

Supplementary Information for The asteroid 162173 Ryugu: a cometary origin

3 Hitoshi Miura, Eizo Nakamura, Tak Kunihiro

4 May 31, 2021

5 S1 FORMULATION

6 Here, we describe the formulation of our model that a cometary nucleus
 7 transforms to an asteroid as a result of water ice sublimation. The outline is
 8 illustrated in Figure 1. We consider a spherically-symmetric highly-porous
 9 cometary nucleus with a two-layered structure consisting of the inner primitive
 10 region and the outer dust mantle, which are composed of water ice
 11 particles and rocky debris, respectively. Both the water ice particles and
 12 rocky debris are assumed to be spheres with diameters of d_i and d_r , respectively.
 13 The internal temperature T is assumed to be uniform and to not vary
 14 with time. The physical quantities are uniform each in the primitive region
 15 and in the dust mantle, respectively.

¹⁶ S1.1 Definition of parameters

Initially, the cometary nucleus consists of only the primitive region, and its radius is R_0 . As the water ice sublimates, the primitive region shrinks and the rocky debris left behind accumulates on its surface. The thickness Δ of the dust mantle increases with the decrease in the radius R of the primitive region. When the water ice has completely sublimated, R becomes zero and Δ gives the final radius R_∞ of the asteroid left behind. We denote the parameter in each region with a subscript (α) , where $\alpha = p$ for the primitive region and $\alpha = m$ for the dust mantle. The macroporosity, volume fractions of water ice particles and rocky debris, and density of the region

26 α are denoted by $\epsilon_{(\alpha)}$, $\phi_{i(\alpha)}$, $\phi_{r(\alpha)}$, and $\rho_{(\alpha)}$, respectively. The relationship
27 between the macroporosity and volume fractions is given by

$$\epsilon_{(\alpha)} = 1 - (\phi_{i(\alpha)} + \phi_{r(\alpha)}). \quad (S1)$$

28 We find $\phi_{i(m)} = 0$ because there is no water ice in the dust mantle. The
29 density $\rho_{(\alpha)}$ of each region is given by

$$\rho_{(\alpha)} = \varrho_r \phi_{r(\alpha)} + \varrho_i \phi_{i(\alpha)}, \quad (S2)$$

30 where ϱ_i and ϱ_r are the material densities of the water ice particles and rocky
31 debris, respectively. The mass fraction f of water ice in the primitive region
32 is given by

$$f = \frac{\varrho_i \phi_{i(p)}}{\varrho_r \phi_{r(p)} + \varrho_i \phi_{i(p)}} = \frac{\varrho_i \phi_{i(p)}}{\rho_{(p)}}. \quad (S3)$$

33 The physical quantities defined above are not independent of each other.
34 We choose $\epsilon_{(p)}$, $\epsilon_{(m)}$, and f as independent input parameters that are more
35 relevant to observation. The other quantities are determined from these
36 independent parameters as follows. From Eq. (S3), we obtain $\frac{f}{1-f} = \frac{\varrho_i \phi_{i(p)}}{\varrho_r \phi_{r(p)}}$.
37 Solving this equation and Eq. (S1) for $\phi_{r(p)}$ and $\phi_{i(p)}$, respectively, we obtain

$$\phi_{r(p)} = \frac{1 - \epsilon_{(p)}}{1 + \frac{\varrho_r}{\varrho_i} \frac{f}{1-f}}, \quad \phi_{i(p)} = \frac{1 - \epsilon_{(p)}}{\frac{\varrho_i}{\varrho_r} \frac{1-f}{f} + 1} \quad (S4)$$

38 for the primitive region, and

$$\phi_{r(m)} = 1 - \epsilon_{(m)} \quad (S5)$$

39 for the dust mantle. The ratio $p = \rho_{(m)} / \rho_{(p)}$ of densities between the primitive
40 region and the dust mantle is obtained as

$$p = \frac{\varrho_r \phi_{r(m)}}{\varrho_r \phi_{r(p)} + \varrho_i \phi_{i(p)}} = \frac{1 - \epsilon_{(m)}}{1 - \epsilon_{(p)}} \left(1 + \frac{\varrho_r - \varrho_i}{\varrho_i} f \right). \quad (S6)$$

41 Supplementary Table 1 shows the default values of input parameters.
42 Unless otherwise noted, the values in this table are used in calculations.

Supplementary Table 1: Default values of input parameters used in calculations.

Quantity	Notation	Value
<i>Independent parameters:</i>		
Initial radius of cometary nucleus	R_0	3 km
Temperature of cometary nucleus	T	200 K
Diameter of water ice particles	d_i	1 μm
Diameter of rocky debris	d_r	1 cm
Initial mass fraction of water ice	f	0.99
Macroporosity in primitive region	$\epsilon_{(p)}$	0.6
Macroporosity in dust mantle	$\epsilon_{(m)}$	0.6
<i>Dependent parameters determined by $f, \epsilon_1, \epsilon_2$:</i>		
Volume fraction of rocky debris in primitive region	$\phi_{r(p)}$	0.00134
Volume fraction of water ice particles in primitive region	$\phi_{i(p)}$	0.39866
Volume fraction of rocky debris in dust mantle	$\phi_{r(m)}$	0.4
Density of primitive region	$\rho_{(p)}$	0.403 g/cm ³
Density of dust mantle	$\rho_{(m)}$	1.200 g/cm ³
Ratio in densities of dust mantle to primitive region	p	2.98
<i>Material constants:</i>		
Material density of water ice particles	ϱ_i	1.0 g/cm ³
Material density of rocky debris	ϱ_r	3.0 g/cm ³

43 **S1.2 Distribution of vapor**

44 **S1.2.1 Vapor flow in pores**

45 The pores inside the cometary nucleus are filled with water vapor generated
 46 by the sublimation of water ice particles. The production rate $q_{(p)}$ of the
 47 water vapor per unit volume of the primitive region is given by [22]

$$q_{(p)} = \phi_{i(p)} S \left(\frac{m}{2\pi k_B T} \right)^{1/2} (P_e - P), \quad (S7)$$

48 where $S = 6/d_i$ is the surface-to-volume ratio of water ice particles, P_e is
 49 the equilibrium vapor pressure of water ice, P is the pressure of water vapor
 50 filling the pores, k_B is the Boltzmann constant, and m is the mass of a water
 51 molecule. The equilibrium vapor pressure is given by [22]

$$P_e = 3.56 \times 10^{12} \exp \left(-\frac{6141.667}{T} \right) \text{ Pa.} \quad (S8)$$

52 On the other hand, the dust mantle does not contain water ice particles, so
 53 the production rate $q_{(m)}$ is naturally zero.

54 The flow of water vapor in the porous cometary nucleus is driven by
 55 the pressure gradient. The cometary nucleus is cold, the equilibrium vapor
 56 pressure is low, and the water vapor filling the pores is dilute. The mean free
 57 path is a few centimeters at 200 K, which is much longer than the typical size
 58 of pores [22]. Therefore, the flow can be regarded as a free molecular flow.
 59 Assuming that the region α is randomly packed with spherical particles of
 60 diameter $d_{(\alpha)}$, the flux $\mathbf{J}_{(\alpha)}$ of water vapor is given by [22]

$$\mathbf{J}_{(\alpha)} = -\frac{16}{3} \left(\frac{m}{2\pi k_B} \right)^{1/2} \frac{\epsilon_{(\alpha)}^{3/2}}{(1 - \epsilon_{(\alpha)})^{1/3}} d_{(\alpha)} \nabla \left(\frac{P}{\sqrt{T}} \right). \quad (S9)$$

61 The primitive region contains both of water ice particles and rocky debris.
 62 Since the flux is controlled by smaller particles, the particle diameter $d_{(p)}$ in
 63 the primitive region can be assumed to be equal to the diameter d_i of water
 64 ice particles. On the other hand, since only rocky debris exists in the dust
 65 mantle, the particle diameter $d_{(m)}$ is equal to the diameter d_r of rocky debris.
 66 Although the diameter of the rocky debris assumed in this study is about
 67 the same as the mean free path of water vapor, we use the equation for a
 68 free molecular flow, because it makes the model simpler.

69 Let us assume that the vapor flow inside the cometary nucleus reaches
70 steady state on the evolution timescale of the cometary nucleus. The steady
71 flow satisfies the following continuity equation in each region:

$$\nabla \cdot \mathbf{J}_{(\alpha)} = q_{(\alpha)}. \quad (\text{S10})$$

72 Substituting Eqs. (S7) and (S9) into Eq. (S10) yields an equation for the
73 pressure distribution $P(r)$. When the temperature T is uniform, the equation
74 becomes a Poisson equation in the primitive region and a Laplace equation
75 in the dust mantle, respectively. These equations can be solved analytically
76 under appropriate boundary conditions.

77 S1.2.2 Boundary condition

78 We denote the pressure distributions in the primitive region and in the dust
79 mantle as $P_{(p)}(r)$ and $P_{(m)}(r)$, respectively. These two distributions are con-
80 nected so as to satisfy the following two boundary conditions at $r = R$
81 (contact boundary). The first boundary condition is that the pressure is
82 continuous; namely, $P_{(p)}(R) = P_{(m)}(R)$ (boundary condition i). The second
83 boundary condition is that the flux is continuous; namely, $J_{(p)}(R) = J_{(m)}(R)$
84 (boundary condition ii). In addition, we consider a zero-flux condition at the
85 center of the cometary nucleus ($J_{(p)}(0) = 0$, boundary condition iii) and zero
86 pressure at the mantle surface ($P_{(m)}(R + \Delta) = 0$, boundary condition iv).

87 Using Eq. (S9), the boundary condition (ii) is rewritten as

$$\frac{dP_{(p)}}{dr} = \chi \frac{dP_{(m)}}{dr}, \quad (\text{at } r = R) \quad (\text{S11})$$

88 where χ is a dimensionless quantity defined by

$$\chi \equiv \left(\frac{\epsilon_{(m)}}{\epsilon_{(p)}} \right)^{3/2} \left(\frac{1 - \epsilon_{(m)}}{1 - \epsilon_{(p)}} \right)^{-1/3} \frac{d_{(m)}}{d_{(p)}}. \quad (\text{S12})$$

89 In this paper, we assume $d_{(p)} \ll d_{(m)}$, so $\chi \gg 1$ is valid unless the macrop-
90 orosities of the primitive region and dust mantle are very different. There-
91 fore, at the contact boundary, the magnitude of the pressure gradient in the
92 primitive region is much larger than that in the dust mantle.

93 **S1.2.3 Analytic solution**

94 Solving equations for $P_{(p)}(r)$ and $P_{(m)}(r)$ together with the boundary conditions
95 (i)-(iv), we obtain the analytical solution as follows:

$$P_{(p)}(r) = \left[1 - g_{R,\Delta} \frac{\sinh(r/h)}{\sinh(R/h)} \frac{R}{r} \right] P_e, \quad (\text{for } 0 \leq r \leq R) \quad (\text{S13})$$

$$P_{(m)}(r) = (1 - g_{R,\Delta}) \frac{R}{\Delta} \left(\frac{R + \Delta}{r} - 1 \right) P_e, \quad (\text{for } R < r \leq R + \Delta) \quad (\text{S14})$$

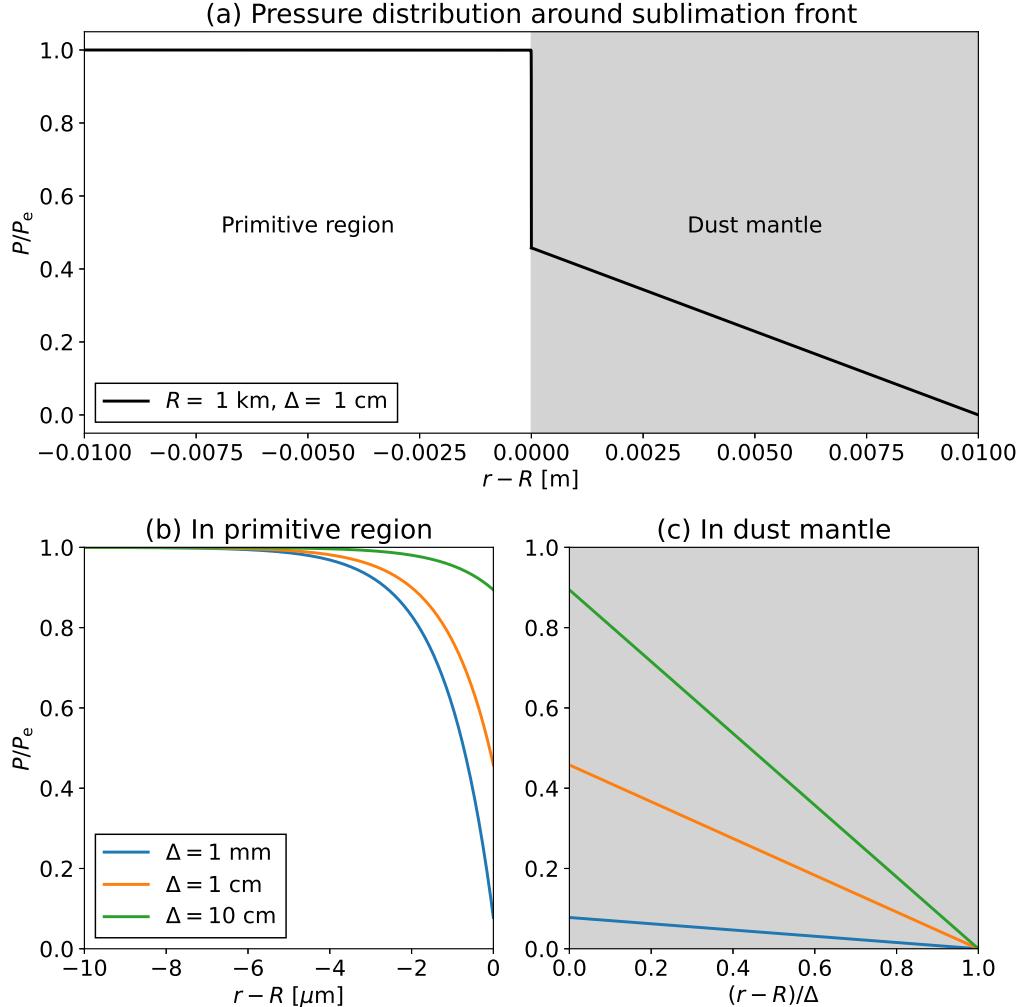
96 where $g_{R,\Delta}$ and h are constants defined by

$$g_{R,\Delta} \equiv \frac{\chi(1 + \Delta/R) \tanh(R/h)}{(\Delta/h) + [\chi + (\chi - 1)\Delta/R] \tanh(R/h)}, \quad (\text{S15})$$

$$h \equiv \frac{2\sqrt{2}}{3} \frac{\epsilon_{(p)}^{3/4}}{(1 - \epsilon_{(p)})^{1/6}} \frac{d_{(p)}}{\phi_{i(p)}^{1/2}}. \quad (\text{S16})$$

98 Substituting the values listed in Supplementary Table 1, we obtain $h =$
99 $1.61 \mu\text{m}$.

100 Supplementary Figure 1 shows the analytic solutions of $P_{(p)}(r)$ and $P_{(m)}(r)$.
101 Panel (a) shows $P_{(p)}(r)$ and $P_{(m)}(r)$ near the contact boundary. The horizontal
102 axis is the distance from the contact boundary. Here, we use $R = 1 \text{ km}$
103 and $\Delta = 1 \text{ cm}$. Throughout almost the entire area of the primitive region,
104 $P_{(p)}(r)$ is equal to P_e , indicating that a solid-vapor equilibrium has been es-
105 tablished. However, $P_{(p)}(r)$ decreases rapidly in a very narrow region near
106 the contact boundary and is connected to the pressure $P_{(m)}(R)$ in the dust
107 mantle. In the dust mantle, $P_{(m)}(r)$ decreases slowly toward the outside and
108 becomes zero at the surface. Panels (b) and (c) respectively show the de-
109 pendences of $P_{(p)}(r)$ and $P_{(m)}(r)$ on Δ . In panel (b), the horizontal axis is
110 magnified around the contact boundary. In panel (c), the horizontal axis is
111 normalized by Δ . The thicker the dust mantle, the closer the water vapor
112 pressure at the contact boundary is to the equilibrium vapor pressure. This
113 trend can be understood by considering that the dust mantle acts as a lid to
114 prevent the leakage of the water vapor. However, for any mantle thicknesses,
115 the pressure is almost equal to P_e as one dives deeper than a few times h from
116 the contact boundary into the primitive region. This suggests that the water
117 ice sublimates only at the very vicinity of the contact boundary. Therefore,
118 we refer to the contact boundary as a sublimation front in the current study.



Supplementary Figure 1: Analytic solution of pressure distribution $P(r)$ of water vapor in cometary nucleus. Panel (a) shows $P(r)$ near the contact boundary between the primitive region and the dust mantle in the case with $R = 1 \text{ km}$ and $\Delta = 1 \text{ cm}$. Panels (b) and (c) show the dependence on Δ . Panel (b) is a magnified view of $P(r)$ in the primitive region, and panel (c) is in the dust mantle. The horizontal axis indicates the distance from the contact boundary, where negative values indicate the primitive region side and positive values indicate the dust mantle side. Note that the horizontal axis in panel (c) is normalized by Δ . The region corresponding to the dust mantle is filled in gray. The pressure in the vertical axis is normalized by the equilibrium vapor pressure P_e .

119 **S1.3 Shrinkage of nucleus and dust mantle formation**

120 As can be seen in Supplementary Figure 1, $P_{(p)}(r)$ is not uniform in the very
 121 neighborhood of the sublimation front. The fact that the water vapor pres-
 122 sure varies from place-to-place means that the sublimation rate of water ice
 123 varies from place to place (see Eq. S7). In other words, water ice particles
 124 closer to the sublimation front sublimate faster, so physical quantities such
 125 as the volume fraction of water ice particles cannot be strictly uniform. How-
 126 ever, the width of such inhomogeneous region is at most a few times larger
 127 than h , which is much smaller than the size of the entire cometary nucleus.
 128 Therefore, we can assume that the physical quantities in the primitive region
 129 are uniform and that water ice sublimates only from the surface of the prim-
 130 itive region. In this case, the time variation of the radius R of the primitive
 131 region is given by

$$\frac{dR}{dt} = -\frac{J_{(p,sf)}}{\varrho_i \phi_{i(p)}}, \quad (S17)$$

132 where $J_{(p,sf)}$ is the value of $J_{(p)}$ at the sublimation front and is given by

$$J_{(p,sf)} = 4 \left(\frac{m}{\pi k_B T} \right)^{1/2} \frac{\epsilon_{(p)}^{3/4}}{(1 - \epsilon_{(p)})^{1/6}} g_{R,\Delta} \left[\frac{1}{\tanh(R/h)} - \frac{1}{R/h} \right] P_e, \quad (S18)$$

133 where we used Eq. (S13).

134 Rocky debris contained outside the primitive region accumulates on the
 135 surface of the primitive region and forms the dust mantle. From the mass
 136 conservation for the rocky debris, we obtain the following relationship be-
 137 tween R and Δ [15]:

$$\frac{4\pi}{3} (R_0^3 - R^3) (1 - f) = \frac{4\pi}{3} [(R + \Delta)^3 - R^3] p. \quad (S19)$$

138 Solving Eq. (S19) for Δ , we obtain the normalized mantle thickness $k =$
 139 Δ/R_0 as follows:

$$k = \left[x^3 + \frac{1-f}{p} (1-x^3) \right]^{1/3} - x, \quad (S20)$$

140 where $x = R/R_0$. The value of k at $x = 0$, $k_\infty = (\frac{1-f}{p})^{1/3}$, gives the
 141 normalized final radius R_∞/R_0 when the cometary nucleus has transformed
 142 to an asteroid.

¹⁴³ **S1.4 Spin-up**

¹⁴⁴ Since assuming the spherical symmetry, the water vapor does not exert any
¹⁴⁵ reaction torque on the cometary nucleus when ejected. Therefore, the nucleus
¹⁴⁶ never starts spinning if not rotating initially. However, if the nucleus is
¹⁴⁷ initially rotating, the moment of inertia will change as it contracts, and its
¹⁴⁸ spin rate may also change. Watanabe [15] formulated the spin-up by taking
¹⁴⁹ into account the angular momentum loss due to the ice sublimation and the
¹⁵⁰ decrease in the moment of inertia due to the contraction of the cometary
¹⁵¹ nucleus. However, he assumed the case where the cometary nucleus shrinks
¹⁵² only slightly, so his model cannot be directly applied to the drastic change
¹⁵³ where the cometary nucleus loses almost all of water ice. Here, we modified
¹⁵⁴ the Watanabe's formulation to apply to the case where the radius of the
¹⁵⁵ cometary nucleus changes significantly.

¹⁵⁶ The angular momentum of the cometary nucleus is $L = I\omega$, where I is
¹⁵⁷ the moment of inertia of the cometary nucleus and ω is its angular velocity.
¹⁵⁸ Differentiating L by R , we obtain

$$\frac{1}{\omega} \frac{d\omega}{dR} = \frac{1}{I\omega} \frac{dL}{dR} - \frac{1}{I} \frac{dI}{dR}. \quad (\text{S21})$$

¹⁵⁹ The angular momentum is reduced by the amount associated with the water
¹⁶⁰ vapor leaking from the mantle surface. Therefore, the time variation of L is
¹⁶¹ given by¹

$$\frac{dL}{dt} = -\frac{8\pi}{3}(R + \Delta)^4 J_{(\text{m},\text{s})}\omega, \quad (\text{S22})$$

¹⁶² where $J_{(\text{m},\text{s})}$ is the value of $J_{(\text{m})}$ at the mantle surface ($r = R + \Delta$). From
¹⁶³ Eq. (S22), we obtain

$$\frac{dL}{dR} = \frac{dL}{dt} \frac{dt}{dR} = \frac{8\pi}{3} f \rho_{(\text{p})} (R + \Delta)^2 R^2 \omega, \quad (\text{S23})$$

¹⁶⁴ where we used the continuity of the water vapor flowing in the pores given by
¹⁶⁵ $R^2 J_{(\text{p},\text{sf})} = (R + \Delta)^2 J_{(\text{m},\text{s})}$. The moment of inertia I of the cometary nucleus
¹⁶⁶ including the dust mantle is given by

$$I = \frac{8\pi}{15} \left[\rho_{(\text{m})} (R + \Delta)^5 - (\rho_{(\text{m})} - \rho_{(\text{p})}) R^5 \right]. \quad (\text{S24})$$

¹We used the fact that the moment of inertia of a thin spherical shell with the mass M and radius R is given by $\frac{2}{3}MR^2$.

₁₆₇ Substituting Eqs. (S23) and (S24) into Eq. (S21), and integrating for R
₁₆₈ from R_0 to R , we obtain the angular velocity $\omega(x)$ when the radius of the
₁₆₉ primitive region becomes $R = xR_0$, as the ratio to the initial value ω_0 , as
₁₇₀ follows:

$$\frac{\omega(x)}{\omega_0} = \frac{\exp [D(x)]}{p(x+k)^5 - x^5(p-1)}, \quad (\text{S25})$$

₁₇₁ where $D(x)$ is a function defined by

$$D(x) \equiv \int_1^x \frac{5fx^2(x+k)^2}{p(x+k)^5 - x^5(p-1)} dx. \quad (\text{S26})$$

₁₇₂ When $x = 0$, the equation (S25) gives the final spin-up rate after the water
₁₇₃ ice sublimates completely. This final spin-up rate depends only on the values
₁₇₄ of f and p , and not on the process in the middle.

₁₇₅ Eq. (S25) has the same form as the Watanabe's model, but the definition
₁₇₆ of the function $D(x)$ given by Eq. (S26) differs in two respects. The first
₁₇₇ respect is the difference in the relationship between x and k (see Eq. S20).
₁₇₈ The Watanabe's model uses the approximation $k = (1-x)(1-f)/p$, which is
₁₇₉ valid only when the contraction of the cometary nucleus is sufficiently small
₁₈₀ ($x \simeq 1$ and $k \ll 1$). The second respect is that in the Watanabe's model the
₁₈₁ numerator of the integrand was not $5fx^2(x+k)^2$ but $5fx^4$; namely, $(k/x)^2$
₁₈₂ was ignored as sufficiently small for 1. In the Watanabe's model, the angular
₁₈₃ momentum is assumed to be carried away when the water vapor is released
₁₈₄ outside the primitive region. However, the water vapor ejected from the
₁₈₅ surface of the primitive region passes through the dust mantle before being
₁₈₆ ejected from the cometary nucleus, and slows down its rotation. The Watan-
₁₈₇ abe's model is a good approximation when the contraction of the cometary
₁₈₈ nucleus is sufficiently small, but it cannot be applied to the situation where
₁₈₉ almost all the water ice sublimates, as in this study.

₁₉₀ S1.5 Numerical scheme

₁₉₁ Eq. (S17) was integrated numerically using the fourth-order accurate Runge-
₁₉₂ Kutta method. The time step Δt is variable and is taken to be smaller as
₁₉₃ the rate of change in R is larger. Specifically, Δt was given to satisfy the
₁₉₄ following:

$$\frac{R_0/N}{\Delta t} = \left| \frac{dR}{dt} \right|, \quad (\text{S27})$$

195 where N is an integer and we set $N = 10^3$ in this study. If R becomes
 196 negative, we calculate the sublimation time at which R becomes just zero by
 197 linear interpolation with the value of R at the previous time step.

198 The increase in the angular velocity of rotation with the shrinking of
 199 the cometary nucleus was calculated using Eq. (S25). The integration
 200 of $D(x)$ given by Eq. (S26) was performed numerically using a package
 201 `integrate.quad()` in the Python library SciPy.

202 S1.6 Parameter dependence

203 The time it takes for the water ice to sublimate completely is called the
 204 sublimation time. The parameter dependence is revealed by normalizing Eq.
 205 (S17). Substituting Eq. (S18) into Eq. (S17), we obtain

$$\frac{dx}{d(t/\tau_{\text{sub}})} \simeq - \left(\frac{1}{k} + \frac{1}{x} \right). \quad (\text{S28})$$

206 Here, for $J_{(\text{p},\text{sf})}$, we approximated $\tanh(R/h) \rightarrow 1$ because $R \gg h$, and ig-
 207 nored the term h/R as sufficiently small for 1. For $g_{R,\Delta}$, we used $\chi \ll 1$, and
 208 also approximated $\tanh(R/h) \rightarrow 1$ and ignored the term $\chi/(\Delta/h)$ as suffi-
 209 ciently small. This approximation is valid because $\chi/(\Delta/h) \sim (d_{(\text{m})}/d_{(\text{p})})/(\Delta/h) \sim$
 210 $d_{(\text{m})}/\Delta$, and the dust mantle is much thicker than the diameter of the rocky
 211 debris except in the very early stage of cometary nucleus evolution. From Eq.
 212 (S28), we can see that the time variation of R can be scaled by a timescale
 213 τ_{sub} , which is defined by

$$\tau_{\text{sub}} \equiv \frac{3\sqrt{2}}{16} \frac{(1 - \epsilon_{(\text{m})})^{1/3}}{\epsilon_{(\text{m})}^{3/2}} \left(\frac{\pi k_{\text{B}} T}{m} \right)^{1/2} \frac{\varrho_{\text{i}} \phi_{\text{i}(\text{p})}}{d_{(\text{m})}} \frac{R_0^2}{P_{\text{e}}}. \quad (\text{S29})$$

214 This means that the sublimation time is proportional to R_0^2 , and inversely
 215 proportional to $d_{(\text{m})}$ and $P_{\text{e}}(T)/\sqrt{T}$.