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1 Sample quality and characterization

We determine the sample composition via energy dispersive X-ray spectroscopy (EDX), the crystal structure

by powder X-ray diffraction (PXRD), and the orientation of the as-grown EuO using a Laue device, Müller

Micro 91, with a tungsten anode. The typical Laue pattern (Fig. S1a) shows sharp reflexes indicating a

high crystallinity of the samples. Furthermore, the simulation of the pattern yields [100] cleavage planes of

the crystals. By indexing the peaks using the software “OrientExpress”, we confirm the rock-salt crystal

structure and the lattice parameter (a = 5.1378 Å), which agrees with the literature value of EuO single

crystals [1, 2, 3].

We further checked the magnetic properties by examining the magnetic susceptibility between 1.8K and

300K at µ0H=0.01T using a Quantum Design Physical Property Measurement System (PPMS). The sample

was cooled in zero field prior to each measurement. The inset of Fig. S1b shows the magnetic susceptibility

χmol of EuO in the whole measured temperature range. The susceptibility χmol exhibits an abrupt change at

TC=69K at the transition into the magnetically ordered state, agreeing with a typical values for transitions

between a ferromagnetic and a paramagnetic phase. The linear temperature dependence of χ−1
mol in the para-

magnetic phase indicates Curie-Weiss behavior. We determine the transition temperature by extrapolation

of the linear fit as TC ≈ 69 K, which agrees precisely with the literature value [4, 5]. This implies an unde-

tectably low charge-defect density in our EuO samples, since TC would sensitively shift to higher values even

upon small amounts of carrier doping < 0.1 % [5, 6]. This confirms that the conduction band is empty before

the pump excitation. The near-constant value below TC indicates a negligible coercivity in the susceptibility

measurements, again in agreement with the literature [1]. The absence of a low-temperature increase of χmol

below 10 K [1] confirms the absence of compositions like Eu3O4, which would order antiferromagnetically at

around 5 K.

The ferromagnetic phase transition is also confirmed by the heat-capacity measurement between 1.8 K

and 200 K in zero field using the PPMS, as displayed in Fig. S1c. The pronounced λ-like peak centered at

69 K matches the second-order transition from the ferromagnetic to the paramagnetic phase.

2 Fit of experimental data

To quantitatively investigate the evolution of the relaxation dynamics, we fit the temperature dependence

of ∆R/R according to the relation

y = C1 · e−γ1t + C2 · e−γ2t + y0. (S1)
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Figure S1: Characterisation of our EuO bulk single crystals. a, The Laue pattern of the crystallographic
[100] direction shows the four-fold symmetry of the cubic lattice. b, Inverse magnetic susceptibility of EuO
measured in a 0.5mT magnetic field. The extrapolation of the linear fit leads to TC ≈ 69 K. The inset shows
the magnetic susceptibility from 1.8 K to room temperature. c, Zero-field specific heat.

Depending on the temperature range in question, we may choose the relaxation rates γ1,2 as real or complex,

the amplitudes C1,2 as positive, negative, or complex, and the offset y0 as non-zero or zero, as discussed in

the following.

At low temperature, the time dependence of ∆R/R in the main text suggests a bi-exponential relaxation,

and we choose C1,2 > 0 and γ1,2 as real, so that the latter represent relaxation rates with τslow = 1/γ1,

τfast = 1/γ2 as the associated relaxation times. The offset y0 > 0 describes the reflectivity change associated

with the long-lasting insulator-metal transition resulting from the Stoner band splitting in the ferromagnetic

phase; see the main text. Typical fit results are presented in Fig. S2a, b. They show that the bi-exponential

model perfectly describes the relaxation behavior of ∆R/R at low temperature (panel a) but fails to reproduce

the behaviour of the reflectivity at high temperature (panel b), where ∆R/R exhibits a negative regime.

Negative contributions to the reflectivity change might, for instance, arise from radiationless Auger

recombination. Even though we excluded this process in the main text for reasons of principle, we nevertheless

attempted to fit it by choosing C1 < 0 and keeping C2 > 0 and γ1,2 real as before. The results are displayed

in Fig. S3. Even though a good agreement with the experimental results is achieved at selected temperatures,

see Fig. S3a, the temperature dependence of the set of fits in Fig. S3b exhibits an unphysical, erratic behavior

for the relaxation time τslow. Note that the discontinuous trend between 100 and 200 K is also expressed by

the enormous error bars of the associated fit values; see the caption of Fig. S3. Hence, the negative-amplitude

model (C1 < 0) and any physical processes associated with it must be discarded.

Instead we emulate the region with ∆R/R < 0 by assuming complex values for C1,2 and γ1,2. Specifically,

we set C1,2 = C0e
±iφ0 and γ1,2 = γ′±iγ′′, which ensures that the resulting observable ∆R/R < 0 in Eq. (S1)

is still a real value. We furthermore set y0 = 0 because there are no insulator-metal transition and Stoner
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Figure S2: Normalised, pump-induced reflectivity ∆R/R data and fit results of Eq. (S1) for the bi-exponential
and the complex-rate scenarios discussed in the supplementary text. a, b, bi-exponential fit with real and
positive values C1,2, γ1,2, and y0. It reproduces the low-temperature data well, but fails to reproduce the
negative part of ∆R/R at high temperature. c, d, Data and fit results with complex values C1,2 = C0e

±iφ0 ,
γ1,2 = γ′ ± iγ′′, and y0 = 0. This model describes the data appropriately at high temperature, but fails at
low temperature, indicating a qualitative change of the dynamics at an intermediate temperature T ∗. The
insets in a and c are zoomed-in views for better visualisation of the fit quality.
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Figure S3: Normalised, pump-induced reflectivity data ∆R/R and fit result with the negative-amplitude
model (both positive and negative coefficients C1, C2 allowed). a, Time trace and fit at 120 K. b, Relaxation
times τslow, τfast extracted from fitting the negative-amplitude model. Although individual time traces can
be fitted well, the erratic temperature dependence of the extracted relaxation time τfast and the associated
huge fit errors of στ ≈ 4.4× 106 ps demonstrate the infeasibility of the fit.
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Figure S4: Difference in fit quality according to Eq. (S2) between the bi-exponential and complex-rate
scenarios. Better suitability of the former or latter are indicated by positive or negative values of R2

real −
R2

complex, respectively. We see that with increasing temperature, a transition from bi-exponential to complex-
rate behaviour occurs with the zero crossing at 85 K in excellent agreement with the results in the main
text.

splitting in the high-temperature paramagnetic regime. This leads to two adjustable parameters only, γ′

and γ′′, since the amplitude C0 is absorbed in the normalisation of the experimental signal and the phase

φ0 is trivially fixed by the position of the zero-crossing of the experimentally observed time traces (see,

e.g. Fig. S2d). From Fig. S2c, d we see that the complex-rate model fits the experimental data very well at

high temperature, but, as expected, fails at low temperature.

To quantify the feasibility of the bi-exponential and complex-rate fits and evaluate the transition tem-

perature T ∗ between the respective regimes, we assess the fit quality by the parameter

R2 = 1−
∑

i (yi − fi)
2∑

i (yi − ȳ)
2 , (S2)

where yi represent the measured data at the observation times ti, fi is the value predicted by the fitting

model, and ȳ is the average of the measured data. Thus, the larger R2, the better the model describes the

experimental data. Figure S4 shows the difference R2
real − R2

complex between the real- and complex-valued

relaxation models. We see that the bi-exponential model with positive amplitudes is appropriate at low

temperature, whereas the complex-rate model consistently describes the data at high temperature. This

behaviour is characteristic for a NHPT, as discussed in detail in the main text. The transition temperature

of the NHPT, where the change from real to complex relaxation occurs, is derived as T ∗ = (84± 5) K from

the temperature dependence of γ′′ in the main text. This value is in perfect agreement with the zero-crossing

of R2
real −R2

complex at T ∗ = 85 K in Fig. S4.
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3 Theory of exciton dynamics

The dynamical variables of the photoexcited EuO system are the density of bright (spin-0) and dark (spin-1)

excitons, represented by bosonic creation and destruction operators a†0, a0 and a†±1, a±1 respectively, as well

as the orientation Si,z of the Eu 4f magnetic moments S⃗i on lattice site i, Si,z = ±1/2, ±3/2, . . . ,±S, S =

7/2. The effective Hamiltonian for these excitations reads,

Hex =
∑

m=±1

ℏΩma†mam − J
∑
⟨i,j⟩

S⃗i · S⃗j +
∑
k

εkb
†
kbk + Jdf

∑
m=±, k

(bk + b†k)
[
a†ma0S

−m + a†0amSm
]
, (S3)

where ℏΩm > 0 is the excitation energy of a dark exciton (m = ±1) with respect to a bright exciton, J

is the ferromagnetic-polaron exchange coupling between the Eu 4f moments on a Heisenberg lattice, and

the last term describes the transfer between bright and dark excitons. It is induced by the spin-exchange

coupling Jdf between the electron spin in a 5d(t2g) orbital as a constituent of an exciton and the 4f moments

on neighboring Eu sites [7]. Here and in the following, S± represent the corresponding 4f -spin raising and

lowering operators, respectively, and we suppress the index of neighboring Eu lattice sites for simplicity of

notation. Note that the triplet dark-exciton state with m = 0 is not accessed by the spin-flip processes. The

bright-dark exciton transitions are assisted by absorption or emission of phonons with dispersion εk, described

by phonon creation and destruction operators b†k. The phonon system comprises a thermal, Markovian bath

at the cryostat temperature T which we treat by the Lindblad formalism. This leads, after lengthy, but

straight-forward operator algebra [8, 9] to the Lindblad master equation for the density matrix ρ̂(t) of the

coupled exciton-Eu 4f -moment system,

dρ̂(t)

dt
= i[ρ̂(t), H0] + p(t) L[a†0] ρ̂(t) +R L[a0] ρ̂(t) (S4)

+
∑

m=±1

{
Γ+ L[a†ma0S

−m] ρ̂(t) + Γ− L[a†0amSm] ρ̂(t)
}

.

Here, the Lindblad superoperator L of an operator A acting on the density matrix is defined as

L[A] ρ̂ = Aρ̂A† − (A†Aρ̂+ ρ̂A†A)/2 . (S5)

The terms on the right-hand side of Eq. (S4) thus describe, in the order of appearance, the coherent von-

Neumann time evolution, the excitation of bright excitons by the external laser pulse p(t), the radiative

decay of bright excitons with amplitude R, and the phonon-assisted bright-dark and dark-bright exciton

transformations mediated by lowering and raising the Eu 4f spin, respectively. For reasons of energy con-

servation (rotating wave approximation [10]), the former process is accompanied by phonon absorption,
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the latter by phonon emission, since Ω±1 > 0. The bare system Hamiltonian H0 consists of the first

two terms of Eq. (S3) and the bright-dark/dark-bright exciton transformation terms without coupling to

phonons. Eq. (S4) contains the time-dependent, pulsed pump rate p(t) whose temporal integral represents

the pump fluence P . Integrating out the thermal phonon bath from the Hamiltonian Hex leads to the effec-

tive, temperature-dependent couplings for dark-exciton excitation and de-excitation processes in the master

Eq. (S4), respectively,

Γ+
m(T ) =

Jdf
2

2
Nph(Ωm)B(Ωm) (S6)

Γ−
m(T ) =

Jdf
2

2
Nph(Ωm) [1 +B(Ωm)] , (S7)

where B(Ωm) = 1/[exp (ℏΩm/kBT )−1] is the Bose-Einstein distribution function at temperature T , with kB

the Boltzmann and ℏ the reduced Planck constant, and Nph(Ωm) the phonon spectral density per unit cell at

the dark-exciton excitation energy ℏΩm, m = ±1. The excitation and de-excitation amplitudes thus obey the

detailed-balance or Kennard-Stepanov relation, Γ+
m/Γ−

m = exp(−ℏΩm/kBT ). At the relevant temperatures

we have in general, Γ+
m ≪ Γ−

m.

The statistical expectation value of a physical quantity X̂ is defined as ⟨X̂⟩ := tr
{
ρ̂(t)X̂

}
. We use the

short-hand notation nm = ⟨a†mam⟩ for the expectation values of the exciton density operators, m = 0, ±1,

and Sz = ⟨Ŝz⟩ for the expectation value of the z component of the 4f spin. Inserting Eqs. (S4) and (S5),

we thus obtain the non-linear rate equations for the dynamics following the initial pump pulse,

dn0

dt
=−Rn0 − Γ+

1 ⟨S+S−⟩ (1 + n1)n0 − Γ+
−1⟨S−S+⟩ (1 + n−1)n0 (S8)

+ Γ−
1 ⟨S−S+⟩ (1 + n0)n1 + Γ−

−1⟨S+S−⟩ (1 + n0)n−1

dn1

dt
=− Γ−

1 ⟨S−S+⟩ (1 + n0)n1 + Γ+
1 ⟨S+S−⟩ (1 + n1)n0 (S9)

dn−1

dt
=− Γ−

−1⟨S+S−⟩ (1 + n0)n−1 + Γ+
−1⟨S−S+⟩ (1 + n−1)n0 (S10)

dSz

dt
=− Γ+

1 ⟨S+S−⟩ (1 + n1)n0 + Γ+
−1⟨S−S+⟩ (1 + n−1)n0 (S11)

− Γ−
−1⟨S+S−⟩ (1 + n0)n−1 + Γ−

1 ⟨S−S+⟩ (1 + n0)n1 ,

where ⟨S±S∓⟩ = S(S + 1) − ⟨Ŝ 2
z ⟩ ± ⟨Ŝz⟩. Note that the coherent time evolution due to H0 does not

contribute because the bright-dark exciton conversion without phonon assistance is effectively forbidden by

energy conservation (Ω±1 > 0) and the commutator involving the number operators contained in H0 vanishes

under the trace. The dynamical equations (S8)-(S11) may be simplified by defining the total density of dark

excitons as nd = n1 + n−1 and their spin polarisation as md = n1 − n−1 and observing that the total
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magnetisation, comprised of the spin polarisations of the 4f moments and of the dark excitons, is conserved

by these dynamics, that is, dmd/dt = −dSz/dt.

In order to analyze the relaxation behavior of the system, the rate equations (S8)–(S11) are expanded to

linear order in the dynamical variables about their peak values, nm, m = 0,±1, after the excitation by the

initial pump-laser pulse. This leads to a set of four coupled, linear rate equations for the deviations of the

exciton densities and of the 4f -spin orientation Sz(t) from their respective initial values.

In the paramagnetic phase, the 4f magnetisation before the pump pulse is Sz(0) = 0, and for symmetry

reasons, the populations of up-spin and down-spin dark excitons are equal, n1 = n−1. It then follows from

Eq. (S11) that Sz(t) = 0 at all times. Hence, the transverse 4f spin correlator C⊥ = ⟨S+S−⟩ = ⟨S−S+⟩ =

S(S + 1) − ⟨Ŝ 2
z ⟩ = const. and Γ±

1 = Γ±
−1 ≡ Γ±. The linearised dynamical equations then simplify to a set

of two coupled equations for the bright and dark exciton densities, respectively,

d

dt

∆nb

∆nd

 = χ(T )

∆nb

∆nd

 (S12)

χ(T ) =

−R+ 2C⊥
[
Γ−nd − Γ+(1 + nd)

]
2C⊥

[
Γ−(1 + nb)− Γ+nb

]
−C⊥

[
Γ−nd − Γ+(1 + nd)

]
C⊥

[
Γ+nb − Γ−(1 + nb)

]
 ,

where we used the notation for the deviation of the bright and dark exciton densities from their respective

initial values, ∆nb(t) = n0(t)− n0 and ∆nd(t) = nd(t)− nd, and nb, nd are the corresponding initial values

after the pump pulse. The dynamical matrix χ(T ) has the eigenvalues

γ1,2(T ) =

[
γb + γd ±

√
(γb − γd)2 − 4ω2

0

]
/2, (S13)

with

γb = −R+ 2C⊥
[
Γ−nd − Γ+(1 + nd)

]
γd = C⊥

[
Γ+nb − Γ−(1 + nb)

]
(S14)

ω0 = C⊥

√
2
[
Γ−(1 + nb)− Γ+nb

] [
Γ−nd − Γ+(1 + nd)

]
.

R nb nd Γ−/R Γ+/R
1 THz 0.07 0.25nb 0.06 + 6.9× 10−4 · kBT/R Γ−/100

Table S1: Parameters used in the paramagnetic phase to produce Fig. 4 of the main article and Fig. S5.
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Figure S5: Theoretical time traces of the bright-exciton population nb(t), computed from the dynamical
equations (S12) on the bi-exponential side (75 K) and on the complex-rate side (225 K) of the NHPT,
respectively. The data are normalised to the initial value nb = nb(0). The parameter values used for the
calculation are given in Table S1.

The eigenvalues depend on temperature through Γ−(T ) and Γ+(T ) [c.f. Eqs. (S6), (S7)] and change from

real to complex at the critical temperature T ∗ of the exceptional point (EP). Expanding the argument of

the square root in Eq. (S13) to linear order of (T − T ∗), it follows that the imaginary relaxation parameter

behaves as γ′′ = Im(γ1,2) ∼
√
T − T ∗, as shown in Fig. 4b of the main text. The parameter values used

for the numerical evaluations are shown in Table S1. Fig. S5 shows typical time traces of bright and dark

exciton densities in the phases of bi-exponential and the complex relaxation of the NHPT, respectively.

In the ferromagnetic phase, the 4f magnetisation acquires a non-vanishing, static value M(T ) in

addition to its time-dependent variations, ⟨Sz⟩ = M + ⟨∆Sz⟩, and the up-spin and down-spin dark-exciton

populations are no longer equal, n1 ̸= n−1. In this case, the full set of four dynamical equations (S8)–(S11),

after linearisation, must be simultaneously solved. According to ferromagnetic mean-field theory, which is

well controlled for the large Eu S = 7/2 spins, the equilibrium magnetisation has a square-root temperature

dependence near the Curie temperature, M(T ) = M0

√
TC − T , which leads to the cusp signature in the

relaxation times at TC, as shown in Fig. 4a of the main text.
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