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1 Other NPMLE algorithms

Here are the forms of the NPMLE algorithms used for comparison in the simulations

in Section 5. Each requires the inner-intervals calculated as in Section 2. The EM

algorithms are all parameterized to allow for O(n) implementation (or O(n1) in the

Breslow method case).

1.1 Turnbull’s Algorithm

From Turnbull (1976).

Step 1. For j = 1, ...,m, let s
(0)
j = 1/m.

Step g + 1 (g ≥ 1). For 1 ≤ j ≤ m, update sj by

s
(g+1)
j = s

(g)
j

M
(g)
j∑m

k=1 M
(g)
k

where

1



M
(g)
j =

n∑
i=1

 αij

S
(g)
L∗

i
− S

(g)
R∗

i

+
(1− βij)

S
(g)
T∗
i

 (1)

and

S
(g)
k = 1−

k∑
l=1

s
(g)
l

with S
(g)
0 = 1.

Stop when | logL(g+1) − logL(g)| < ϵ where ϵ is some small positive number.

1.2 Yu’s Algorithm

From Yu (2023).

Step 1. For j = 1, ...,m, let s
(0)
j = 1/m.

Step g + 1 (g ≥ 1). For 1 ≤ j ≤ m, update sj by

s
(g+1)
j = s

(g)
j
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
where

δi = I(S
(g)
T∗
i
< 1)

and

S
(g)
k = 1−

k∑
l=1

s
(g)
l

with S
(g)
0 = 1.

Stop when | logL(g+1) − logL(g)| < ϵ where ϵ is some small positive number.

1.3 Shen’s Algorithm

From Shen (2020).
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Step 1. For j = 1, ...,m, let s
(0)
j = 1/m.

Step g + 1 (g ≥ 1). For 1 ≤ j ≤ m, update sj by

s
(g+1)
j = s

(g)
j

1 +

∑n
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i=1 1/S
(g)
T∗
i


where

S
(g)
k = 1−

k∑
l=1

s
(g)
l

with S
(g)
0 = 1.

Stop when | logL(g+1) − logL(g)| < ϵ where ϵ is some small positive number.

1.4 Breslow method

Adapted from Li et al. (2020) and Appendix A of Gao and Chan Gao and Chan

(2018). This parameterizes the likelihood using the cumulative hazard Λ(t) where

S(t) = e−Λ(t) with λj = Λ(rj)− Λ(lj).

Step 1. For j = 1, ...,m, let λ
(0)
j = 1/m.

Step g + 1 (g ≥ 1). For 1 ≤ j ≤ m, update λj by

λ
(g+1)
j =

∑n
i=n0+1 w

(g)
ij∑n

i=n0+1 I(Qj ⊆ [Ti, R̃i])

where

R̃i = I(Ri < ∞)Ri + I(Ri = ∞)Li ,

w
(g)
ij = I(Qj ⊆ (Li, Ri], Ri < ∞)

λ
(g)
j

1− exp
(
−Λ

(g)
R∗

i
+ Λ

(g)
L∗

i

)
and

3



Λ
(g)
k =

k∑
l=1

λ
(g)
l

with Λ0 = 0.

Stop when | logL(g+1) − logL(g)| < ϵ where ϵ is some small positive number.

1.5 Quasi-Newton method

Adapted from a description of a process recommended by Hudgens (2005). The exact

details are not given there, but this method should be similar.

This method requires the R function optim - a generic optimization function and

requires the likelihood from Equation 1 and the gradient of the likelihood from

∂ logL
∂sj

=

n∑
i=1

[
αij∑m

k=1 αiksk
− βij∑m

k=1 βiksk

]
. (2)

Because optim minimizes objective functions by default, we supply it with

the negative likelihood and gradient. We set the optim function to call the L-

BFGS-B algorithm (Byrd et al., 1995), a memory limited version of the Broy-

den–Fletcher–Goldfarb–Shanno algorithm that allows box constraints for each param-

eter. To improve stability, we found it necessary to limit each parameter to 0 + tol ≤

sj ≤ 1− tol for 1 ≤ j ≤ m where tol is some small tolerance value. For the simulations

we chose tol = 10−10, and found that smaller values did little to increase accuracy.

The values s̃j given as output by optim are normalized to equal one ŝj =

s̃j/
∑m

k=1 s̃k.

2 Karush-Kuhn-Tucker Conditions

From the Lagrangian in Equation 6, and the conditions for all values of hj , some

conditions for convergence of the algorithm can be formulated. This follows closely

the approach of Gentleman and Geyer (1994).

Let Dj =
∂ logL
∂hj

. From Equation 6, it is clear that, at the maximum likelihood
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Dj + aj − bj = 0

where aj , bj ≥ 0, ajhj = 0 and bj(1 − hj) = 0. These conditions must all be met

at for a candidate solution to be the maximum likelihood. This implies that when

0 < hj < 1, aj = bj = 0 and Dj = 0.

If hj = 0, bj = 0 and therefore aj = −Dj . Given, aj ≥ 0 this implies that Dj ≤ 0.

Conversely, if hj = 1, aj = 0 and therefore bj = Dj and Dj ≥ 0.

Therefore, at the maximum likelihood, the following checks ensure a maximum

likelihood estimate

Dj


≤ 0 if hj = 0

= 0 if 0 < hj < 1

≥ 0 if hj = 1 .

For LTIC data, the Hessian of the likelihood need not be negative-definite and so

the Karush-Kuhn-Tucker conditions only guarantee a local (potentially non-unique)

maximum.
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