equals zero at specific values, the probability distribution still contains implicit parameter

information.
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The classical Fisher information matrix (CFIM) depends on the derivative of Pk with respect

to xi, xj ∈ {∇Bx,∇By,∇Bz,
∑
Bx,

∑
By,

∑
Bz}, calculated as follows:

[FC ]xixj
=
∑
k

1

Pk

(
∂Pk

∂xi

)(
∂Pk

∂xj

)
=
∑
k

(∂xi⟨Ψx̂|Πk|Ψx̂⟩) (∂xj⟨Ψx̂|Πk|Ψx̂⟩)
⟨Ψx̂|Πk|Ψx̂⟩

=
∑
k

4Re (⟨∂xiΨx̂|Πk|Ψx̂⟩) Re (⟨∂xjΨx̂|Πk|Ψx̂⟩)
⟨Ψx̂|Πk|Ψx̂⟩

(S29)

where k ∈ {0000, 0001, 0010, 0100, 0101, 0110, 1000, 1001, 1010}. Specifically, at ∇Bx = 0,∇By = 0

and ∇Bz = 0, Pk = ⟨Ψx̂|Πk|Ψx̂⟩ = 0, Re (⟨∂xiΨx̂|Πk|Ψx̂⟩) = 0 for k ∈ {0000, 0101, 1010}. In

these cases, the term is of the form 0
0 which needs to be calculated via limit. For these term,

[FC ]xixj can be calculated when the parameters ∇Bx,∇By and ∇Bz are displaced by an ar-

bitrary small disturbance, replacing |Ψx̂⟩ with |Ψx̂⟩ +
∑6

l=1 δxl |∂xl
Ψx̂⟩, where x1 = ∇Bx, x2 =

∇By, x3 = ∇Bz, x4 =
∑
Bx, x5 =

∑
By, x6 =

∑
Bz. Thus, it can be verified that for ∀xi, xj ∈

{∇Bx,∇By,∇Bz,
∑
Bx,

∑
By,

∑
Bz},

[FC ]xixj
=
∑
k1

∑6
l1=1

∑6
l2=1 4δxl1δxl2Re (⟨∂xiΨx̂|Πk1

|∂xl1Ψx̂⟩) Re (⟨∂xl2Ψx̂|Πk1
|∂xjΨx̂⟩)∑6

l1=1

∑6
l2=1 δxl1δxl2⟨∂xl1Ψx̂|Πk1

|∂xl2Ψx̂⟩

+
∑
k2

4Re (⟨∂xiΨx̂|Πk2
|Ψx̂⟩) Re (⟨∂xjΨx̂|Πk2

|Ψx̂⟩)
⟨Ψx̂|Πk2 |Ψx̂⟩

= [FQ]xixj

(S30)

where k1 ∈ {0000, 0101, 1010} and k2 ∈ {0001, 0010, 0100, 0110, 1000, 1001}. This demonstrates

that the QCRB can be saturated by performing local projective measurement in the Bell basis on

each sensor module, indicating the precision in Eq.(S27) is achievable.

Here, we also provide the precision achievable in estimating two components of gradients, spe-

cifically ∇Bx and ∇By, using the same non-local entangled probe state |Ψ0⟩. The quantum Fisher

information matrix for simultaneously estimating ∇Bx,∇By,
∑
Bx,

∑
By also takes the block di-

agonal form in Eq.(S22), with F− and F+ given by

F− =

(
[FQ]∇Bx∇Bx [FQ]∇Bx∇By

[FQ]∇Bx∇By
[FQ]∇By∇By

)
, F+ =

(
[FQ]∑Bx

∑
Bx

[FQ]∑Bx
∑

By

[FQ]∑Bx

∑
By

[FQ]∑By

∑
By

)
, (S31)
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where

[FQ]∇Bx∇Bx
=

4B2
xT

2

B2
+
B2

y

(
16 sin2(BT ) − 3 sin2(2BT )

)
B4

,

[FQ]∇By∇By
=

4B2
yT

2

B2
+
B2

x

(
16 sin2(BT ) − 3 sin2(2BT )

)
B4

,

[FQ]∇Bx∇By =
4BxByT

2

B2
−
BxBy

(
16 sin2(BT ) − 3 sin2(2BT )

)
B4

,

[FQ]∑Bx
∑

Bx
=

4B2
xT

2

B2
+
B2

y sin2(2BT )

B4
,

[FQ]∑By
∑

By
=

4B2
yT

2

B2
+
B2

x sin2(2BT )

B4
,

[FQ]∑Bx
∑

By
=

4BxByT
2

B2
− BxBy sin2(2BT )

B4
,

(S32)

with B =
√
B2

x +B2
y . The quantum Cramér-Rao bound can be saturated by performing projective

measurement in Bell basis on each sensor module, where the proof of optimal measurement is similar

to the three-component case and is omitted for brevity. Hence, the precision of estimating gradients

is

δ∇B2
xest

+ δ∇B2
yest

≥ 1

4T 2
+

B2

4
(
1 + 3 sin2(BT )

)
sin2(BT )

. (S33)

2. Local entanglement

To estimate the gradients between remote vector fields, a straightforward approach is to first

estimate each vector field independently, then calculate the gradient. In this method, we use a

2-qubit locally entangled state to estimate the three components of each vector field. The unitary

dynamics governing this system is represented by Us ⊗ Us, where Us = e−iBTn·σ. The analysis of

precision limits follows [2]. The generator corresponding to the parameter xj ∈ {B, θ, ϕ} is

Gxj
= i
(
U†
s ⊗ U†

s

) (
∂xj

Us ⊗ Us + Us ⊗ ∂xj
Us

)
= hxj ⊗ I2 + I2 ⊗ hxj

(S34)

where hxj is given in Eq.(S9). By Eq.(S7), the diagonal elements of QFIM can be expressed as the

variance of the generators Gxj ,

[FQ]xjxj = 4⟨∆2Gxj ⟩ = 4
(
⟨G2

xj
⟩ − ⟨Gxj ⟩2

)
, (S35)

where the term ⟨G2
xj
⟩ and ⟨Gxj ⟩2 can be expanded as

⟨G2
xj
⟩ = ⟨h2xj

⊗ I⟩ + ⟨I ⊗ h2xj
⟩ + 2⟨hxj

⊗ hxj
⟩ = 2c2xj

+ 2c2xj
rxjxj

,

⟨Gxj ⟩2 = c2xj
(r(1)xj

+ r(2)xj
)2.

(S36)

Here rxjxj = Tr[ρSS(nxj · σ) ⊗ (nxj · σ)], where ρSS is the density matrix for the probe state and

nxj are detailed in Eq.(S11). r
(1)
xj = Tr[ρ

(1)
S nxj · σ] and r

(2)
xj = Tr[ρ

(2)
S nxj · σ], where ρ

(1)
S and ρ

(2)
S

are the reduced matrices of ρSS the first and second qubits.

9



For each parameter xj ∈ {B, θ, ϕ}, we have δx2jest ≥
1

4⟨∆2Gxj ⟩
, thus

wBδB
2
est + wθδθ

2
est + wϕδϕ

2
est

≥1

4

(
wB

⟨∆2GB⟩
+

wθ

⟨∆2Gθ⟩
+

wϕ

⟨∆2Gϕ⟩

)

=
1

4

 wB/T
2

2 + 2rBB −
(
r
(1)
B + r

(2)
B

)2 +
wθ/ sin2(BT )

2 + 2rθθ −
(
r
(1)
θ + r

(2)
θ

)2 +
wϕ/ sin2(BT ) sin θ2

2 + 2rϕϕ −
(
r
(1)
ϕ + r

(2)
ϕ

)2


≥1

4

(
wB/T

2

2 + 2rBB
+
wθ/ sin2(BT )

2 + 2rθθ
+
wϕ/ sin2(BT ) sin θ2

2 + 2rϕϕ

)

≥a)

(√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

)2
4(2 + 2rBB + 2 + 2rθθ + 2 + 2rϕϕ)

≥b)

(√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

)2
32

(S37)

where the inequality a) follows from the Cauchy-Schwarz inequality, and the inequality b) uses the

fact that rBB + rθθ + rϕϕ ≤ 1. To prove this fact, we write a general two-qubit state ρ as

ρ =
1

4
[I4 +

∑
l

r
(1)
l σl ⊗ I +

∑
p

r(2)p I ⊗ σp +
∑
l,p

rl,pσl ⊗ σp] (S38)

where l, p ∈ {x, y, z}. Let ρSS = (Ur ⊗ Ur)ρ(U †
r ⊗ U †

r ), by using the properties in Eq.(S12),

we have rxx = Tr[ρ(σx ⊗ σx)] = Tr [ρSS (nθ · σ ⊗ nθ · σ)] = rθθ, ryy = Tr[ρ(σy ⊗ σy)] =

Tr [ρSS (nϕ · σ ⊗ nϕ · σ)] = rϕϕ and rzz = Tr[ρ(σz ⊗ σz)] = Tr [ρSS (nB · σ ⊗ nB · σ)] = rBB.

Since the density matrix ρ is always positive semi-definite, let r
(1)
l = 0, r

(2)
p = 0 for ∀l, p ∈ {x, y, z},

and rl,p = 0 for l ̸= q, we have all the eigenvalues of ρ are non-negative, which gives the following

constraints:
rxx + ryy + rzz ≤ 1

rzz − rxx − ryy ≤ 1

ryy − rxx − rzz ≤ 1

rxx − ryy − rzz ≤ 1

(S39)

The first inequality is equivalent to rBB + rθθ + rϕϕ ≤ 1. Hence, the lower bound on the figure of

merit can be obtained as:

wBδB
2
est + wθδθ

2
est + wϕδϕ

2
est ≥

(√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

)2
32

(S40)

which can be saturated when

roptBB =
3
√
wB

T −
√
wθ

| sin(BT )| −
√
wϕ

| sin(BT ) sin θ|
√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

roptθθ =
3

√
wθ

| sin(BT )| −
√
wB

T −
√
wϕ

| sin(BT ) sin θ|
√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

roptϕϕ =
3

√
wϕ

| sin(BT ) sin θ| −
√
wB

T −
√
wθ

| sin(BT )|
√
wB

T +
√
wθ

| sin(BT )| +
√
wϕ

| sin(BT ) sin θ|

(S41)
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and r
(1)
B + r

(2)
B = r

(1)
θ + r

(2)
θ = r

(1)
ϕ + r

(2)
ϕ = 0. The lower bound can be saturated when the reduced

two-qubit state takes the form:

ρ =
1

4
[I4 + roptBBnB · σ ⊗ nB · σ + roptθθ nθ · σ ⊗ nθ · σ + roptϕϕ nϕ · σ ⊗ nϕ · σ], (S42)

indicating that this bound is unachievable without the introduction of an ancillary system. From

the error propagation formula in Eq.(S20), we set wB = 1, wθ = B2, wϕ = B2 sin2 θ, then the

precision limits of estimating three components of a vector field is

δB2
xest

+ δB2
yest

+ δB2
zest

≥ 1

32

(
1

T
+

2B

|sin(BT )|

)2

. (S43)

Without loss of generality, we set B⃗1 = B⃗2 = B⃗, the precision limit for estimating gradients

∇B⃗ = B⃗1 − B⃗2 = (∇Bx,∇By,∇Bz) is

δ∇B2
xest

+ δ∇B2
yest

+ δ∇B2
zest

≥ 1

16

(
1

T
+

2B

|sin(BT )|

)2

. (S44)

It is important to note that achieving the ultimate precision as outlined in Eq.(S44) requires

the use of an ancillary system, making this bound unattainable in practice. To ensure a fair

comparison, we introduce a reference precision using maximally entangled states, represented by

the probe state |ψ⟩ = 1√
2
(|00⟩ + |11⟩). The QFIM for estimating x̂ = {B, θ, ϕ} by maximally

entangled states is

FQ =


[FQ]BB [FQ]Bθ [FQ]Bϕ

[FQ]Bθ [FQ]θθ [FQ]θϕ

[FQ]Bϕ [FQ]θϕ [FQ]ϕϕ

 (S45)

with

[FQ]BB =4T 2
(
3 + cos(2θ) + 2 cos(2ϕ) sin2 θ

)
,

[FQ]θθ =2 sin2(BT )
(
3 + 3 cos(2BT ) cos(2ϕ) + 2 sin2 ϕ+ cos2(BT )

(
2 − 4 cos(2θ) sin2 ϕ

)
+4 cos θ sin(2BT ) sin(2ϕ)) ,

[FQ]ϕϕ =2 sin2(BT ) sin2 θ
(
2 + 2 sin2(BT ) + 2 sin2 θ + 2 sin2 ϕ+ cos(2BT ) (cos(2θ) − 3 cos(2ϕ))

+2 sin2(BT ) cos(2θ) cos(2ϕ) − 4 sin(2BT ) cos θ sin(2ϕ)
)
,

[FQ]Bθ =4T
(
2 sin2(BT ) sin θ sin(2ϕ) − sin(2BT ) sin(2θ) sin2 ϕ

)
,

[FQ]Bϕ = − 16T sin(BT ) sin2 θ sinϕ (cos(BT ) cosϕ+ sin(BT ) cos θ sinϕ) ,

[FQ]θϕ =2 sin2(BT )
(
sin(2BT ) sin θ

(
(3 + cos 2θ) cos(2ϕ) + 2 sin2 θ

)
− 2 cos(2BT ) sin(2θ) sin(2ϕ)

)
,

(S46)

which is a singular matrix. This means we cannot simultaneously estimate three components of the

vector fields. Instead, we consider the optimal precision of estimating three parameters respectively,

expressed as δx2jest ≥ 1
[FQ]xjxj

for xj ∈ {B, θ, ϕ}, then we have the total precision for estimating

three components of a vector field as

δB2
xest

+ δB2
yest

+ δB2
zest = δB2

est +B2δθ2est +B2 sin2 θδϕ2est

≥ 1

[FQ]BB
+

B2

[FQ]θθ
+
B2 sin2 θ

[FQ]ϕϕ
.

(S47)
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Thereby the corresponding precision for estimating the gradients is

δ∇B2
xest

+ δ∇B2
yest + δ∇B2

zest
≥ 2

[FQ]BB
+

2B2

[FQ]θθ
+

2B2 sin2 θ

[FQ]ϕϕ
. (S48)

However, this precision is unachievable, which is a reference precision that equals the summation

of the optimal precision for single-parameter estimation.

Now we turn the focus on estimating two components of gradients, x̂ = (∇Bx,∇By). By a

similar analysis as Eq.(S37), we have

wBδB
2
jest + wϕδϕ

2
jest ≥

1

4

(
wB

⟨∆2GB⟩
+

wϕ

⟨∆2Gϕ⟩

)

=
1

4

 wB/T
2

2 + 2rBB −
(
r
(1)
B + r

(2)
B

)2 +
wϕ/ sin2(BT )

2 + 2rϕϕ −
(
r
(1)
ϕ + r

(2)
ϕ

)2


≥1

4

(
wB/T

2

2 + 2rBB
+
wϕ/ sin2(BT )

2 + 2rϕϕ

)
≥a) 1

4

(
wB

4T 2
+

wϕ

4 sin2(BT )

)
(S49)

The inequality a) is obtained by using the properties in Eq.(S39), which gives rBB ≤ 1 and

rϕϕ ≤ 1. Moreover, rθθ ≥ −1 and by subtitude rBB = rϕϕ = 1 into constraints in Eq.(S39) gives

the condition rθθ ≤ −1. Hence, the inequality b) is saturated when

roptBB = 1, roptθθ = −1, roptϕϕ = 1, (S50)

and r
(1)
B + r

(2)
B = r

(1)
ϕ + r

(2)
ϕ = 0. The corresponding optimal probe state is

ρ =
1

4
[I4 + nB · σ ⊗ nB · σ − nθ · σ ⊗ nθ · σ + nϕ · σ ⊗ nϕ · σ] = |ψopt⟩⟨ψopt| (S51)

Here θ = π
2 and |ψopt⟩ = 1√

2

(
|+B⟩⊗2 − |−B⟩⊗2

)
, where |±B⟩ are the eigenstates of the generator

hB corresponding to the maximal and minimal eigenvalues respectively. With the optimal probe

state, we can obtain the maximal QFIM for estimating x̂ = {B,ϕ} as

Fmax
Q =

(
16T 2 0

0 16 sin2(BT )

)
(S52)

Measurement in the Bell basis, as detailed in Eq.(S15), is the optimal measurement strategy that

saturates the quantum Cramér-Rao bound. Hence, the bound in Eq.(S49) is achievable. By setting

wB = 1 and wϕ = B2, the corresponding precision of estimating two components of the vector field

is

δB2
xest

+ δB2
yest

= δB2
est +B2δϕ2est ≥ 1

16T 2
+

B2

16 sin2(BT )
, (S53)

thereby the ultimate precision for estimating the gradients under this strategy is

δ∇B2
xest

+ δ∇B2
yest

≥ 1

8T 2
+

B2

8 sin2(BT )
. (S54)
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It is worth mentioning that the optimal probe state in Eq.(S51) depends on the unknown parameters

B and ϕ. However, the values of these parameters generally are not known as a priory. Instead,

we must rely on estimated values, denoted as Best and ϕest, which need to be adaptively updated

in practice.

For easier experiment implementation, here, we also provide the precision of estimating gradient

by using the maximally entangled state |ψ⟩ = 1√
2

(|00⟩ + |11⟩). The QFIM for estimating x̂ =

{B,ϕ} by using maximally entangled state is

FQ =

(
16T 2 cos2 ϕ −4T sin(2BT ) sin(2ϕ)

−4T sin(2BT ) sin(2ϕ) 7 − 8 cos(2BT ) + 2 cos(4BT ) cos2 ϕ− cos(2ϕ)

)
(S55)

The quantum Cramér-Rao bound can be saturated by using the projective measurement in Bell

basis, as described in Eq.(S15). Hence, we have

δB2
est = [Cov(x̂)]11 ≥ [F−1

Q ]11 =
1 − cos2(BT ) cos2 ϕ

16T 2 sin2(BT ) cos2 ϕ
,

δϕ2est = [Cov(x̂)]22 ≥ [F−1
Q ]22 =

1

16 sin4(BT )

(S56)

Then the precision of estimating two components of the vector field by maximally entangled states

is

δB2
xest

+ δB2
yest

= δB2
est +B2δϕ2est ≥ 1

16 sin2(BT )

(
1 − cos2(BT ) cos2 ϕ

T 2 cos2 ϕ
+

B2

sin2(BT )

)
=

1

16 sin2(BT )

(
B2 − cos2(BT )B2

x

T 2B2
x

+
B2

sin2(BT )

)
.

(S57)

Similarly, the precision for estimating the gradients by maximally entangled states is

δ∇B2
xest

+ δ∇B2
yest

≥ 1

8 sin2(BT )

(
B2 − cos2(BT )B2

x

T 2B2
x

+
B2

sin2(BT )

)
. (S58)

3. Strategy comparison

In addition to the two gradient-sensing approaches discussed above—direct gradient estimation

using non-local entanglement (NLE) and a two-step approach that first estimates each vector

field with local entanglement (LE) separately before calculating the gradient—we also consider

an alternative approach based on the remote sensing (RS) described in the first section. In this

approach, the remote magnetic fields at each location are estimated independently, with the central

module serving as an ancilla, and the gradient is calculated from the separate field estimates. For

a more comprehensive comparison, we also present the precision of gradient estimation achievable

with this alternative strategy. The comparison is made under the condition that the resource

allocation is identical, with each sensor module containing two sensors. In the following tables, we

list the precision achieved by various strategies for estimating gradients in two and three directions,

respectively.

In the main text, we have provided a detailed theoretical and experimental comparison of

various strategies for estimating a two-component gradient. For completeness, Figure S1 gives the
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Strategy Initial state Precision Optimality Achievability

NLE 1√
2

(|0011⟩ − |1100⟩) 4B2−3B2
z

16B2T 2 + 5B2+3B2
z

16 sin2(BT )
N Y

RS 1√
2

(|00⟩ + |11⟩) 1
4T 2 + B2

2 sin2(BT )
Y Y

LE
N.A. 1

16

(
1
T + 2B

| sin(BT )|

)2
Y N

1√
2

(|00⟩ + |11⟩) 2

[FQ]
BB

+ 2B2

[FQ]
θθ

+ 2B2 sin2 θ

[FQ]
ϕϕ

N N

Table S1. The precision for estimating gradients along x, y and z directions.

Strategy Initial state Precision Optimality Achievability

NLE 1√
2

(|0011⟩ − |1100⟩) 1
4T 2 + B2

4(1+3 sin2(BT )) sin2(BT )
N Y

RS 1√
2

(|00⟩ + |11⟩) 1
4T 2 + B2

4 sin2(BT )
Y Y

LE
1√
2

(
|+B⟩⊗2 − |−B⟩⊗2

)
1

8T 2 + B2

8 sin2(BT )
Y Y

1√
2

(|00⟩ + |11⟩) 1
8 sin2(BT )

(
B2−cos2(BT )B2

x
T 2B2

x
+ B2

sin2(BT )

)
N Y

Table S2. The precision for estimating gradients along x and y directions.

comparison of strategies for estimating a three-component gradient. To ensure a fair comparison,

we include the precision limit of Strategy LE utilizing maximally entangled states. Although

employing the theoretically unachievable lower bound of Strategy LE, as derived in Eq.(S44), may

not seem fair, it still highlights the enhanced precision of Strategy NLE across certain parameter

value ranges. For example, at B = 1 and θ = π/2, Strategy NLE demonstrates higher precision

than Strategy LE during short encoding times T . Notably, despite the initial state of Strategy

NLE not being optimal, and hence not achieving the highest possible precision, it still surpasses

the best precision achievable by strategies without non-local entanglement. This emphasizes the

significant advantages of distributed quantum sensing, demonstrating its superiority in achieving

enhanced precision.
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Fig. S1. Comparing different strategies for estimating a 3-component gradient. The x-component
and y-component of the gradient are set of equivalent proportions. The stars mark the parameter set:
B = 0.5, T = 0.5π; the diamonds mark the parameter set: B = 1, T = 1.5π. a, The advantage of NLE at
θ = π/4 when B and T are varying. b, The precision limits of three strategies around B = 0.5, T = 0.5π.
Left: θ and T are fixed, B is varying from 0.05 to 1.25. Middle: B and T are fixed, Bz is varying from −0.5
to 0.5. Right: B and θ are fixed, T is varying from 0.1π to 1.9π. c, The precision limits of three strategies
around B = 1, T = 1.5π. Left: θ and T are fixed, B is varying from 0.05 to 1.25. Middle: B and T are
fixed, Bz is varying from −0.9 to 0.9. Right: B and θ are fixed, T is varying from 0.1π to 1.9π. d, The
advantage of NLE at B = 1 when Bz and T are varying. In a and d, the left panels exhibit the gain of
NLE over RS; the middle panels exhibit the gain of NLE over LE; the right panels exhibit the product of
the gain of NLE over RS and the gain of NLE over LE.
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Fig. S2. Strategies comparison for gradient estimation of a 2-component vector field. a-c,
Schematic diagrams of different strategies: (a) Distributed sensing with non-local entanglement (NLE);
(b) Remote sensing (RS) with an ancilla qubit; (c) Sensing with local entanglement (LE). d, Parameter
range where NLE outperforms RS and LE. The minimum precision gain of NLE over RS and LE(B) across
different B and T values, is calculated by their theoretical precision. e-f, Comparison of the precision
(
∑

i∈{x,y} δ
2∇Biest) of the three strategies. (e) Precision versus B for the three strategies at T = 1.5π and

N = 1. (f) Impact of T on estimation precision at B = 1 and N = 1. (g) Estimation precision versus N for
the three strategies at T = 1.5π and B = 1. The solid and dashed curves: the theoretical precision bound.
LE(B): local entanglement strategy using Bell state as the probe state, and Bell measurement. LE(O): local
entanglement strategy using the optimal probe state and measurement.
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II. EXPERIMENTAL IMPLEMENTATION

A. Device information

a b

d

e

f

g

h

Fig. S3. The experimental setup. a, The microwave control and measurement system built for this
experiment. b, The schematic diagram of the room-temperature electronics chassis, cryogenic wiring and
superconducting quantum network inside of the dilution refrigerator. Right panel: the legend of the devices.

We implement the distributed quantum metrology experiment utilizing a modular quantum

computing platform composed of five superconducting quantum chips, each integrated with four

qubits. The inter-chip connectivity is facilitated by high-quality aluminum superconducting coaxial

cables, where a gmon coupler is positioned between the qubits engaged in communication and the

cable, enabling tunable coupling strength. Furthermore, an impedance transformer is designed on

chip to significantly mitigate the stray loss on the communication channels [3]. In Fig. S3, we show

the comprehensive structure of the experimental setup. The distributed quantum processors are

sheltered in the 10 mK environment, nestled beneath the mixing chamber of a dilution refrigerator.

The microwave cables connecting the superconducting quantum chips serve as the conduit for sig-

nal transmission and reception between the quantum processors (see the bottom part of the middle

panel) and the customized integrated electronic channels (see the left photograph). The electron-

17



ics is primarily composed of digital-to-analog converters (DAC) and analog-to-digital converters

(ADC), which orchestrate the generation, manipulation and readout of quantum control signals.

The generation of XY control signals (single-qubit rotation) is facilitated by IQ mixing of the MHz

output of the DACs and the GHz microwave carrier from a local oscillator (LO). Concurrently,

the Z control signals (qubit frequency modulation) originate from DC and pulse signals output of

the DACs. The XY signals and Z signals belonging to each qubit are combined with a custom-

ized diplexer in room temperature. The readout pulses are generated by another set of DACs,

LO and IQ mixers, these devices up-convert the probe photons to match the readout resonator

frequencies, conversely, the emitted photonic signals from the readout resonators are amplified and

down-converted, finally being sampled by the ADCs, completing the readout cycle and providing a

digital record of the measurement data. For higher control and readout quality, we deploy multiple

filters across different temperature zones within the experimental setup (see the middle panel), the

legends detailing the components of these stages are shown in the adjacent panel on the right.

Node A B C
Qubit Q1 Q2 Q3 Q4 Q5 Q6

ωidle/2π (GHz) 4.551 5.019 4.477 4.959 4.937 4.393

ωread/2π (GHz) 5.629 5.692 5.686 5.627 5.688 5.621

EC/2π (MHz) −212 −200 −210 −225 −210 −229

F00 0.94 0.94 0.88 0.86 0.92 0.90

F11 0.91 0.90 0.87 0.83 0.88 0.89

T1 (µs) 19.2 18.4 26.8 14.3 25.3 26.2

T2R (µs) 1.52 4.77 2.42 4.72 3.58 4.02

T2E (µs) 5.49 10.95 11.49 15.18 15.57 14.45

SQG RB fid(%) 99.96 99.91 99.95 99.47 99.80 99.75

CZ XEB fid(%) 98.50 97.30 98.40

Table S3. Device information

The experiment in this work involves three distributed quantum processors, each containing

two qubits. We list the basic information of these six qubits in Table S3. All qubits are designed

to be operated across a frequency range of 4.1 ∼ 5.1 GHz, and idled at staggered frequencies.

The resonator frequencies are also staggered for independent readout. The anharmonicity EC is a

parameter determined by the capacitance of each qubit, it is instrumental in shaping the interaction

essential for the construction of CZ gates. F00 and F11 are the state preparation and measurement

(SPAM) fidelity for |0⟩ and |1⟩. T1 parameter denotes the energy relaxation time of each qubit,

T2R and T2E represent the dephasing time characterized by Ramsey experiment and spin echo

experiment, respectively.
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B. Gate performance

We calibrate the CZ gates with a standard protocol[4]. We obtain CZ gate pulse with 36 ns

plateau and 10 ns flattop rising and falling edges, and this gate is benchmarked using cross-entropy

benchmarking (XEB) experiment [5], the fidelity turns out to be 98.1% in average.

The state transfer operation is calibrated by vacuum Rabi experiments between the inter-chip

cable and the communication qubit to synchronize the frequencies of two qubits connecting on

either side of the cable, aligning them to resonance. Concurrently, we tune the pulses applied on

the tunable couplers to achieve an optimal coupling strength, reaching a low reflection loss[3]. The

averaged transferred state fidelity measured by quantum state tomography is ∼ 98.4%.

The control-signal sequence is implemented by gate sets in U(3) formalism: U3(α, β, λ) =

Rz(β)Rx(π/2)Rz(α)Rx(−π/2)Rz(λ). The gate set consists of three Z gates with three independent

angles (λ, α, β). These Z gates are interleaved with an X/2 gate and a −X/2 gate. The single qubit

gates (SQG) are benchmarked by randomized benchmarking (RB) experiment, and we obtain an

averaged fidelity: 99.81%.

C. Implementation of distributed sensing in quantum circuits

The NLE strategy for gradient metrology is realized as illustrated in Fig. S4. We construct a

three-node sensor network comprising modules A, B, C. Initially, We generate a Bell pair between

Q1 and Q2 on module A, then simultaneously transfer one qubit of this pair from Q1 to Q3 on

module B and another from Q2 to Q5 on module C. Immediately thereafter, we apply CNOT gates

on both B and C, and obtain the GHZ state across module B and C, with a fidelity of 80.36% (see

Fig. S4(c)). The probe state |Ψ0⟩ is prepared by applying additional X gates on Q3 and Q4, and a

Z gate on Q5, achieving a fidelity of 76.16% (see Fig. S4(d)). Subsequently, we encode the spatially

distributed vector field on sensor chips B and C with U(3)-formalism gate sets, where B⃗1 is acting

on both Q3 and Q4, B⃗2 is acting on both Q5 and Q6. Following the encoding process, we conduct

Bell measurement on both modules B and C. Under optimal control, the ideal final state |Ψf ⟩ has

equivalent occupation on |0010⟩ and |1000⟩, the fidelity obtained from experiment is 75.20% (see

Fig. S4(e)). The information carried on the sensors are decoded into the probability distribution

in measurement basis (see Fig. S4(f) for P0010). The oscillation period over gradient components

∇Bx and ∇By are observed to reduce with increasing sequential copies N .

The error in this sequence primarily stems from the control error when synchronously transfer-

ring two entangling states. The control error is estimated to be 11.44% for generating the non-local

GHZ state, the decoherence error throughout this 340 ns sequence is approximately 8.34%, estim-

ated by numerical simulation. These two parts yields an estimated fidelity of 80.22%, which is

closed to our experimental result of 80.36%. The non-local entangling state across two chips,

which are not directly connected, is more fragile to environmental noise. The effective decoherence
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Fig. S4. a, A brief schematic diagram of NLE metrology strategy for gradient. b, The detailed quantum
circuit of (a). c, The remote four-qubit GHZ state generated across three modules. d, The four-qubit probe
state |Ψ0⟩ = 1√

2
(|0011⟩− |1100⟩). e, The reference final state |Ψf ⟩ = 1√

2
(|0010⟩− |1000⟩) after step III, with

no control and signal units inserted into the circuit. f, The probability oscillation observed when scanning
parameter ∇Bx or ∇By for different N , the encoding time is fixed at T = 0.2π.

rate of the probe state is estimated to be 80 × 2π kHz by numerical analysis. As a consequence,

the fidelity values of |Ψf ⟩ are 69.27%, 63.81%, 58.78%, 54.15% for N = 1 ∼ 4, respectively. These

values are higher than the confidence threshold ∼ 50% for entanglement.

Demonstrating RS strategy requires two pairs of distributed nodes (A−B and A−C) with high-

quality connection. We take A-B as an example (Fig. S5a), we transfer the local entanglement

(indicated by the blue shadow) to a remote node, thereby establishing the cross-module entangle-

ment (indicated by the red shadow). In our conception, the metrology of a local field through a

sensor network comprising a central measurement module and multiple sensor modules spatially

positioned for sensing. The quantum circuit is illustrated in Fig. S5(b). Initially, we generate a

local Bell state on chip A, and subsequently transfer this entangled state from Q2 on chip A to

Q3 on module B, resulting in a cross-node Bell state between Q1 and Q3. Immediately following

the probe state preparation, we use Q3 as the sensor qubit, Q1 as the ancillary qubit. Assisted

with dynamical decoupling sequence on Q1 and Q2, the inter-module entanglement is preserved

from fast decoherence, until the quantum state on Q3 is retrieved back to Q2. The last step of this

20



a

Y/2 DD

DD DD

Y/2

Y/2 -Y/2

Q3e

Q2

Q1

d
RZ(ϕ)

RZ(ϕ)

U (B,θ,ϕ) UC (B',θ',ϕ')

DD

( (N
RZ(ϕ)

RZ(ϕ)

I II IIIb

d

e

Bell state

State
transfer

Signal
Control

eQ1Q2

Q3

Q1Q2

Q3

-Y/2 Y/2

|00⟩ |11⟩
|00⟩

|11⟩
Ref. (no ctrl.)

|00⟩ |11⟩
|00⟩

|11⟩
N=1

|00⟩ |11⟩
|00⟩

|11⟩
N=2

|00⟩ |11⟩
|00⟩

|11⟩
N=4

|00⟩ |11⟩
|00⟩

|11⟩
N=8

-0.5

0.0

0.5

|00⟩ |11⟩
|00⟩

|11⟩
Opt. return

-1.0

0.0

1.0
c d

Re
(ρ

)

Re
(ρ

)

Fig. S5. a, A brief schematic diagram for sensing a local vector field at a certain position with two nodes A
and B. b, The quantum circuit diagram for a. I: state preparation, II: encoding, III: measurement. c, Ref
(no ctrl): the density matrix with no signal-control sequence, measured after step II. N = 1 ∼ 4: the density
matrices with N = 1, 2, 4, 8, measured after step II. d, Opt return: the density matrix with no signal-control
sequence, measured after step III.

process involves applying a Bell measurement on Q1, Q2. Under the optimal control conditions,

step II behaves as an identity operator. We proceed to conduct quantum state tomography on

module A after the encoded quantum state is retrieved. Fig. S5(c) shows the extracted real part

of density matrices from Q2 and Q3.

The reference circuit, devoid of control and signal encoding in step II, achieves a final state fidel-

ity of 91.15%. ForN = 1, 2, 4, 8 in step II, we attain state fidelities of 88.13%, 84.37%, 79.02%, 70.46%,

respectively. The reference final state is presented in the rightmost panel, the state fidelity is

90.52%. In this sequence, control error from the CNOT gates and state transfer operations

amounts to 8.7%, the control error from each Ux or Uc unit is 0.79% in average, while the average

decoherence error per unit is 2.55%, stemming from an effective decoherence rate of 41.1×2π KHz.

A straightforward feature of the relation between control-signal layer N and the estimated

precision can be captured by the oscillation period of probability under Bell measurement. As is

shown in Fig. S6, the period of P00 profile near the optimal control parameters decreases at a rate

proportional to N . Scanning each single parameter is analogous to a single-parameter-estimation

process, wherein the quantum Fisher information is determined by the derivative of probability

with respect to the parameter to be estimated. Therefore, this allows us to have an intuitive

perception of the enhancement from sequential strategy. Moreover, the encoding time T is also

periodically correlated to the probability distribution, and this correlation depends on the signal

parameters. For example, when the signal is set to (B, θ, ϕ) = (1, π/4, π/4), the period of P00

profile at T = π, 2π stays invariant with respect to the parameters θ and ϕ, regardless of N . In

contrast, at T = 0.5π or T = 1.5π, the oscillation period changes more dramatically, indicating

that the sequential strategy is effective there.
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Fig. S6. The probability oscillation with three parameters and encoding time T . a, For a fixed
signal, we scan control parameter Bc and encoding time T for different N . b, We scan control parameter θc
and encoding time T for different N . c, We scan control parameter ϕc and encoding time T for different N .

To implement LE strategy, we generate local Bell state on node B and C, signals and controls

are simultaneously acting on two pairs of sensor qubits. The sequence ends with Bell measurement

on B and C, which is similar to RS strategy.
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III. EXTENDED DATA

A. Extended data for sensing of remote vector fields
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Fig. S7. The likelihood function landscape at N = 4 and N = 8. Stars: the location of the optimal
control parameters. a, The landscape for parameter B and ϕ at N = 4. b, The landscape for parameter
B and ϕ at N = 8. c, The landscape for parameter θ and ϕ at N = 4. d, The landscape for parameter θ
and ϕ at N = 8. We post the theoretical landscape and experimental result, and mark the optimal control
parameters.

We benchmark the sensor-ancilla network by analyzing the landscape of the likelihood function

L′ near the optimal control parameters, the results are shown over two variables in Fig. S7. Spe-

cifically, the panels depict L′(B,ϕ) in Fig. S7a,b and L′(θ, ϕ) in Fig. S7c,d. The optimal control

parameters, marked with a star in each panel, correspond to the expected estimation results. As

N increases, the boundary area of the likelihood landscape contracts, demonstrated for N = 4 in

Fig. S7a,c and N = 8 in Fig. S7b,d. The agreement between theoretical and experimental results

ensures that the estimated parameters not only align with the observed data but also adhere to

the underlying physical model.

The Fig. S8 illustrates the complete MLE result for sensing the three-component vector field.

The density amplitude in each panel represents the count of distribution normalized by the integral

of distribution at N = 1. These results demonstrate that increasing the number of sequential copies

enhances the precision of simultaneous three-parameter estimation. However, unavoidable experi-

mental errors introduce a bias of up to ±3.45% in the averaged estimation results, deviating from

the actual vector field parameters. These errors can distort the likelihood landscape, affecting the

efficiency of the MLE process. Moreover, fluctuation in experimental noise lead to inhomogeneous

probability distributions, increasing the risk of convergence to local rather than global minima.

Despite these challenges, the optimal strategy we implement facilitates a flat region around the

optimal control parameters, and the use of multiple initial values mitigates the impact of local

minima [6]. This approach improves the robustness and reliability of the estimation process [7].
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Fig. S9. The theoretical and experimental landscape of estimating a two-component vector
field with a sensor-ancilla network. Stars: the location of the optimal control parameters. a, At N = 2
and T = 0.5π. b, At N = 4 and T = 0.5π. c, At N = 2 and T = 1.5π. d, At N = 4 and T = 1.5π

We apply the same benchmarking approach to a two-component vector field. As is shown in

Fig. S9, the contraction of the likelihood function landscape with increasing N is evident. The

parameters to be estimated in this case are set as B⃗ = (
√
2
2 ,

√
2
2 , 0), corresponding to |B⃗| = 0.5.

B. Extended data for distributed sensing of vector field gradient

We experimentally evaluate the performance of NLE strategy for simultaneously estimating

the three components of the gradient. In this scheme, we set B⃗ = (12 ,
1
2 ,

√
2
2 ), the normalized

distributions of the estimators ∇Bxest , ∇Byest , and ∇Bzest are shown in Fig. S10a (for T = 0.5π)

and Fig. S10b (for T = 1.5π).
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When estimating the gradient of a two-component vector field ∇B⃗ = (∇Bx,∇By), the field

amplitudes are expressed as a function of gradient ∇B⃗ and sum
∑
B⃗ at two distinct positions,

with B⃗1 = (
∑
B⃗ + ∇B⃗)/2 and B⃗2 = (

∑
B⃗ − ∇B⃗)/2. The full dataset, presented in Fig. 2 of the

main text, is shown in Fig. S11, where the x and y components are plotted separately. The signal

parameters are chosen as
∑
B⃗ = (

√
2/2,

√
2/2, 0) and ∇B⃗ = (0, 0, 0). The encoding times are set

to T = 0.5π (Fig. S11a) and T = 1.5π (Fig. S11b).

C. The influence of noise

Different types of noise in quantum system have impact to the precision of the gradiometer.

The effects of noisy channels in quantum parameter estimation have been discussed in previous

studies [8–13]. In our work, the dominant sources of noise are control errors and dephasing. We

numerically simulate the relationship between these noise types and the precision of the estimation.

Fig. S12a shows the sum of variance in the estimated gradient as a function of different dephasing

rates Γϕ, while Fig. S12b depicts the effect of varying gate errors ϵσ on the precision. The dephasing

noise is modeled using a thermal channel, and gate errors are incorporated through a Pauli noise
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channel. These simulations are conducted using the Qiskit framework [14].

To mitigate the effects of noise, we apply error mitigation (EM) techniques [15] during data

post-processing. For the NLE strategy, non-local entangled states are particularly sensitive to en-

vironmental noise. However, EM significantly improves performance, as demonstrated in Fig. S13.
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Fig. S13. The effect of error mitigation (EM) on the experimental sum of variance.
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