

All-fiber ultrafast image detection enabled by deep learning: Supplementary Material.

Supplementary Note 1: Pulse Transmission

4 The max average power entering the MMF in the experiment is measured to be about 1.5 mW.
 5 Considering that the width of the pulses is 27.5 ps, the peak power of the pulses in the fiber is about
 6 3.3 W. We simulate the evolution of a gaussian pulse with the same peak power in the 1-km MMF
 7 as shown in Fig. S1(a) without considering the intermodal dispersion. We see that the broadening
 8 caused by the chromatic dispersion and nonlinear effect is negligible. The calculation is based on
 9 the non-linear Schrodinger equation (NLSE)¹. The simulation parameters are as follows. The
 10 dispersion coefficient $\beta_2 = 25 \times 10^{-3} \text{ps}^2 \text{m}^{-1}$. the nonlinear coefficient is $\gamma = 5.8 \times$
 11 $10^{-3} \text{W}^{-1} \text{m}^{-1}$ at 1064nm in the single mode fiber². Considering $\gamma = n_2 \omega / c A_{\text{eff}}$, the γ is
 12 inversely proportional to the area the fiber core. Thus, in our MMF with 50- μm -diameter core, the
 13 γ is about 30 times that of the general single mode fibers with core diameter of around 9 μm .
 14 Therefore, we set the $\gamma = 2 \times 10^{-4} \text{W}^{-1} \text{m}^{-1}$ in the simulation. Besides, we also calculate the
 15 group delays for all the LP modes in the 1-km MMF that we use and the results are shown in Fig.
 16 S1(b). We see that different modes have different group delays. Compared with the pulse width, the
 17 delay differences between different modes are large enough that can cause the energy separating in
 18 these modes. Considering that the fastest and slowest modes have a delay difference of around 50
 19 ns, we can predict that after transmitting through the 1-km MMF, a pulse will eventually split into
 20 a pile of isolated sub-pulses over a temporal range of 50 ns principally due to the intermodal
 21 dispersion.

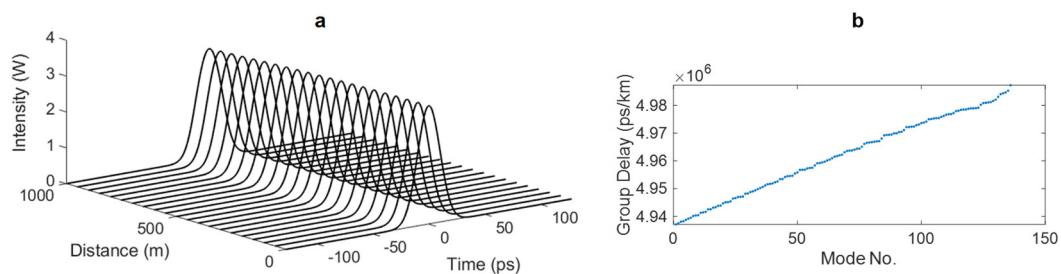
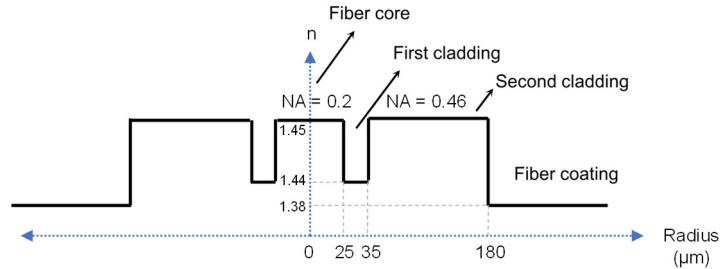
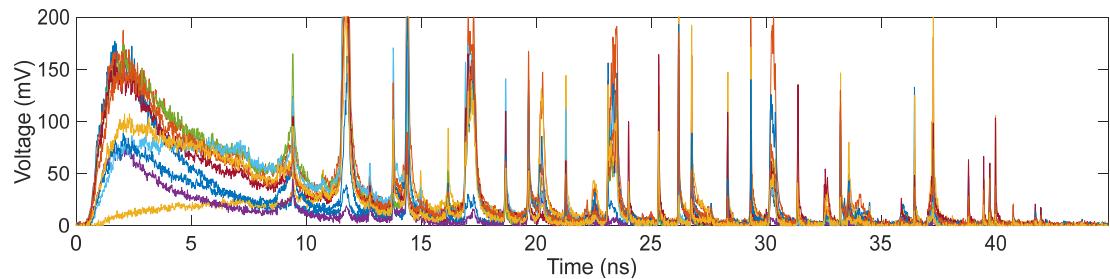



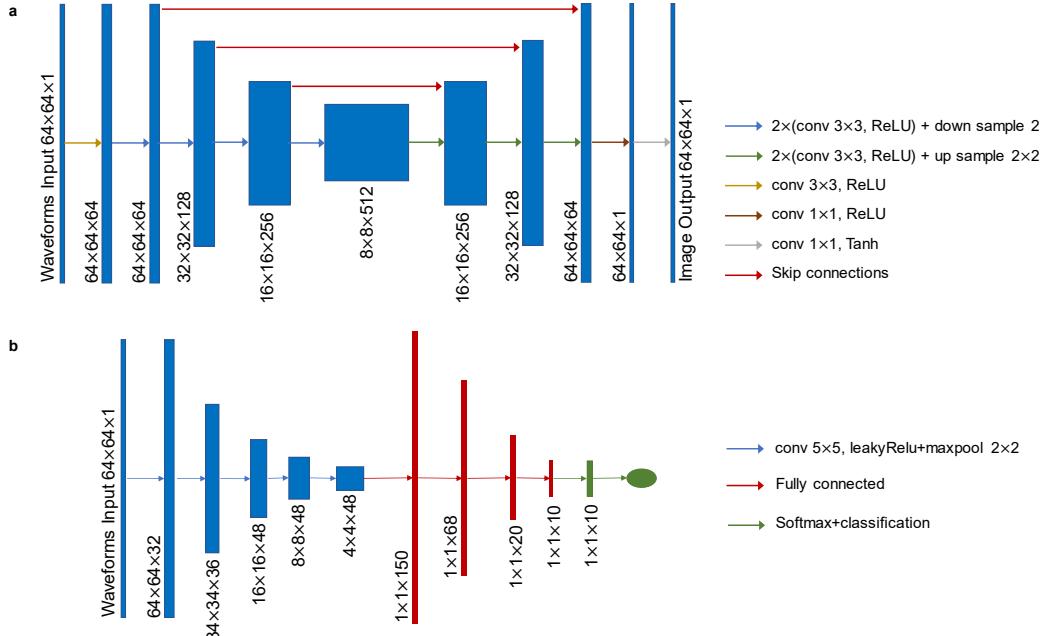
Fig. S1 (a) Evolution of the pulse in the MMF. (b) Group delays of different LP modes calculated by the Finite Difference Method.

Supplementary Note 2: Fiber Probe


The Section refractive index distribution of the fiber probe is shown in Fig. S2. It consists of three claddings. The first one is fluoride Doped layer that has a relative low index, so the signal light can be limited in the fiber core. The combination of a second silica cladding and a low-index coating layer allows the transmission of the illumination light.

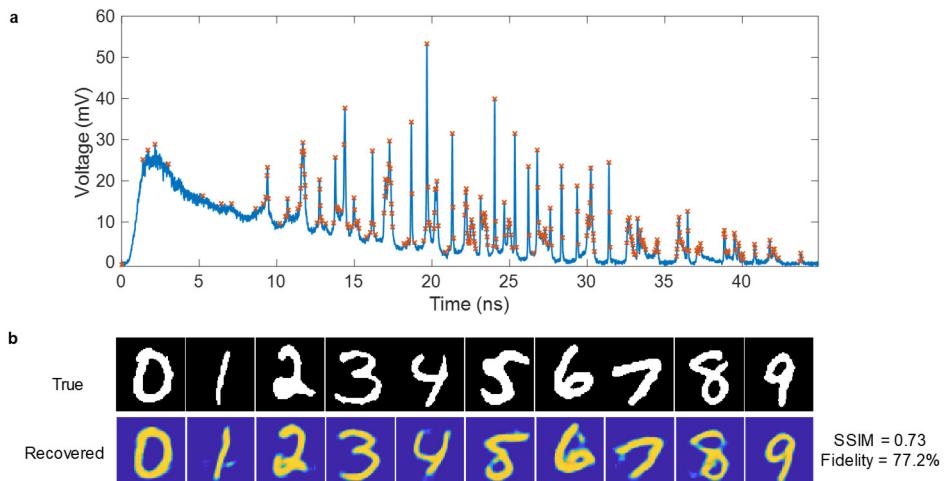
31
32 Fig. S2 Section refractive index distribution of the fiber probe.

33
34 **Supplementary Note 3: Waveforms**


35 Here we discuss about several features of the waveforms. When we put the ten waveforms in Fig.
36 3(b) of the main text together as shown in Fig. S3, we see that all the sub-pulses are overlapped,
37 which proves that the mode dispersion actually dominates in the temporal evolution of the pulse so
38 that the temporal positions of the sub-pulses will only be determined by the group delays of the
39 corresponding modes. We observe from Fig. S3 that the burst of sub-pulses that covers a time range
40 of around 45 ns, a little less than the 50 ns predicted in the Note 1. This may be attributed to that
41 certain highest-order modes are harder than expected to be excited, or that a trivial deviation of the
42 parameters of the real fiber from the idea values. Besides, we can see that every waveform contains
43 about 40 sub-pulses (peaks in the waveform) which is much less than the number of all the LP
44 modes in the MMF (136, see the calculation in Note 1). This is because some adjacent modes have
45 very close group delays so that the light energy in these modes is not completely separated in the
46 time domain. Instead, they will cause the broadening of the sub-pulses, which can be observed in
47 the waveforms.

48
49 Fig. S3 Superposition of ten waveforms corresponding to different images.

50
51 **Supplementary Note 4: Image Classification**

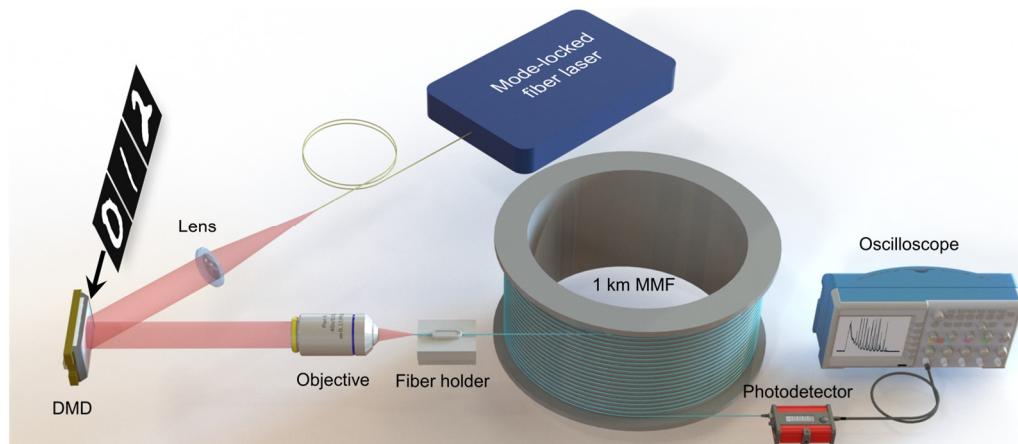

52 We have tried two different networks for classification of the images of hand-written digits. The
53 first is a CNN network as shown in Fig. S4(b). The waveforms reshaped into 64×64 matrices are as
54 the input and the categories from 0 – 9 as the output of the CNN. The second is a combination of
55 the U-net and the same CNN as shown in Fig. S4(a). The CNN model is pretrained with 60000
56 different images so it can act as a digit classifier, which is then used to directly classify the images
57 recovered by the U-net. We use the 20000 images of digits and the recorded waveforms, including
58 17000 training set, 2000 valuation set and 1000 testing set to train and test the networks. The
59 accuracy corresponding to the CNN and U-net + CNN is tested to be 91.5% and 82.0% respectively.
60 The results show that the combination of two networks provide a higher accuracy, which is
61 consistent with the previous research³.

62
63 Fig. S4 (a) U-net structure. (b) CNN structure.
64

65 Supplementary Note 5: Feature Points

66 In the training process, the waveforms recorded by the oscilloscope have a resolution of 10 ps^{-1}
67 which are used as the input of the network. There may exist some redundant information in the
68 waveforms, such as noise and over-dense points. Thus, we select 256 data points near the peaks of
69 the waveforms to down sample all the waveforms, which are marked in Fig. S5(a). This waveform
70 is recorded when we use a mirror in front of the fiber probe instead of the DMD. We do so for
71 exciting the modes in the MMF as much and as enough as possible, so that all the locations in the
72 time domain that may appear sub-pulses can be marked. Thus, the original waveforms can be
73 reshaped into 16×16 matrices that are much smaller. We then feed the feature points to the U-net
74 model and some recovery results are shown in Fig. S5(b), which shows that the recovery with these
75 feature points will only slightly reduce the image quality. This indicate that by selecting some feature
76 points, most of the image information can be reconstructed.

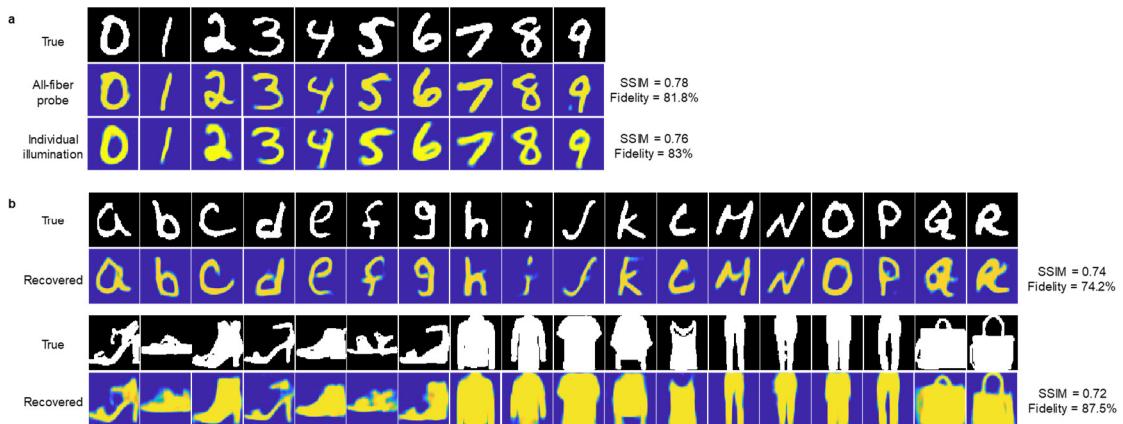
77
78 Fig. S5 (a) One recorded waveform and the red-cross-marked 256 feature points are located near the peaks in the


79 waveform. (b) Some recovered images when using the feature points data.

80

81 Supplementary Note 6: Individual Illumination

82


83 Like most of the previous researches, we try to use an individual source to illuminate the images
84 and an objective to couple light into the fiber probe as shown in Fig. S6. The source is collimated
85 by a lens and illuminates the DMD where the images with size of around $5 \times 5 \text{ mm}^2$ are displayed.
86 The reflected light is coupled into the 1-km MMF via a $40 \times$ objective. The rest parts of the system
87 are totally same with that presented in the main text. Compared with the all-fiber system, this
88 individual-illumination system has the advantages of providing a brighter illumination and is
89 suitable for detecting relatively large objects due to the use of an objective. After the same training
90 and testing, the recovery results show a fidelity of 83.0% and SSIM of 0.76. The comparison of the
91 recovery performance of the two different systems are shown in Fig. S7(a), which indicates that the
92 two different illumination methods have similar performance and proves the high adaptability of
93 our proposed method. The recovery of some other types of images of this system is also tested and
94 shown in Fig. S7(b). Besides, we also test its classification performance and the confuse matrices
95 are shown in Fig. S8.

96

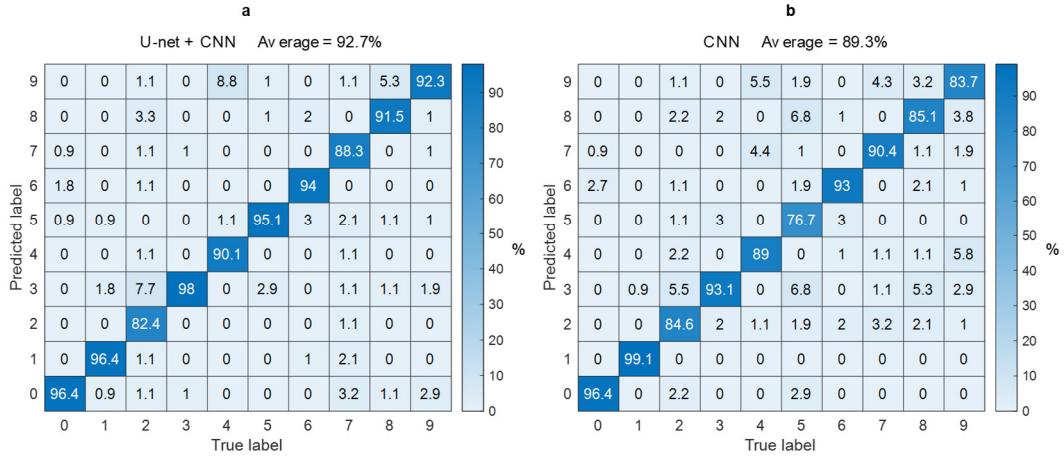

97

Fig. S6 Schematic of the experiment setup with an individual illumination.

98

99 Fig. S7 (a) Comparison of recovery performance between the system shown in the main text and the system with an
100 individual illumination. (b) Some example images of letters and clothes and the recovered results.

101

102 Fig. S8 Confusion matrixes for the system that uses the individual illumination setup. (a) The result of using the
 103 combination of U-net and CNN networks. (b) The result of using simply the CNN network. The average accuracy
 104 for 1000 test images of digits are shown in the top.

105

Supplementary References

106

107 1 Agrawal, G. P. *Nonlinear Science at the Dawn of the 21st Century Ch. 3*, (Springer, Berlin, 2000).
 108 2 Kruglov, V., Peacock, A., Harvey, J. D. & Dudley, J. M. Self-similar propagation of parabolic
 109 pulses in normal-dispersion fiber amplifiers. *JOSA B* **19**, 461-469 (2002).
 110 3 Borhani, N., Kakkava, E., Moser, C. & Psaltis, D. Learning to see through multimode fibers.
 111 *Optica* **5**, 960-966 (2018).
 112
 113
 114