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1 Sample quality and characterization

We determine the sample composition via energy dispersive X-ray spectroscopy (EDX), the crystal structure
by powder X-ray diffraction (PXRD), and the orientation of the as-grown EuO using a Laue device, Miiller
Micro 91, with a tungsten anode. The typical Laue pattern (Fig. ) shows sharp reflexes indicating a
high crystallinity of the samples. Furthermore, the simulation of the pattern yields [100] cleavage planes of
the crystals. By indexing the peaks using the software “OrientExpress”, we confirm the rock-salt crystal
structure and the lattice parameter (¢ = 5.1378 A), which agrees with the literature value of EuO single
crystals [I, 21 3].

We further checked the magnetic properties by examining the magnetic susceptibility between 1.8 K and
300K at poH=0.01T using a Quantum Design Physical Property Measurement System (PPMS). The sample
was cooled in zero field prior to each measurement. The inset of Fig. [SIp shows the magnetic susceptibility
Xmol Of EuO in the whole measured temperature range. The susceptibility xmo1 exhibits an abrupt change at
Tc=69K at the transition into the magnetically ordered state, agreeing with a typical values for transitions
between a ferromagnetic and a paramagnetic phase. The linear temperature dependence of X;él in the para-
magnetic phase indicates Curie-Weiss behavior. We determine the transition temperature by extrapolation
of the linear fit as Tc &~ 69 K, which agrees precisely with the literature value [, [B]. This implies an unde-
tectably low charge-defect density in our EuO samples, since T would sensitively shift to higher values even
upon small amounts of carrier doping < 0.1 % [5[6]. This confirms that the conduction band is empty before
the pump excitation. The near-constant value below T indicates a negligible coercivity in the susceptibility
measurements, again in agreement with the literature [I]. The absence of a low-temperature increase of Xmo1
below 10 K [I] confirms the absence of compositions like EuzOy4, which would order antiferromagnetically at
around 5 K.

The ferromagnetic phase transition is also confirmed by the heat-capacity measurement between 1.8 K
and 200 K in zero field using the PPMS, as displayed in Fig. [SIk. The pronounced A-like peak centered at

69 K matches the second-order transition from the ferromagnetic to the paramagnetic phase.

2 Fit of experimental data

To quantitatively investigate the evolution of the relaxation dynamics, we fit the temperature dependence

of AR/R according to the relation

y=C1-e M+ Cy-e ! +yp. (S1)
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Figure S1: Characterisation of our EuO bulk single crystals. a, The Laue pattern of the crystallographic
[100] direction shows the four-fold symmetry of the cubic lattice. b, Inverse magnetic susceptibility of EuO
measured in a 0.5 mT magnetic field. The extrapolation of the linear fit leads to T¢ & 69 K. The inset shows
the magnetic susceptibility from 1.8 K to room temperature. c, Zero-field specific heat.

Depending on the temperature range in question, we may choose the relaxation rates -y; 2 as real or complex,
the amplitudes C 2 as positive, negative, or complex, and the offset yy as non-zero or zero, as discussed in
the following.

At low temperature, the time dependence of AR/R in the main text suggests a bi-exponential relaxation,
and we choose C7 2 > 0 and 7 2 as real, so that the latter represent relaxation rates with Tyow = 1/71,
Ttast = 1/72 as the associated relaxation times. The offset yo > 0 describes the reflectivity change associated
with the long-lasting insulator-metal transition resulting from the Stoner band splitting in the ferromagnetic
phase; see the main text. Typical fit results are presented in Fig.[S2h, b. They show that the bi-exponential
model perfectly describes the relaxation behavior of AR/ R at low temperature (panel a) but fails to reproduce
the behaviour of the reflectivity at high temperature (panel b), where AR/R exhibits a negative regime.

Negative contributions to the reflectivity change might, for instance, arise from radiationless Auger
recombination. Even though we excluded this process in the main text for reasons of principle, we nevertheless
attempted to fit it by choosing C; < 0 and keeping C3 > 0 and 7; 2 real as before. The results are displayed
in Fig. Even though a good agreement with the experimental results is achieved at selected temperatures,
see Fig.[S3h, the temperature dependence of the set of fits in Fig. exhibits an unphysical, erratic behavior
for the relaxation time 7. Note that the discontinuous trend between 100 and 200 K is also expressed by
the enormous error bars of the associated fit values; see the caption of Fig. Hence, the negative-amplitude
model (C; < 0) and any physical processes associated with it must be discarded.

Instead we emulate the region with AR/R < 0 by assuming complex values for Ci 5 and v; 2. Specifically,
we set C 2 = CoeT#o and 1,2 =7 £47”, which ensures that the resulting observable AR/R < 0 in Eq.

is still a real value. We furthermore set yy = 0 because there are no insulator-metal transition and Stoner
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Figure S2: Normalised, pump-induced reflectivity AR/ R data and fit results of Eq. for the bi-exponential
and the complex-rate scenarios discussed in the supplementary text. a, b, bi-exponential fit with real and
positive values C1 2, 1,2, and yo. It reproduces the low-temperature data well, but fails to reproduce the
negative part of AR/R at high temperature. c, d, Data and fit results with complex values C; o = Coetivo,
m.2=7"£iv", and yo = 0. This model describes the data appropriately at high temperature, but fails at
low temperature, indicating a qualitative change of the dynamics at an intermediate temperature 7. The
insets in a and ¢ are zoomed-in views for better visualisation of the fit quality.
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Figure S3: Normalised, pump-induced reflectivity data AR/R and fit result with the negative-amplitude
model (both positive and negative coefficients Cy, Cs allowed). a, Time trace and fit at 120 K. b, Relaxation
times Tyow, Ttast €xtracted from fitting the negative-amplitude model. Although individual time traces can
be fitted well, the erratic temperature dependence of the extracted relaxation time 7¢,¢ and the associated
huge fit errors of o, ~ 4.4 x 10% ps demonstrate the infeasibility of the fit.
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Figure S4: Difference in fit quality according to Eq. (S2|) between the bi-exponential and complex-rate

scenarios. Better suitability of the former or latter are indicated by positive or negative values of R2 | —
2

complex: Tespectively. We see that with increasing temperature, a transition from bi-exponential to complex-
rate behaviour occurs with the zero crossing at 85 K in excellent agreement with the results in the main
text.

splitting in the high-temperature paramagnetic regime. This leads to two adjustable parameters only, ~'
and ", since the amplitude Cj is absorbed in the normalisation of the experimental signal and the phase
o is trivially fixed by the position of the zero-crossing of the experimentally observed time traces (see,
e.g. Fig.[S2d). From Fig. , d we see that the complex-rate model fits the experimental data very well at
high temperature, but, as expected, fails at low temperature.

To quantify the feasibility of the bi-exponential and complex-rate fits and evaluate the transition tem-

perature T between the respective regimes, we assess the fit quality by the parameter

m2:1_w (S2)

where y; represent the measured data at the observation times t;, f; is the value predicted by the fitting
model, and 7 is the average of the measured data. Thus, the larger 932, the better the model describes the

experimental data. Figure shows the difference 932 R2

veal — Reomplex Detween the real- and complex-valued

relaxation models. We see that the bi-exponential model with positive amplitudes is appropriate at low
temperature, whereas the complex-rate model consistently describes the data at high temperature. This
behaviour is characteristic for a NHPT, as discussed in detail in the main text. The transition temperature
of the NHPT, where the change from real to complex relaxation occurs, is derived as T* = (84 £ 5) K from
the temperature dependence of 4" in the main text. This value is in perfect agreement with the zero-crossing

real

of 2,1 — M2, piex a6 T = 85 K in Fig.



3 Theory of exciton dynamics

The dynamical variables of the photoexcited EuO system are the density of bright (spin-0) and dark (spin-1)
excitons, represented by bosonic creation and destruction operators a;f), a, and all, a, respectively, as well
as the orientation S; , of the Eu 4f magnetic moments S; on lattice site i, S, =x1/2, £3/2,...,£5, S =

7/2. The effective Hamiltonian for these excitations reads,

Hoo= Y hQuala, —J3 85+ ewblb+Jyp Y (b +0}) [ainaOS*m + agamsm] . (S3)
m==1 (4,5) k m=%, k

where hQ,, > 0 is the excitation energy of a dark exciton (m = +1) with respect to a bright exciton, J
is the ferromagnetic-polaron exchange coupling between the Eu 4f moments on a Heisenberg lattice, and
the last term describes the transfer between bright and dark excitons. It is induced by the spin-exchange
coupling Jgr between the electron spin in a 5d(ta4) orbital as a constituent of an exciton and the 4 f moments
on neighboring Eu sites [7]. Here and in the following, S* represent the corresponding 4 f-spin raising and
lowering operators, respectively, and we suppress the index of neighboring Eu lattice sites for simplicity of
notation. Note that the triplet dark-exciton state with m = 0 is not accessed by the spin-flip processes. The
bright-dark exciton transitions are assisted by absorption or emission of phonons with dispersion ¢y, described
by phonon creation and destruction operators bL. The phonon system comprises a thermal, Markovian bath
at the cryostat temperature T" which we treat by the Lindblad formalism. This leads, after lengthy, but
straight-forward operator algebra [8, [0] to the Lindblad master equation for the density matrix p(¢) of the

coupled exciton-Eu 4 f-moment system,

ip(t), Ho] + p(t) Llaf] p(t) + R Llao] A(t) (54)

+ > {T* Llaf,apS ™™ p(t) + T~ Llafa,,$™] p(t)} -
m==+1

Here, the Lindblad superoperator L of an operator A acting on the density matrix is defined as
L[A] p = ApAt — (ATAp+ pATA)/2 . (S5)

The terms on the right-hand side of Eq. thus describe, in the order of appearance, the coherent von-
Neumann time evolution, the excitation of bright excitons by the external laser pulse p(t), the radiative
decay of bright excitons with amplitude R, and the phonon-assisted bright-dark and dark-bright exciton
transformations mediated by lowering and raising the Fu 4f spin, respectively. For reasons of energy con-

servation (rotating wave approximation [I0]), the former process is accompanied by phonon absorption,



the latter by phonon emission, since 47 > 0. The bare system Hamiltonian Hj consists of the first
two terms of Eq. and the bright-dark/dark-bright exciton transformation terms without coupling to
phonons. Eq. contains the time-dependent, pulsed pump rate p(t) whose temporal integral represents
the pump fluence P. Integrating out the thermal phonon bath from the Hamiltonian Hey leads to the effec-

tive, temperature-dependent couplings for dark-exciton excitation and de-excitation processes in the master

Eq. , respectively,

F';L(T) = JdeQNph(Qm) [1 + B(Qm)] ) (87)

where B(Q,,,) = 1/[exp (7, /kgT) — 1] is the Bose-Einstein distribution function at temperature 7', with kg
the Boltzmann and 7 the reduced Planck constant, and Npy(€,,) the phonon spectral density per unit cell at
the dark-exciton excitation energy %€),,, m = +1. The excitation and de-excitation amplitudes thus obey the
detailed-balance or Kennard-Stepanov relation, T}l /T, = exp(—72,,/kgT). At the relevant temperatures
we have in general, I'}, < T'; .

The statistical expectation value of a physical quantity X is defined as <X ) = tr { ﬁ(t)X } We use the
short-hand notation n,, = (al,a,,) for the expectation values of the exciton density operators, m = 0, £1,

and S, = <§Z> for the expectation value of the z component of the 4f spin. Inserting Egs. and 1)

we thus obtain the non-linear rate equations for the dynamics following the initial pump pulse,

% —  Rno—TH(STS) (1 +n1)no —TF (S~ ST (1 +n_1) no (38)
+T7(S™ST) (1 +no)ny + T2 (STS™) (1 +no)n_y

B TT(575%) (14 mo) iy + TH(STS ™) (14 m)mg (59)

d’;;l T (STST) (L4 o) ey 4+ T, (S5 (14 n1) ng (S10)

ddstz = _TF(STS7) (14 ) no+ T, (S™S™) (1 4+ n1)no (S11)

—T-({(STST) (1 +ng)n_1 +T7(S™ST) (1 +ng)ny ,

where (S£SF) = S(S + 1) — (5.2) + (S.). Note that the coherent time evolution due to Hy does not
contribute because the bright-dark exciton conversion without phonon assistance is effectively forbidden by
energy conservation (217 > 0) and the commutator involving the number operators contained in Hy vanishes
under the trace. The dynamical equations — may be simplified by defining the total density of dark

excitons as ngy = ny + n_1 and their spin polarisation as my = ny — n_; and observing that the total



magnetisation, comprised of the spin polarisations of the 4f moments and of the dark excitons, is conserved
by these dynamics, that is, dmg/dt = —dS,/dt.

In order to analyze the relaxation behavior of the system, the rate equations f are expanded to
linear order in the dynamical variables about their peak values, n,,, m = 0,1, after the excitation by the
initial pump-laser pulse. This leads to a set of four coupled, linear rate equations for the deviations of the
exciton densities and of the 4 f-spin orientation S, (¢) from their respective initial values.

In the paramagnetic phase, the 4 f magnetisation before the pump pulse is S, (0) = 0, and for symmetry
reasons, the populations of up-spin and down-spin dark excitons are equal, ny = n_y. It then follows from
Eq. that S.(t) = 0 at all times. Hence, the transverse 4f spin correlator C; = (STS~) = (S~ St) =
S(S+1)— <§z2> = const. and Fli = Ffl = I'*t. The linearised dynamical equations then simplify to a set

of two coupled equations for the bright and dark exciton densities, respectively,

d Anb Anb
= = x(T) (S12)
And And

@ —R+2C, [I"ng—TT(1+ng)] 20 [T~ (1+7) — )
X = ;
—C1 [I77g =TT (1 +79)] Oy [T =T~ (1 +m)]
where we used the notation for the deviation of the bright and dark exciton densities from their respective
initial values, Any(t) = no(t) — g and Ang(t) = ng(t) — g, and 7y, ig are the corresponding initial values

after the pump pulse. The dynamical matrix x(7") has the eigenvalues

Y1,2(T) = {% +7a % \/(% —74)% — 4w | /2, (S13)
with

= —R+2C, [[7g —IH(1+7g)]

Ya=Cy [Ty —T7 (1 +75)] (S14)

wo = Cu\J2[T=(1+75) — D) [T — T+ (1 +79)] -

R ey Mg I'~/R /R
1 THz | 0.07 | 0.25n; | 0.06 +6.9 x 10~* - kgT/R | T~ /100

Table S1: Parameters used in the paramagnetic phase to produce Fig. 4 of the main article and Fig. [S5}
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Figure S5: Theoretical time traces of the bright-exciton population ny,(t), computed from the dynamical
equations on the bi-exponential side (75 K) and on the complex-rate side (225 K) of the NHPT,
respectively. The data are normalised to the initial value T, = np(0). The parameter values used for the
calculation are given in Table

The eigenvalues depend on temperature through I'™(7") and T'H(T) [c.f. Egs. , } and change from
real to complex at the critical temperature T* of the exceptional point (EP). Expanding the argument of
the square root in Eq. to linear order of (T — T*), it follows that the imaginary relaxation parameter
behaves as 7" = Im(v;2) ~ /T —T*, as shown in Fig. 4b of the main text. The parameter values used
for the numerical evaluations are shown in Table Fig. shows typical time traces of bright and dark
exciton densities in the phases of bi-exponential and the complex relaxation of the NHPT, respectively.

In the ferromagnetic phase, the 4f magnetisation acquires a non-vanishing, static value M (T') in
addition to its time-dependent variations, (S,) = M + (AS,), and the up-spin and down-spin dark-exciton
populations are no longer equal, n1 # n_;. In this case, the full set of four dynamical equations 7,
after linearisation, must be simultaneously solved. According to ferromagnetic mean-field theory, which is
well controlled for the large Eu S = 7/2 spins, the equilibrium magnetisation has a square-root temperature
dependence near the Curie temperature, M(T) = Myy/Tc — T, which leads to the cusp signature in the

relaxation times at T, as shown in Fig. 4a of the main text.
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