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Introduction 

This R-script supplementary file was used to compute computational analyses related to the research. 

Here we present the two main analyses of the study. The Weighted Correlation Network Analysis was 

used to study omics-level co-expression networks. The Cox Regression Survival Model was used to study 

cancer-predicting biomarkers among multi-omics datasets and to test the predictive accuracy of the found 

biomarkers.  

 

Contact Information 

The script has been written by Minta Kärkkäinen (Uni. of Jyväskylä) and Joonas Tuomikoski (Uni. of 

Jyväskylä). Correspondence to: minta.e.m.karkkainen@jyu.fi or tiina.a.jokela@jyu.fi 
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Weighted Correlation Network Analysis 

 

 

 

Install packages and import data 

 

## Step1: Install needed packages and import data (cmiR)  

library(magrittr)    #provides the %>% operator  

library(WGCNA) 

library(GO.db) 

#Load normalized cmiR countdata  

cmiR <- read.table("normalized_miR_counts.txt") 

 

 

Determine Soft threshold 

 

##Step 2. Pick soft threshold for WGCNA 
 

#When you pick up a soft threshold it should only contain expression values. 
 A correlation network will be a complete network (all genes are connected to all other genes).  
 We will need to pick a threshold value (if the correlation is below threshold, remove the edge).  
To do that, WGCNA will try a range of soft thresholds and create a diagnostic plot:  
 
allowWGCNAThreads() #optional, allows few threads 

# Choose a set of soft-thresholding powers 
powers = c(c(1:10), seq(from = 12, to = 20, by = 2)) 

 
# Call the network topology analysis function 
sft = pickSoftThreshold( 
  cmiR,             
  powerVector = powers, 
  verbose = 5 
) 

par(mfrow = c(1,2)); 
cex1 = 0.9; 
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plot(sft$fitIndices[, 1], 
     -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2], 
     xlab = "Soft Threshold (power)", 
     ylab = "Scale Free Topology Model Fit, signed R^2", 
     main = paste("Scale independence") 
) 
text(sft$fitIndices[, 1], 
     -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2], 
     labels = powers, cex = cex1, col = "red" 
) 
abline(h = 0.90, col = "red") 
plot(sft$fitIndices[, 1], 
     sft$fitIndices[, 5], 
     xlab = "Soft Threshold (power)", 
     ylab = "Mean Connectivity", 
     type = "n", 
     main = paste("Mean connectivity") 
) 
text(sft$fitIndices[, 1], 
     sft$fitIndices[, 5], 
     labels = powers, 
     cex = cex1, col = "red") 

#The Scale-Free Topology Model Fit (signed R^2) plot generated by pickSoftThreshold in 

 WGCNA is used to assess the goodness of fit of the network to a scale-free topology under different  

 soft-thresholding powers.  
 Ideally, you want to choose a soft-thresholding power at which the model fit (R^2) is high and the curve  

 reaches a plateau, indicating that the network follows a scale-free topology. 
If your Scale-Free Topology Model Fit plot shows a scattered or irregular pattern with data points it  

 may indicate that the data does not exhibit a clear scale-free network structure across the tested  

 soft-thresholding powers. 

#Here, we chose soft thresholding power of 6: 
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WGCNA 

 

##Step 3. Compute Weighted Correlation Networks 

 
picked_power = 6     # <= selected soft threshold here 
temp_cor <- cor       
cor <- function(...) WGCNA::cor(method = "spearman", ...) # force it to use WGCNA cor function  

                 (fix a namespace conflict issue) 
netwk <- blockwiseModules(cmiR,                # <= input here 

                           
                          # == Adjacency Function == 
                          power = picked_power, # <= power here 
                          networkType = "signed", #allows positive and negative correlations 
                           
                          # == Tree and Block Options == 
                          deepSplit = 2, 
                          pamRespectsDendro = F, 
                          # detectCutHeight = 0.75, 
                          minModuleSize = 5,    #determine minimum module size 
                          maxBlockSize = 317,   #max module size was set as the number of cmiRs in the data 
                           
                          # == Module Adjustments == 
                          reassignThreshold = 0, 
                          mergeCutHeight = 0.25, 

                           
                          # == TOM == Archive the run results in TOM file  
                          saveTOMs = T, 
                          saveTOMFileBase = "ER", 

                           
                          # == Output Options 
                          numericLabels = T, 
                          verbose = 3) 

cor <- temp_cor     # return cor function to original namespace 

 
# Convert labels to colors for plotting 
mergedColors = labels2colors(netwk$colors) 
# Plot the dendrogram and the module colors underneath 
plotDendroAndColors( 
  netwk$dendrograms[[1]], 
  mergedColors[netwk$blockGenes[[1]]], 
  "Module colors", 
  dendroLabels = FALSE, 
  hang = 0.03, 
  addGuide = TRUE, 
  guideHang = 0.05 ) 
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#We have written a tab-delimited file listing the genes and their modules.  
 WGCNA will calculate an Eigengene (hypothetical central gene) for each module, so it is easier  

 to determine if modules are associated with a trait of interest. 
 

module_df <- data.frame( 
  gene_id = names(netwk$colors), 
  colors = labels2colors(netwk$colors) 
) 

 
# Get Module Eigengenes per cluster 
MEs0 <- moduleEigengenes(cmiR, mergedColors)$eigengenes 
 
# Reorder modules so similar modules are next to each other 
MEs0 <- orderMEs(MEs0) 
module_order = names(MEs0) %>% gsub("ME","", .) 

 

#We have now calculated module eigengenes (MEs) for each study subject which can now be used in  

module-trait association analyses.  
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Lasso Cox regression survival model 

 

 

 

Feature selection using Lasso Cox regression 

 
#Step 1. Download packages and import data 

 
#Install libraries 

library(glmnet) 

library(survival) 
library(mixOmics) # to impute missing values 

library(SurvMetrics) # to get all the metrics 

library(pec) # to make predictions based on the Cox model 

#Import data 

totalx <- read.delim("multi_omics_Filtered2.txt", header = TRUE) 
 
#Impute missing values, NIPALS is used to decompose the dataset. 
totalx <- impute.nipals(X = totalx, ncomp = 10) 
 

#Step 2. Feature selection for cmiRs 
 
# Extract predictors (cmiR expression levels) 
x0 <- data.matrix(totalx[ ,c(7:21)]) %>%   
  scale(center = T) %>% 
  na.omit() 

 
# Extract response variable (time and status) 
y0 <- totalx[,c(5,6)] %>%  
  na.omit() %>%  
  as.matrix() 
 
# Fit the LASSO model (Lasso: Alpha = 1) 

 
# Inspect Lasso  fit lambdas 
fit0 <- glmnet(x0,y0, family = "cox", alpha = 1, maxit=1000000) 
plot(fit0, xvar="lambda") 
print(fit0) 
lambda0 <- coef(fit0, s = 0.040680)  #select Lambda where the number of features is thresholded to 5 

 
#The selected features and their coefficients can be obtained: 
nonZeroIdx0<-which(lambda0[,1]!= 0)  
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features0<-rownames(lambda0)[nonZeroIdx0]  
features0 

#Step 3. Feature selection for cMets 

 
# Extract predictors 
x1 <- data.matrix(totalx[ ,c(22:85)]) %>%   
  scale(center = T) %>% 
  na.omit() 

# Inspect Lasso fit lambdas 
fit1 <- glmnet(x1,y0, family = "cox", alpha = 1, maxit=1000000) 
plot(fit1, xvar="lambda") 
print(fit1) 
lambda1 <- coef(fit1, s = 0.051400)   

 
nonZeroIdx1<-which(lambda1[,1]!= 0)  
features1<-rownames(lambda1)[nonZeroIdx1]  
features1 

 

 

 

 

 

Fit Cox regression model 

 

 

#Step 1. Fit the cmiRs and cMets to Cox regression model using predictive features from the feature  

selection 

#Scale cmiRs and cMets  

total1[, -c(1, 2)] <- scale(total1[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
#Fit the model 

full.cox <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p + hsa.miR.47

32.3p + hsa.miR.148b.3p + HDL_TG + Tyr + Glucose + Acetate + GlycA, data = total1, x=TRUE) 

summary(full.cox) 

## Call: 
## coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +  
##              hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG +  
##              Tyr + Glucose + Acetate + GlycA, data = total1, x = TRUE) 
##  
## n= 116, number of events= 17  
##  
##                       coef     exp(coef) se(coef)    z        Pr(>|z|) 
## hsa.miR.101.3p    0.54142   1.71844  0.34455  1.571    0.116 
## hsa.miR.182.5p    0.23665   1.26699  0.40600  0.583    0.560 
## hsa.miR.183.5p    0.22955   1.25803  0.45463  0.505    0.614 
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## hsa.miR.4732.3p  -0.01475   0.98536  0.21581 -0.068    0.946 
## hsa.miR.148b.3p  -0.47138   0.62414  0.33372 -1.413    0.158 
## HDL_TG           0.46815   1.59703  0.32727  1.430    0.153 
## Tyr                0.10789   1.11392  0.28337  0.381    0.703 
## Glucose            0.44125   1.55465  0.29130  1.515    0.130 
## Acetate           0.44192   1.55569  0.28270  1.563    0.118 
## GlycA             0.53485   1.70719  0.35023  1.527    0.127 
##  
##                   exp(coef) exp(-coef) lower .95 upper .95 
## hsa.miR.101.3p     1.7184     0.5819    0.8747     3.376 
## hsa.miR.182.5p      1.2670     0.7893    0.5717     2.808 
## hsa.miR.183.5p      1.2580     0.7949    0.5161     3.067 
## hsa.miR.4732.3p    0.9854     1.0149    0.6455     1.504 
## hsa.miR.148b.3p     0.6241     1.6022    0.3245     1.200 
## HDL_TG              1.5970     0.6262    0.8409     3.033 
## Tyr                 1.1139     0.8977    0.6392     1.941 
## Glucose            1.5546     0.6432    0.8784     2.752 
## Acetate             1.5557     0.6428    0.8939     2.707 
## GlycA               1.7072     0.5858    0.8593     3.392 
##  
## Concordance= 0.815  (se = 0.045 ) 
## Likelihood ratio test= 26.78  on 10 df,   p=0.003 
## Wald test = 22.08  on 10 df,   p=0.01 
## Score (logrank) test = 24.72  on 10 df,   p=0.006 

#Test the model assumptions using Schoenfeld residuals  

cox.zph(full.cox) 

 

#Remove the least significant covariates  

anova(full.cox)  

## Analysis of Deviance Table 
## Cox model: response is Surv(time, status) 
## Terms added sequentially (first to last) 
##  
##                    loglik  Chisq Df Pr(>|Chi|)    
## NULL             -78.946                         
## hsa.miR.101.3p   -76.029 5.8342  1   0.015718 *  
## hsa.miR.182.5p   -74.995 2.0677  1   0.150444    
## hsa.miR.183.5p   -73.605 2.7811  1   0.095382 .  
## hsa.miR.4732.3p  -72.922 1.3662  1   0.242474    
## hsa.miR.148b.3p  -72.768 0.3070  1   0.579549    
## HDL_TG           -69.110 7.3166  1   0.006832 ** 
## Tyr               -68.673 0.8744  1   0.349729    
## Glucose          -67.655 2.0343  1   0.153787    
## Acetate          -66.725 1.8610  1   0.172515    
## GlycA            -65.555 2.3400  1   0.126091    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#Plot the results 
ggforest(full.cox, data = total1) 
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#Step 2. Fit the model again using covariates based on Anova results (highest Chisq-values) 

 full.cox.1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = total1, x=  

TRUE) 

 
summary(full.cox.1) 
## Call: 
## coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +  
##          HDL_TG, data = total1, x = TRUE) 
##  
##  n= 116, number of events= 17  
##  
##                    coef  exp(coef) se(coef)   z  Pr(>|z|)   
## hsa.miR.101.3p  0.7000    2.0137   0.3038 2.304   0.0212 * 
## hsa.miR.183.5p  0.5811    1.7881   0.2809 2.069   0.0385 * 
## HDL_TG          0.6876    1.9889   0.2758 2.493   0.0127 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##                  exp(coef) exp(-coef) lower .95 upper .95 
## hsa.miR.101.3p     2.014     0.4966     1.110     3.652 
## hsa.miR.183.5p      1.788     0.5593     1.031     3.101 
## HDL_TG              1.989     0.5028     1.158     3.415 
##  
## Concordance= 0.764  (se = 0.04 ) 
## Likelihood ratio test= 17.15  on 3 df,   p=7e-04 
## Wald test = 13.81  on 3 df,   p=0.003 
## Score (logrank) test = 15.34  on 3 df,   p=0.002 

anova(full.cox.1) 
## Analysis of Deviance Table 
##  Cox model: response is Surv(time, status) 
## Terms added sequentially (first to last) 
##  
##                   loglik   Chisq  Df Pr(>|Chi|)   
## NULL            -78.946                        
## hsa.miR.101.3p  -76.029 5.8342  1    0.01572 * 
## hsa.miR.183.5p  -73.607 4.8440  1    0.02774 * 
## HDL_TG          -70.372 6.4697  1    0.01097 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#Test the model assumptions using Schoenfeld residuals  

cox.zph(full.cox.1) 
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#Step 3. Train the full and reduced model for CRC  

#Make data frame containing only CRC  
total2 <- total1[!(rownames(total1) %in% c("LSME0160", "LSME0152", "LSME0105", "LSME0095", 

"LSME0078", "LSME0045", "LSME0039", "LSME0004", "LSJ126")), ] 

#Fit the model for CRC with all 10 predictors 

full.cox.CRC <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p +  

          hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG + Tyr +  

          Glucose + Acetate + GlycA, data = total2, x=TRUE) 

summary(full.cox.CRC) 

## Call: 
## coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +  
##          hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p +  

##     HDL_TG + Tyr + Glucose + Acetate + GlycA,    

##     data = total2, x = TRUE) 

##   n= 107, number of events= 8  
##  
##                      coef  exp(coef) se(coef)  z  Pr(>|z|)   
## hsa.miR.101.3p    1.9688    7.1619   0.8532  2.307   0.0210 * 
##hsa.miR.182.5p          -1.3121   0.2693   1.0609 -1.237  0.2162 

## hsa.miR.183.5p    0.2898    3.6319   1.3106  0.984   0.3251   
## hsa.miR.4732.3p   0.5705    1.7691   0.5246  1.087   0.2769   
## hsa.miR.148b.3p  -0.9391   0.3910   0.5242 -1.863   0.0625 . 
## HDL_TG            0.2666    1.3055   0.5270  0.506   0.6130   
## Tyr               0.3678    1.4446   0.4687  0.785   0.4326   
## Glucose           1.2748    3.5779   0.6353  2.006   0.0448 * 
## Acetate           0.9691    2.6357   0.5331  1.818   0.0691 . 
## GlycA             0.8590    2.3608   0.5233  1.642   0.1007 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##                   exp(coef) exp(-coef) lower .95 upper .95 
## hsa.miR.101.3p     7.1619     0.1396    1.34508   38.133 
##hsa.miR.182.5p          0.2693     3.7140    0.03366   2.154 

## hsa.miR.183.5p      3.6319     0.2753    0.27831   47.395 
## hsa.miR.4732.3p     1.7691     0.5653    0.63270   4.946 
## hsa.miR.148b.3p     0.3910     2.5576    0.14555   1.050 
## HDL_TG              1.3055     0.7660    0.46468   3.668 
## Tyr                 1.4446     0.6922    0.57648   3.620 
## Glucose             3.5779     0.2795   1.02997    12.429 
## Acetate             2.6357     0.3794    0.92715    7.493 
## GlycA               2.3608     0.4236    0.84654    6.584 
##  
## Concordance= 0.898  (se = 0.041 ) 
## Likelihood ratio test= 21.01  on 10 df,   p=0.02 
## Wald test = 9.77  on 10 df,   p=0.5 
## Score (logrank) test = 14.56  on 10 df,   p=0.1 
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anova(full.cox.CRC) 
ggforest(full.cox.CRC, data = total2) 
cox.zph(full.cox.CRC) 

#Fit the model for CRC with 3 predictors 

full.cox.CRC2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = total2

, x=TRUE) 

summary(full.cox.CRC2) 
## Call: 
## coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +  
##          HDL_TG, data = total2, x = TRUE) 
##  
##  n= 107, number of events= 8  
##  
##                    coef     exp(coef)   se(coef)  z  Pr(>|z|)   
## hsa.miR.101.3p  0.9491    2.5834   0.4441 2.137   0.0326 * 
## hsa.miR.183.5p  0.4801    1.6162   0.3980 1.206   0.2278   
## HDL_TG          0.4067    1.5018   0.4292 0.948   0.3434   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##                  exp(coef) exp(-coef) lower .95 upper .95 
## hsa.miR.101.3p      2.583        0.3871    1.0819     6.169 
## hsa.miR.183.5p      1.616        0.6187    0.7408     3.526 
## HDL_TG             1.502        0.6659    0.6476     3.483 
##  
## Concordance= 0.796  (se = 0.045 ) 
## Likelihood ratio test= 8.32  on 3 df,   p=0.04 
## Wald test = 6.88  on 3 df,   p=0.08 
## Score (logrank) test = 7.45  on 3 df,   p=0.06 

anova(full.cox.CRC2)  
cox.zph(full.cox.CRC2) 
ggforest(full.cox.CRC2, data = total2) 
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Model validation 

 

#Step 1. Import 5 data splits 
 
train0 <- read.csv("train_set_0.csv") 
train1 <- read.csv("train_set_1.csv") 
train2 <- read.csv("train_set_2.csv") 
train3 <- read.csv("train_set_3.csv") 
train4 <- read.csv("train_set_4.csv") 
 

#Step 2. Fit the Cox Proportional Hazards Model on train data and make predictions  

with the test data 

Iteration 0: 
 
# Standardize the data (excluding the response variables) 
train_data_scaled0 <- scale(train_data0[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
train_means0 <- attr(train_data_scaled0, "scaled:center") #save train means for scaling the test data 
train_sds0 <- attr(train_data_scaled0, "scaled:scale") #save train sds for scaling the test data 

 
#Convert the scaled matrix to a data frame 
train_data_scaled0 <- as.data.frame(train_data_scaled0) 

 
#Add the unscaled 'time' and 'status' variables back to the scaled data frame 
train_data_scaled0 <- cbind(train_data0[, c("time", "status")], train_data_scaled0) 
 
#Train the model with predictive features 
full.cox0 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_

scaled0, x=TRUE) 
 

summary(full.cox0) 

cox.zph(full.cox0) 
ggforest(full.cox0, data = train_data_scaled0) 

#Make model predictions with test data 

test_data0 <- read.csv("test_set_0.csv")  

## Scale the test data using the mean and sd from the training data 
test_data0[, -c(1, 2)] <- scale(test_data0[, -c(1, 2)],  
                                center = train_means0,  
                                scale = train_sds0) 
 

#Use the SurvMetrics package to validate the predictions   
event_times <- full.cox0$y[, "time"] 
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event_indicator <- full.cox0$y[, "status"]  # this indicates if the event occurred (1) or was censored (0) 
distime <- event_times[event_indicator == 1] 
distime <- sort(unique(distime))  
mat_cox <- predictSurvProb(full.cox0, test_data0, distime) #get the survival probability matrix 
med_index <- median(1:length(distime)) #the index of median survival time of events 
vec_cox <- mat_cox[ ,med_index] 

vec_cox  # print probabilities 

times <- test_data0$time  #extract survival time of events 
status <- test_data0$status #extract survival status of events 

 
#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods 
Cindex_cox <- Cindex(Surv(times, status), vec_cox) 
BS_cox <- Brier(Surv(times, status), vec_cox, distime[med_index]) 
IBS_cox <- IBS(Surv(times, status), mat_cox, distime) 
IAE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[1] 
ISE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[2] 
 

------------------------------------------------------------------------------------------------------------------------------- 

Iteration 1: 
 
train_data_scaled1 <- scale(train_data1[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
train_means1 <- attr(train_data_scaled1, "scaled:center")  
train_sds1 <- attr(train_data_scaled1, "scaled:scale")  
train_data_scaled1 <- as.data.frame(train_data_scaled1) 
train_data_scaled1 <- cbind(train_data1[, c("time", "status")], train_data_scaled1) 

 
#Train the model  
full.cox1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_

scaled1, x=TRUE) 
 

summary(full.cox1) 

cox.zph(full.cox1) 
 
#Plot predictive features' impact on event hazard 
ggforest(full.cox1, data = train_data_scaled1) 

 

#Make model predictions with test data 
test_data1 <- read.csv("test_set_1.csv") 

#Scale the test data using the mean and sd from the training data 
test_data1[, -c(1, 2)] <- scale(test_data1[, -c(1, 2)],  
                                center = train_means1,  
                                scale = train_sds1) 
 
# Extract event times and event indicators 
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event_times1 <- full.cox1$y[, "time"] 
event_indicator1 <- full.cox1$y[, "status"]  
distime1 <- event_times1[event_indicator1 == 1] 
distime1 <- sort(unique(distime1))  
mat_cox1 <- predictSurvProb(full.cox1, test_data1, distime1)  
med_index1 <- median(1:length(distime1))  
vec_cox1 <- mat_cox1[ ,med_index1] 

 
times1 <- test_data1$time 
status1 <- test_data1$status 

 
#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods 
Cindex_cox1 <- Cindex(Surv(times1, status1), vec_cox1) 
BS_cox1 <- Brier(Surv(times1, status1), vec_cox1, distime1[med_index1]) 
IBS_cox1 <- IBS(Surv(times1, status1), mat_cox1, distime1) 
IAE_cox1 <- IAEISE(Surv(times1, status1), mat_cox1, distime1)[1] 
ISE_cox1 <- IAEISE(Surv(times1, status1), mat_cox1, distime1)[2] 
 
------------------------------------------------------------------------------------------------------------------------------- 
 

Iteration 2: 
 
# Standardize the data (excluding the response variable) 
train_data_scaled2 <- scale(train_data2[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
train_means2 <- attr(train_data_scaled2, "scaled:center")  
train_sds2 <- attr(train_data_scaled2, "scaled:scale")  
train_data_scaled2 <- as.data.frame(train_data_scaled2) 
train_data_scaled2 <- cbind(train_data2[, c("time", "status")], train_data_scaled2) 

 
#Train the model with predictive features 
full.cox2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,  

                  data = train_data_ scaled2, x=TRUE) 

 
summary(full.cox2) 
cox.zph(full.cox2) 
ggforest(full.cox2, data = train_data_scaled2) 

#Make model predictions with test data 
test_data2 <- read.csv("test_set_2.csv") 

#Scale the test data using the mean and sd from the training data 
test_data2[, -c(1, 2)] <- scale(test_data2[, -c(1, 2)],  
                                center = train_means2,  
                                scale = train_sds2) 
 
# Extract event times and event indicators 
event_times2 <- full.cox2$y[, "time"] 
event_indicator2 <- full.cox2$y[, "status"]  
distime2 <- event_times2[event_indicator2 == 1] 
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distime2 <- sort(unique(distime2))  
mat_cox2 <- predictSurvProb(full.cox2, test_data2, distime2)  
med_index2 <- median(1:length(distime2))  
vec_cox2 <- mat_cox2[ ,med_index2] 

 
times2 <- test_data2$time 
status2 <- test_data2$status 
 
#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods 
Cindex_cox2 <- Cindex(Surv(times2, status2), vec_cox2) 
BS_cox2 <- Brier(Surv(times2, status2), vec_cox2, distime2[med_index2]) 
IBS_cox2 <- IBS(Surv(times2, status2), mat_cox2, distime2) 
IAE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[1] 
ISE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[2] 

------------------------------------------------------------------------------------------------------------------------------- 
 

Iteration 3: 
 
# Standardize the data (excluding the response variable) 
train_data_scaled3 <- scale(train_data3[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
train_means3 <- attr(train_data_scaled3, "scaled:center")  
train_sds3 <- attr(train_data_scaled3, "scaled:scale")  
train_data_scaled3 <- as.data.frame(train_data_scaled3) 
train_data_scaled3 <- cbind(train_data3[, c("time", "status")], train_data_scaled3) 

 
#Train the model with predictive features 
full.cox3 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,  

                     data = train_data_scaled3, x=TRUE) 

summary(full.cox3) 
cox.zph(full.cox3) 
ggforest(full.cox3, data = train_data_scaled3) 

 

#Make model predictions with test data 
test_data3 <- read.csv("test_set_3.csv") 

#Scale the test data using the mean and sd from the training data 
test_data3[, -c(1, 2)] <- scale(test_data3[, -c(1, 2)],  
                                center = train_means3,  
                                scale = train_sds3) 

 
# Extract event times and event indicators 
event_times3 <- full.cox3$y[, "time"] 
event_indicator3 <- full.cox3$y[, "status"]   
distime3 <- event_times3[event_indicator3 == 1] 
distime3 <- sort(unique(distime3))  
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mat_cox3 <- predictSurvProb(full.cox3, test_data3, distime3)  
med_index3 <- median(1:length(distime3))  
vec_cox3 <- mat_cox3[ ,med_index3] 
 
times3 <- test_data3$time 
status3 <- test_data3$status 
 
#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods 
Cindex_cox3 <- Cindex(Surv(times3, status3), vec_cox3) 
BS_cox3 <- Brier(Surv(times3, status3), vec_cox3, distime3[med_index3]) 
IBS_cox3 <- IBS(Surv(times3, status3), mat_cox3, distime3) 
IAE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[1] 
ISE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[2] 
 

------------------------------------------------------------------------------------------------------------------------------- 

Iteration 4: 
 
# Standardize the data (excluding the response variable) 
train_data_scaled4 <- scale(train_data4[, -c(1, 2)],  
                            center = TRUE,  
                            scale = TRUE) 
train_means4 <- attr(train_data_scaled4, "scaled:center")  
train_sds4 <- attr(train_data_scaled4, "scaled:scale")  
train_data_scaled4 <- as.data.frame(train_data_scaled4) 
train_data_scaled4 <- cbind(train_data4[, c("time", "status")], train_data_scaled4) 

 
#Train the model with predictive features 
full.cox4 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,  

                  data = train_data_scaled4, x=TRUE) 

 
summary(full.cox4) 
cox.zph(full.cox4) 
ggforest(full.cox4, data = train_data_scaled4) 

 

#Make model predictions with test data 
test_data4 <- read.csv("test_set_4.csv") 

#Scale the test data using the mean and sd from the training data 
test_data4[, -c(1, 2)] <- scale(test_data4[, -c(1, 2)],  
                                center = train_means4,  
                                scale = train_sds4) 
 
# Extract event times and event indicators 
event_times4 <- full.cox4$y[, "time"] 
event_indicator4 <- full.cox4$y[, "status"]   
distime4 <- event_times4[event_indicator4 == 1] 
distime4 <- sort(unique(distime4))  
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mat_cox4 <- predictSurvProb(full.cox4, test_data4, distime4)  
med_index4 <- median(1:length(distime4))  
vec_cox4 <- mat_cox4[ ,med_index4] 
 
times4 <- test_data4$time 
status4 <- test_data4$status 
 
#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods 
Cindex_cox4 <- Cindex(Surv(times4, status4), vec_cox4) 
BS_cox4 <- Brier(Surv(times4, status4), vec_cox4, distime4[med_index4]) 
IBS_cox4 <- IBS(Surv(times4, status4), mat_cox4, distime4) 
IAE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[1] 
ISE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[2] 
 

 

 

 

 

 


