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S1 FORMULATION5

Here, we describe the formulation of our model that a cometary nucleus6

transforms to an asteroid as a result of water ice sublimation. The outline is7

illustrated in Figure 1. We consider a spherically-symmetric highly-porous8

cometary nucleus with a two-layered structure consisting of the inner prim-9

itive region and the outer dust mantle, which are composed of water ice10

particles and rocky debris, respectively. Both the water ice particles and11

rocky debris are assumed to be spheres with diameters of di and dr, respec-12

tively. The internal temperature T is assumed to be uniform and to not vary13

with time. The physical quantities are uniform each in the primitive region14

and in the dust mantle, respectively.15

S1.1 Definition of parameters16

Initially, the cometary nucleus consists of only the primitive region, and its17

radius is R0. As the water ice sublimates, the primitive region shrinks and18

the rocky debris left behind accumulates on its surface. The thickness ∆ of19

the dust mantle increases with the decrease in the radius R of the primitive20

region. When the water ice has completely sublimated, R becomes zero21

and ∆ gives the final radius R∞ of the asteroid left behind. We denote22

the parameter in each region with a subscript (α), where α = p for the23

primitive region and α = m for the dust mantle. The macroporosity, volume24

fractions of water ice particles and rocky debris, and density of the region25
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α are denoted by ϵ(α), ϕi(α), ϕr(α), and ρ(α), respectively. The relationship26

between the macroporosity and volume fractions is given by27

ϵ(α) = 1− (ϕi(α) + ϕr(α)). (S1)

We find ϕi(m) = 0 because there is no water ice in the dust mantle. The28

density ρ(α) of each region is given by29

ρ(α) = ϱrϕr(α) + ϱiϕi(α), (S2)

where ϱi and ϱr are the material densities of the water ice particles and rocky30

debris, respectively. The mass fraction f of water ice in the primitive region31

is given by32

f =
ϱiϕi(p)

ϱrϕr(p) + ϱiϕi(p)

=
ϱiϕi(p)

ρ(p)
. (S3)

The physical quantities defined above are not independent of each other.33

We choose ϵ(p), ϵ(m), and f as independent input parameters that are more34

relevant to observation. The other quantities are determined from these35

independent parameters as follows. From Eq. (S3), we obtain f
1−f

=
ϱiϕi(p)

ϱrϕr(p)
.36

Solving this equation and Eq. (S1) for ϕr(p) and ϕi(p), respectively, we obtain37

ϕr(p) =
1− ϵ(p)

1 + ϱr
ϱi

f
1−f

, ϕi(p) =
1− ϵ(p)

ϱi
ϱr

1−f
f

+ 1
(S4)

for the primitive region, and38

ϕr(m) = 1− ϵ(m) (S5)

for the dust mantle. The ratio p = ρ(m)/ρ(p) of densities between the primitive39

region and the dust mantle is obtained as40

p =
ϱrϕr(m)

ϱrϕr(p) + ϱiϕi(p)

=
1− ϵ(m)

1− ϵ(p)

(
1 +

ϱr − ϱi
ϱi

f

)
. (S6)

Supplementary Table 1 shows the default values of input parameters.41

Unless otherwise noted, the values in this table are used in calculations.42
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S1.2 Distribution of vapor43

S1.2.1 Vapor flow in pores44

The pores inside the cometary nucleus are filled with water vapor generated45

by the sublimation of water ice particles. The production rate q(p) of the46

water vapor per unit volume of the primitive region is given by [22]47

q(p) = ϕi(p)S
(

m

2πkBT

)1/2

(Pe − P ), (S7)

where S = 6/di is the surface-to-volume ratio of water ice particles, Pe is48

the equilibrium vapor pressure of water ice, P is the pressure of water vapor49

filling the pores, kB is the Boltzmann constant, and m is the mass of a water50

molecule. The equilibrium vapor pressure is given by [22]51

Pe = 3.56× 1012 exp
(
−6141.667

T

)
Pa. (S8)

On the other hand, the dust mantle does not contain water ice particles, so52

the production rate q(m) is naturally zero.53

The flow of water vapor in the porous cometary nucleus is driven by54

the pressure gradient. The cometary nucleus is cold, the equilibrium vapor55

pressure is low, and the water vapor filling the pores is dilute. The mean free56

path is a few centimeters at 200 K, which is much longer than the typical size57

of pores [22]. Therefore, the flow can be regarded as a free molecular flow.58

Assuming that the region α is randomly packed with spherical particles of59

diameter d(α), the flux J (α) of water vapor is given by [22]60

J (α) = −16

3

(
m

2πkB

)1/2 ϵ
3/2
(α)

(1− ϵ(α))1/3
d(α)∇

(
P√
T

)
. (S9)

The primitive region contains both of water ice particles and rocky debris.61

Since the flux is controlled by smaller particles, the particle diameter d(p) in62

the primitive region can be assumed to be equal to the diameter di of water63

ice particles. On the other hand, since only rocky debris exists in the dust64

mantle, the particle diameter d(m) is equal to the diameter dr of rocky debris.65

Although the diameter of the rocky debris assumed in this study is about66

the same as the mean free path of water vapor, we use the equation for a67

free molecular flow, because it makes the model simpler.68
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Let us assume that the vapor flow inside the cometary nucleus reaches69

steady state on the evolution timescale of the cometary nucleus. The steady70

flow satisfies the following continuity equation in each region:71

∇ · J (α) = q(α). (S10)

Substituting Eqs. (S7) and (S9) into Eq. (S10) yields an equation for the72

pressure distribution P (r). When the temperature T is uniform, the equation73

becomes a Poisson equation in the primitive region and a Laplace equation74

in the dust mantle, respectively. These equations can be solved analytically75

under appropriate boundary conditions.76

S1.2.2 Boundary condition77

We denote the pressure distributions in the primitive region and in the dust78

mantle as P(p)(r) and P(m)(r), respectively. These two distributions are con-79

nected so as to satisfy the following two boundary conditions at r = R80

(contact boundary). The first boundary condition is that the pressure is81

continuous; namely, P(p)(R) = P(m)(R) (boundary condition i). The second82

boundary condition is that the flux is continuous; namely, J(p)(R) = J(m)(R)83

(boundary condition ii). In addition, we consider a zero-flux condition at the84

center of the cometary nucleus (J(p)(0) = 0, boundary condition iii) and zero85

pressure at the mantle surface (P(m)(R +∆) = 0, boundary condition iv).86

Using Eq. (S9), the boundary condition (ii) is rewritten as87

dP(p)

dr
= χ

dP(m)

dr
, (at r = R) (S11)

where χ is a dimensionless quantity defined by88

χ ≡
(
ϵ(m)

ϵ(p)

)3/2 (
1− ϵ(m)

1− ϵ(p)

)−1/3
d(m)

d(p)
. (S12)

In this paper, we assume d(p) ≪ d(m), so χ ≫ 1 is valid unless the macrop-89

orosities of the primitive region and dust mantle are very different. There-90

fore, at the contact boundary, the magnitude of the pressure gradient in the91

primitive region is much larger than that in the dust mantle.92
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S1.2.3 Analytic solution93

Solving equations for P(p)(r) and P(m)(r) together with the boundary condi-94

tions (i)-(iv), we obtain the analytical solution as follows:95

P(p)(r) =

[
1− gR,∆

sinh(r/h)

sinh(R/h)

R

r

]
Pe, (for 0 ≤ r ≤ R) (S13)

P(m)(r) = (1− gR,∆)
R

∆

(
R +∆

r
− 1

)
Pe, (for R < r ≤ R +∆)(S14)

where gR,∆ and h are constants defined by96

gR,∆ ≡ χ(1 + ∆/R) tanh(R/h)

(∆/h) + [χ+ (χ− 1)∆/R] tanh(R/h)
, (S15)

97

h ≡ 2
√
2

3

ϵ
3/4
(p)

(1− ϵ(p))1/6
d(p)

ϕ
1/2
i(p)

. (S16)

Substituting the values listed in Supplementary Table 1, we obtain h =98

1.61 µm.99

Supplementary Figure 1 shows the analytic solutions of P(p)(r) and P(m)(r).100

Panel (a) shows P(p)(r) and P(m)(r) near the contact boundary. The horizon-101

tal axis is the distance from the contact boundary. Here, we use R = 1 km102

and ∆ = 1 cm. Throughout almost the entire area of the primitive region,103

P(p)(r) is equal to Pe, indicating that a solid-vapor equilibrium has been es-104

tablished. However, P(p)(r) decreases rapidly in a very narrow region near105

the contact boundary and is connected to the pressure P(m)(R) in the dust106

mantle. In the dust mantle, P(m)(r) decreases slowly toward the outside and107

becomes zero at the surface. Panels (b) and (c) respectively show the de-108

pendences of P(p)(r) and P(m)(r) on ∆. In panel (b), the horizontal axis is109

magnified around the contact boundary. In panel (c), the horizontal axis is110

normalized by ∆. The thicker the dust mantle, the closer the water vapor111

pressure at the contact boundary is to the equilibrium vapor pressure. This112

trend can be understood by considering that the dust mantle acts as a lid to113

prevent the leakage of the water vapor. However, for any mantle thicknesses,114

the pressure is almost equal to Pe as one dives deeper than a few times h from115

the contact boundary into the primitive region. This suggests that the water116

ice sublimates only at the very vicinity of the contact boundary. Therefore,117

we refer to the contact boundary as a sublimation front in the current study.118
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Supplementary Figure 1: Analytic solution of pressure distribution P (r) of
water vapor in cometary nucleus. Panel (a) shows P (r) near the contact
boundary between the primitive region and the dust mantle in the case with
R = 1 km and ∆ = 1 cm. Panels (b) and (c) show the dependence on ∆.
Panel (b) is a magnified view of P (r) in the primitive region, and panel (c)
is in the dust mantle. The horizontal axis indicates the distance from the
contact boundary, where negative values indicate the primitive region side
and positive values indicate the dust mantle side. Note that the horizontal
axis in panel (c) is normalized by ∆. The region corresponding to the dust
mantle is filled in gray. The pressure in the vertical axis is normalized by the
equilibrium vapor pressure Pe.
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S1.3 Shrinkage of nucleus and dust mantle formation119

As can be seen in Supplementary Figure 1, P(p)(r) is not uniform in the very120

neighborhood of the sublimation front. The fact that the water vapor pres-121

sure varies from place-to-place means that the sublimation rate of water ice122

varies from place to place (see Eq. S7). In other words, water ice particles123

closer to the sublimation front sublimate faster, so physical quantities such124

as the volume fraction of water ice particles cannot be strictly uniform. How-125

ever, the width of such inhomogeneous region is at most a few times larger126

than h, which is much smaller than the size of the entire cometary nucleus.127

Therefore, we can assume that the physical quantities in the primitive region128

are uniform and that water ice sublimates only from the surface of the prim-129

itive region. In this case, the time variation of the radius R of the primitive130

region is given by131

dR

dt
= −

J(p,sf)
ϱiϕi(p)

, (S17)

where J(p,sf) is the value of J(p) at the sublimation front and is given by132

J(p,sf) = 4
(

m

πkBT

)1/2 ϵ
3/4
(p)

(1− ϵ(p))1/6
gR,∆

[
1

tanh(R/h)
− 1

R/h

]
Pe, (S18)

where we used Eq. (S13).133

Rocky debris contained outside the primitive region accumulates on the134

surface of the primitive region and forms the dust mantle. From the mass135

conservation for the rocky debris, we obtain the following relationship be-136

tween R and ∆ [15]:137

4π

3
(R3

0 −R3)(1− f) =
4π

3
[(R +∆)3 −R3]p. (S19)

Solving Eq. (S19) for ∆, we obtain the normalized mantle thickness k =138

∆/R0 as follows:139

k =

[
x3 +

1− f

p
(1− x3)

]1/3
− x, (S20)

where x = R/R0. The value of k at x = 0, k∞ = (1−f
p
)1/3, gives the140

normalized final radius R∞/R0 when the cometary nucleus has transformed141

to an asteroid.142
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S1.4 Spin-up143

Since assuming the spherical symmetry, the water vapor does not exert any144

reaction torque on the cometary nucleus when ejected. Therefore, the nucleus145

never starts spinning if not rotating initially. However, if the nucleus is146

initially rotating, the moment of inertia will change as it contracts, and its147

spin rate may also change. Watanabe [15] formulated the spin-up by taking148

into account the angular momentum loss due to the ice sublimation and the149

decrease in the moment of inertia due to the contraction of the cometary150

nucleus. However, he assumed the case where the cometary nucleus shrinks151

only slightly, so his model cannot be directly applied to the drastic change152

where the cometary nucleus loses almost all of water ice. Here, we modified153

the Watanabe’s formulation to apply to the case where the radius of the154

cometary nucleus changes significantly.155

The angular momentum of the cometary nucleus is L = Iω, where I is156

the moment of inertia of the cometary nucleus and ω is its angular velocity.157

Differentiating L by R, we obtain158

1

ω

dω

dR
=

1

Iω

dL

dR
− 1

I

dI

dR
. (S21)

The angular momentum is reduced by the amount associated with the water159

vapor leaking from the mantle surface. Therefore, the time variation of L is160

given by1161

dL

dt
= −8π

3
(R +∆)4J(m,s)ω, (S22)

where J(m,s) is the value of J(m) at the mantle surface (r = R + ∆). From162

Eq. (S22), we obtain163

dL

dR
=

dL

dt

dt

dR
=

8π

3
fρ(p)(R +∆)2R2ω, (S23)

where we used the continuity of the water vapor flowing in the pores given by164

R2J(p,sf) = (R+∆)2J(m,s). The moment of inertia I of the cometary nucleus165

including the dust mantle is given by166

I =
8π

15

[
ρ(m)(R +∆)5 − (ρ(m) − ρ(p))R

5
]
. (S24)

1We used the fact that the moment of inertia of a thin spherical shell with the mass
M and radius R is given by 2

3MR2.
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Substituting Eqs. (S23) and (S24) into Eq. (S21), and integrating for R167

from R0 to R, we obtain the angular velocity ω(x) when the radius of the168

primitive region becomes R = xR0, as the ratio to the initial value ω0, as169

follows:170

ω(x)

ω0

=
exp [D(x)]

p(x+ k)5 − x5(p− 1)
, (S25)

where D(x) is a function defined by171

D(x) ≡
∫ x

1

5fx2(x+ k)2

p(x+ k)5 − x5(p− 1)
dx. (S26)

When x = 0, the equation (S25) gives the final spin-up rate after the water172

ice sublimates completely. This final spin-up rate depends only on the values173

of f and p, and not on the process in the middle.174

Eq. (S25) has the same form as the Watanabe’s model, but the definition175

of the function D(x) given by Eq. (S26) differs in two respects. The first176

respect is the difference in the relationship between x and k (see Eq. S20).177

The Watanabe’s model uses the approximation k = (1−x)(1−f)/p, which is178

valid only when the contraction of the cometary nucleus is sufficiently small179

(x ≃ 1 and k ≪ 1). The second respect is that in the Watanabe’s model the180

numerator of the integrand was not 5fx2(x + k)2 but 5fx4; namely, (k/x)2181

was ignored as sufficiently small for 1. In the Watanabe’s model, the angular182

momentum is assumed to be carried away when the water vapor is released183

outside the primitive region. However, the water vapor ejected from the184

surface of the primitive region passes through the dust mantle before being185

ejected from the cometary nucleus, and slows down its rotation. The Watan-186

abe’s model is a good approximation when the contraction of the cometary187

nucleus is sufficiently small, but it cannot be applied to the situation where188

almost all the water ice sublimates, as in this study.189

S1.5 Numerical scheme190

Eq. (S17) was integrated numerically using the fourth-order accurate Runge–191

Kutta method. The time step ∆t is variable and is taken to be smaller as192

the rate of change in R is larger. Specifically, ∆t was given to satisfy the193

following:194

R0/N

∆t
=

∣∣∣∣∣dRdt
∣∣∣∣∣ , (S27)
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where N is an integer and we set N = 103 in this study. If R becomes195

negative, we calculate the sublimation time at which R becomes just zero by196

linear interpolation with the value of R at the previous time step.197

The increase in the angular velocity of rotation with the shrinking of198

the cometary nucleus was calculated using Eq. (S25). The integration199

of D(x) given by Eq. (S26) was performed numerically using a package200

integrate.quad() in the Python library SciPy.201

S1.6 Parameter dependence202

The time it takes for the water ice to sublimate completely is called the203

sublimation time. The parameter dependence is revealed by normalizing Eq.204

(S17). Substituting Eq. (S18) into Eq. (S17), we obtain205

dx

d(t/τsub)
≃ −

(
1

k
+

1

x

)
. (S28)

Here, for J(p,sf), we approximated tanh(R/h) → 1 because R ≫ h, and ig-206

nored the term h/R as sufficiently small for 1. For gR,∆, we used χ ≪ 1, and207

also approximated tanh(R/h) → 1 and ignored the term χ/(∆/h) as suffi-208

ciently small. This approximation is valid because χ/(∆/h) ∼ (d(m)/d(p))/(∆/h) ∼209

d(m)/∆, and the dust mantle is much thicker than the diameter of the rocky210

debris except in the very early stage of cometary nucleus evolution. From Eq.211

(S28), we can see that the time variation of R can be scaled by a timescale212

τsub, which is defined by213

τsub ≡ 3
√
2

16

(1− ϵ(m))
1/3

ϵ
3/2
(m)

(
πkBT

m

)1/2
ϱiϕi(p)

d(m)

R2
0

Pe

. (S29)

This means that the sublimation time is proportional to R2
0, and inversely214

proportional to d(m) and Pe(T )/
√
T .215
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