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We constructed a simulation, based on [1], to better articulate how a system’s
architecture can facilitate or inhibit a social media platform’s control efforts.
Social media platforms are very large, hosting hundreds of millions or even
billions of daily active users. Directly measuring and modeling networks
of this size is prohibitive. Furthermore, the specific network structure of
any given social media platform is constantly changing. The aim of this
simulation is to rank different platform architectures regarding the extent to
which they might facilitate or inhibit control of information flow.

Since we cannot directly measure orders of growth of different social me-
dia platform architectures. Our aim in doing so is to be able to assess whether
a platform whose design follows a given architecture is more or less flexible
— and therefore controllable — than another platform following a different
architecture. Our simulation is based on Moses’ Theory of Generic System
Architectures [I], which quantifies the flezibility of different structures by
counting up the total number of paths in the corresponding network. Flex-
ibility is important because Moses theorizes that it is inversely related to
its controllability [2]. The rationale is that if individual paths or nodes are
disrupted, e.g., because content or accounts are removed, other accounts on
the same platform can still access interdicted information through the use of
alternate pathways. When the nodes represent social media accounts that
are operating in a manner that is not aligned with the platform owner (e.g.,



when anti-vaccine accounts post vaccine misinformation despite a platform’s
policy prohibiting this misinformation), this flexibility can be used to under-
mine the platform owner’s control efforts because attempts to remove posts
or accounts can be circumvented by relying on the same alternate paths that
facilitate flexibility.

Ideally, we would simulate several networks with the aim of calculating
each one’s total number of alternate pathways through which information
might flow. However, exhaustive enumeration of all paths in a graph is known
to be a #P-complete problem [3], [4], meaning that this enumeration can only
be calculated precisely by brute force. This is prohibitively computationally
expensive for large graphs. We therefore approximate the total number of
paths in a graph using its communicability [5] — a widely-used proxy that is
more computationally tractable [6] [7, 8, @]. Specifically, the total network
communicability CT¥ (A) for each graph can be calculated by computing the
exponential of its adjacency matrix,
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and then summing across all nodes.
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Our approach is to estimate the order of growth of the total network
communicability of networks associated with different social media platform
architectures, and then to compare these across architectures. To do so,
we simulated networks associated with several of the generic system archi-
tectures identified by Moses [I] varying the total number of nodes in each
network. In practice, total network communicability follows similar orders
of growth as those derived for number of paths in prior work [1].

Social Media Platform Architectures

We claim that Twitter’s system architecture undermines its controllability.
Beyond empirical evidence for this claim, the simulation in this section com-
pares networks resembling Twitter’s structure to networks with structures
that result from other architectures.



Layered Hierarchies

A platform’s architecture may place constraints on how information is al-
lowed to flow between accounts. One such constraint, used by Facebook [10],
is known as “layering”. In layered structures, nodes are divided into a set of
layers arranged in a hierarchy such that nodes in layer n may only connect
to nodes in layers n — 1, n, or n + 1. Furthermore, the internal structure of
a layered hierarchy need not be specified [I]. Moses [1], 2, TT] theorizes that
layering can make inflexible systems more flexible, but can also make overly-
flexible (and hence uncontrollable) systems more controllable. For each ar-
chitecture described below, we also examined how segmenting the resulting
networks into two or three layers affected their communicability. Although
this need not be the case in general, for the purposes of this simulation, we
assume that each layer has the same structure. For example, a three-layered
scale-free structure with 2400 nodes is made up of three scale-free networks
with 800 nodes each, with connections between nodes in adjacent layers. We
examined the effects of segmenting each of the structures described below into
2- and 3-layered hierarchies, holding the total number of nodes constant.

Generic System Architectures

For purposes of comparison, we generated several network structures based
on the generic system architectures defined in [IJ.

Regular Trees

One of the most restrictive system architectures is a regular tree structure,
which requires that each node has exactly one parent and all but the leaf
nodes have a fixed number of children. Although social media platforms are
never this restrictive in practice, platforms such as Reddit or online discussion
boards have some tree-like properties such as a requirement that messages
can only be seen by followers of a given subreddit and, in some cases, are
subject to removal by a moderator. Thus, tree structures represent a limiting
case.

We generated tree-structured graphs using the IGRAPH python package
[12] examining values of the tree branching factors (number of children per
parent node) ranging from 2 through 9. For each branching factor, we gen-
erated trees with depth ranging from 2 through 9 and retained all trees with



at most 2400 nodes. We calculated the total network communicability for
each network and found that, holding branching factor fixed, communicabil-
ity grows linearly with the total number of nodes, similar to the relationship
shown in prior work [I] (see Table [1)).

Regular Lattices

A somewhat less restrictive system architecture is a regular lattice structure,
in which each node has exactly d neighbors. This structure is also quite
unrealistic for social media platforms. However, what it has in common with
Twitter is the absence of an explicit hierarchy. We therefore include it for
comparison purposes.

We generated lattices using the IGRAPH python package [12] with the di-
mensionality (total number of neighbors) of each node ranging from 2 through
5 retaining all lattices with at most 2400 nodes. We calculated the total
network communicability for each network and found that, holding lattice
dimensionality fixed, communicability grows in an inverse power relationship
with the total number of nodes per lattice dimension, as shown in prior work
[1] (see Table [2). Since the number of nodes in the network is equal to the
number of nodes per dimension raised to the power of d, the overall order of
growth of these lattices is linear, albeit higher than trees.

Regular Toruses

A variant of the lattice structure is the regular torus, in which all edges
of the lattice “wrap around”. This structure, although still unrealistic for
real social media platforms, is nevertheless the starting point for the Watts-
Strogatz model, which is intended to induce the small world effect after ran-
dom rewiring [I3]. We therefore include this model because it is an example
of an architecture that induces community structure.

We generated toruses using the IGRAPH python package [12] with the
dimensionality (total number of neighbors) of each node ranging from 2
through 5 retaining all lattices with at most 2400 nodes. We calculated
the total network communicability for each network and found that, hold-
ing torus dimensionality fixed, communicability grows linearly with the total
number of nodes in the torus (see Table 4)) and, in practice, has very similar
communicability values to those found in regular lattices for single-layered
structures; however, as the number of layers increases toruses appear to be



Table 1: Communicability Values for Tree-Structured Hierarchies, evaluated
at n=3,686,697 — the total number of accounts in our data after applying
3-core network decomposition to identify communities.

Regular Trees; O(n)

One Layer
Branching Factor Equation log1oC™N
2 CTN =9.88n — 23.39 7.56
3 CTN =13.02n — 51.73 7.68
4 CTN =16.92n — 95.45 7.80
5 CTN =21.63n — 152.93 7.90
6 CTN = 27.63n — 285.37 8.01
7 OTN = 33.45n — 295.78 8.09
8 CTN = 41.85n — 474.30 8.19
9 CT™ =51.97n — 742.20 8.28
Two Layers
2 CTN = 26.85n — 127.17 8.00
3 CT™N = 35.37n — 266.52 8.12
4 COTN = 46.00n — 518.94 8.23
5 CTNC = 58.79n — 831.40 8.34
6 CTN =72.07n — 975.90 8.42
7 CTN =90.93n — 1608.03 8.53
8 CTN = 113.76n — 2578.58 8.62
9 CTN = 141.27n — 4035.02 8.72
Three Layers
2 CTN = 39.53n — 280.89 8.16
3 CTN = 52.07n — 588.66 8.28
4 CTN = 67.08n — 954.74 8.39
5 CTN = 86.57Tn — 1836.33 8.50
6 CTN =106.12n — 2155.46 8.59
7 CTN = 133.89n — 3551.66 8.69
8 CTN = 167.51n — 5695.32 8.79
9 CTN = 208.82n — 8912.15 8.88




Table 2: Communicability Values for Regular Lattice Structures, evaluated
at n=3,686,697 — the total number of accounts in our data after applying
3-core network decomposition to identify communities.

Lattices; O(n)

Dimensionality Equation log,,C™N
One Layer

2 CTN = (7.39¢/n — 10.26)4 8.30

3 CTN = (7.34¢n — 9.91)4 9.15

4 CTN = (7.16¢/n — 9.21)¢ 9.94

5 CTN = (6.89/n — 8.46)¢ 10.63

Two Layers

2 CTN = (17.35/n — 2.76)¢ 9.04
3 CTN = (14.09/n — 8.40)¢ 10.01
4 CT™N = (15.56/n — 18.54)7  11.29
5 CTN = (16.92/n — 24.03)¢  12.55
Three Layers
2 CTN = (25.86/n — 5.06)% 9.39
3 CT™N = (18.70/n — 12.48)  10.38
4 CTN = (18.97¢/n —22.61)*  11.63
5 CTN = (27.50/n — 46.07)¢  13.58




Table 3: Communicability Values for Regular Torus Structures, evaluated at
n=3,686,697 — the total number of accounts in our data after applying 3-core
network decomposition to identify communities.

Toruses; O(n)

Dimensionality Equation log1oCTN
One Layer
2 CTN = 54.60n — 9.39 8.30
3 CTN = 403.78n — 502.27 9.17
4 CTN =2999.49n — 17994.72 10.04
5 CTN = 22540.47n — 455929.19 10.92
Two Layers
2 CTN = 148.46n — 73.81 8.74
3 CTN =1099.47n — 3761.86 9.61
4 CTN = 8233.00n — 127165.56 10.48
5 CT™N = 61271.35n — 2478687.96 11.35
Three Layers
2 CTN = 218.61n — 163.03 8.91
3 CTN = 1618.94n — 8308.83 9.78
4 CTN = 12122.82n — 280870.77 10.65
5 CTN =90220.08n — 5474681.77  11.52




Table 4: Communicability Values for Regular Torus Structures, evaluated at
n=3,686,697 — the total number of accounts in our data after applying 3-core
network decomposition to identify communities.

Toruses; O(n)

Dimensionality Equation log1oCTN
One Layer
2 CTN = 54.60n — 9.39 8.30
3 CTN = 403.78n — 502.27 9.17
4 CTN = 2999.49n — 17994.72 10.04
5 CTN = 22540.47n — 455929.19 10.92
Two Layers
2 CTN = 148.46n — 73.81 8.74
3 CTN =1099.47n — 3761.86 9.61
4 CTN =8233.00n — 127165.56 10.48
5 CTN = 61271.35n — 2478687.96 11.35
Three Layers
2 CTN = 218.61n — 163.03 8.91
3 CTN = 1618.94n — 8308.83 9.78
4 CTN = 12122.82n — 280870.77 10.65
5 CTN =90220.08n — 5474681.77 11.52

less flexible, and hence more controllable, than lattices.

Complete Graphs

Trees, lattices, and toruses are all relatively sparse structures. In contrast,
many social media clusters are strongly connected. An extreme version of this
observation yields an architecture with a fully-connected “team” or “com-
plete” structure, in which each node is connected to all of its neighbors.

We generated fully-connected graphs using the IGRAPH python package
[12] with the total number of nodes ranging from 100 through 700 nodes in
increments of 100 (larger numbers of nodes had communicability values that
were so high that they led to an overflow error). We calculated the total
network communicability for each network and found that communicability
grows exponentially with the total number of nodes in the network (see Table

o).



Table 5: Communicability Values for Complete Structures, evaluated at
n=3,686,697 — the total number of accounts in our data after applying 3-
core network decomposition to identify communities.

Teams; O(e")

Number of Layers Equation log,CTN

1 CTN =13.94¢"  3,705,048.33
2 CTN = 163.6Tez 1,849,776.64
3 CTN =361.5le3 1,233,186.90

Scale-Free Networks

Twitter does not impose any restrictions on which accounts may follow other
accounts. Thus, it possesses an unrestricted architecture, which Moses [11]
simply refers to as a “network”. Absent any restrictions, a significant body
of empirical work has demonstrated that such networks tend to self-organize
into highly-clustered communities in a manner that approximates a scale-free
network [14, [15] [16]. We therefore calculated the communicability of several
scale free networks and compared the communicability of these structures to
those resulting from “generic architectures” defined in prior work [I].

To generate scale free networks, we used the IGRAPH python package [12]
to create graphs with degree distributions matching our data. Specifically,
we fit a power law to the empirical degree distribution of our dataset using
the POWERLAW python package [17], and estimated the power law exponent
of this dataset as v = 1.46. We next randomly generated a degree sequence
following this power law degree distribution, and used this degree sequence
to randomly generate a scale-free network. Given this network, we next
introduced community structure into our network by generating 25 simulated
communities, each of which were created using the Watts-Strogatz model
[13] with an average degree of 1 and a rewiring probability of 0.10. Next, we
randomly selected 50 pairs of nodes and added edges between them if they
were not already adjacent and if they both had at least two edges.

We examined networks with 150, 300, 600, 1200, and 2400 nodes, sim-
ulating 1000 networks for each network size. For each simulated network,
we calculated its total network communicability and extracted the median
and 95% confidence bounds (i.e., the 2.5 and 97.5 percentile communicability
values). We compared the communicability of these scale free networks to
those associated with Moses’ generic architectures (see Table [f]).
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Table 6: Communicability Values for Scale-Free Networks with Average De-
gree = 1 and 7 = 1.46 evaluated at n=3,686,697 — the total number of
accounts in our data after applying 3-core network decomposition to identify
communities.

Scale-Free Networks; O(e”)

Percentile Equation log,oCTV
One Layer

2.5 CTN = 0.92¢"5"  24,583.67

50.0 CTN — 62.94¢™5"  26,289.57

97.5 CTN = 6518.29¢ %" 28,008.56
Two Layers

2.5 CTN —17.70"5"  15,756.60

50.0 CTN —139.47¢"5"  16,889.05

97.5 CTN = 2020.98¢" 7" 18,183.69
Three Layers

2.5 CTN — 37.94¢"5"  12,241.88

50.0 CTN —209.23¢" " 13,035.62

97.5 CTN = 1143.98¢5"  14,075.13
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Simulation results show that the total network communicability of scale-
free networks grows as order O(e%), which is larger than all but the highest
order of growth of all generic architectures. In contrast, platforms such as
Facebook, which utilize layering, are likely more controllable given the same
number of nodes. Although we leave a systematic exploration of multiple
different platforms to future work, we observe that Reddit, which utilizes
elements of tree-like structures, may among the most controllable of social
media platforms.

References

[1] Broniatowski, D. A. & Moses, J. Measuring flexibility, descriptive com-
plexity, and rework potential in generic system architectures. Systems
Engineering 19, 207-221 (2016).

[2] Moses, J. Flexibility and Its Relation to Complexity and Architecture,
197-206 (Springer Berlin Heidelberg, 2010).

[3] Valiant, L. G. The complexity of enumeration and reliability problems.
siam Journal on Computing 8, 410-421 (1979).

[4] Roberts, B. & Kroese, D. Estimating the number of st paths in a graph.
Journal of Graph Algorithms and Applications 11, 195-214 (2007).

[5] Estrada, E. & Hatano, N. Communicability in complex networks.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 77,
036111 (2008).

[6] Benzi, M. & Klymko, C. Total communicability as a centrality measure.
Journal of Complex Networks 1, 124-149 (2013).

[7] Estrada, E. & Hatano, N. Communicability graph and community struc-
tures in complex networks. Applied Mathematics and Computation 214,
500-511 (2009).

[8] Estrada, E. The communicability distance in graphs. Linear Algebra
and its Applications 436, 43174328 (2012).

11



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

De la Cruz Cabrera, O., Jin, J., Noschese, S. & Reichel, L. Commu-
nication in complex networks. Applied Numerical Mathematics 172,
186205 (2022).

Broniatowski, D. A., Simons, J. R., Gu, J., Jamison, A. M. & Abroms,
L. C. The efficacy of facebook’s vaccine misinformation policies and ar-

chitecture during the covid-19 pandemic. Science Advances 9, eadh2132
(2023).

Moses, J. The Anatomy of Large Scale Systems (2012).

Csardi, G. & Nepusz, T. The igraph software package for complex
network research. InterJournal Complex Systems, 1695 (2006).

Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-
world'networks. nature 393, 440-442 (1998).

Barabasi, A.-L. Scale-free networks: A decade and beyond. Science
325, 412413, DOI: 10.1126 /science.1173299 (2009).

Barabasi, A.-L. & Bonabeau, E. Scale-free networks. Scientific american
288, 50-9 (2003).

Broido, A. D. & Clauset, A. Scale-free networks are rare. Nature com-
munications 10, 1017 (2019).

Alstott, J., Bullmore, E. & Plenz, D. powerlaw: a python package for
analysis of heavy-tailed distributions. PloS one 9, e85777 (2014).

12


10.1126/science.1173299

