Supplementary Methods

Minta Kérkkéinen & Joonas Tuomikoski

2024

Contents

] 8o To 11 od T o PSSR 1

(@01 v Lot 1 a1 {0 14 F= 11 [0] o [T 1

Weighted Correlation Network ANAlYSIS.........ccvciuiiiiiiciiiie e 2
Install packages and IMPOIt ALA..........ccceieriiiiiiii e 2
Determine SOt threSNOIAcc.oiiiiiei e 2
VWG CINA bbbttt b e b e b e e bt e Rt e Rt e Rt e Rt e b e b e bRt Rt e Rt n et e bbb renre s 4

Lasso Cox regression survival MOdel ..o 6
Feature selection uSiNg LasSO COX FEOIESSIONcc.evvirueriirieriieieie ettt sttt 6
Fit COX regreSSION MOUEIccuviieiieie ettt ettt teer e re e s teeaeeneennas 7
Voo [T IR To F=UA o] o I PSSP 12

Introduction

This R-script supplementary file was used to compute computational analyses related to the research.
Here we present the two main analyses of the study. The Weighted Correlation Network Analysis was
used to study omics-level co-expression networks. The Cox Regression Survival Model was used to study
cancer-predicting biomarkers among multi-omics datasets and to test the predictive accuracy of the found
biomarkers.

Contact Information

The script has been written by Minta Kérkkdinen (Uni. of Jyvéskyld) and Joonas Tuomikoski (Uni. of
Jyviskyld). Correspondence to: minta.e.m.karkkainen@jyu.fi or tiina.a.jokela@jyu.fi

Weighted Correlation Network Analysis

Install packages and import data

Stepl: Install needed packages and import data (cmiR)

library(magrittr) #provides the %>% operator
library(WGCNA)
library(GO.db)

#Load normalized cmiR countdata
cmiR <- read.table("normalized_miR_counts.txt")

Determine Soft threshold

##Step 2. Pick soft threshold for WGCNA

#When you pick up a soft threshold it should only contain expression values.

A correlation network will be a complete network (all genes are connected to all other genes).
We will need to pick a threshold value (if the correlation is below threshold, remove the edge).
To do that, WGCNA will try a range of soft thresholds and create a diagnostic plot:

allowWWGCNAThreads() #optional, allows few threads

Choose a set of soft-thresholding powers
powers = c(c(1:10), seq(from = 12, to = 20, by = 2))

Call the network topology analysis function
sft = pickSoftThreshold(

cmiR,
powerVector = powers,
verbose =5
)
par(mfrow = c(1,2));
cex1 =0.9;

plot(sft$fitindices[, 1],
-sign(sftsfitindices], 3]) * sft$fitIndices[, 2],
xlab = "Soft Threshold (power)",
ylab = "Scale Free Topology Model Fit, signed R"2",
main = paste(*'Scale independence")

)

text(sftfitIndices], 1],
-sign(sft$fitindices[, 3]) * sft$fitindices[, 2],
labels = powers, cex = cex1, col ="red"

)
abline(h = 0.90, col = "red™)
plot(sftsfitindices], 1],
sftsfitindices], 5],
xlab = "Soft Threshold (power)",
ylab = "Mean Connectivity",
type ="n",
main = paste("'Mean connectivity")

text(sftsfitIndices], 1],
sftéfitindices|, 5],
labels = powers,
cex = cexl, col = "red")

#The Scale-Free Topology Model Fit (signed R*2) plot generated by pickSoftThreshold in
WGCNA is used to assess the goodness of fit of the network to a scale-free topology under different

soft-thresholding powers.

Ideally, you want to choose a soft-thresholding power at which the model fit (R*2) is high and the curve
reaches a plateau, indicating that the network follows a scale-free topology.

If your Scale-Free Topology Model Fit plot shows a scattered or irregular pattern with data points it
may indicate that the data does not exhibit a clear scale-free network structure across the tested

soft-thresholding powers.

#Here, we chose soft thresholding power of 6:

g Scale independence

B

5 %7

w Q| 4

—- O

ic 2 Z

© [{e) =]

g o7 g

= T 16 g 2D §

= <

g o7 ° e * 2

2 °?
o~

e s =

3

—_ o

- ;¢

v ° T T T |

3 5 0 15 20

w

Soft Threshold (power)

20 30 40 50

10

0

Mean connectivity

2

3
4?6789’”0 12 14‘16 18 ZP

5 10 15 20

Soft Threshold (power)

WGCNA

##Step 3. Compute Weighted Correlation Networks

picked_power =6 # <= selected soft threshold here

temp_cor <- cor

cor <- function(...) WGCNA::cor(method = "spearman”, ...) # force it to use WGCNA cor function
(fix a namespace conflict issue)

netwk <- blockwiseModules(cmiR, # <= input here

== Adjacency Function ==
power = picked_power, # <= power here
networkType = "signed", #allows positive and negative correlations

== Tree and Block Options ==

deepSplit = 2,

pamRespectsDendro = F,

detectCutHeight = 0.75,

minModuleSize =5, #determine minimum module size

maxBlockSize = 317, #max module size was set as the number of cmiRs in the data

== Module Adjustments ==
reassignThreshold = 0,
mergeCutHeight = 0.25,

== TOM == Archive the run results in TOM file
saveTOMs =T,
saveTOMFileBase = "ER",

== Output Options
numericLabels =T,
verbose = 3)

cor <-temp_cor # return cor function to original namespace

Convert labels to colors for plotting
mergedColors = labels2colors(netwk$colors)
Plot the dendrogram and the module colors underneath
plotDendroAndColors(

netwk$dendrograms[[1]],

mergedColors[netwk$blockGenes[[1]]],

"Module colors",

dendroLabels = FALSE,

hang = 0.03,

addGuide = TRUE,

guideHang = 0.05)

Cluster Dendrogram

Height
0.90
|

o

Module colors]

#We have written a tab-delimited file listing the genes and their modules.
WGCNA will calculate an Eigengene (hypothetical central gene) for each module, so it is easier
to determine if modules are associated with a trait of interest.

module_df <- data.frame(
gene_id = names(netwk$colors),
colors = labels2colors(netwk$colors)

)

Get Module Eigengenes per cluster
MEsO <- moduleEigengenes(cmiR, mergedColors)$eigengenes

Reorder modules so similar modules are next to each other
MESsO <- orderMEs(MEs0)
module_order = names(MEsQ) %>% gsub("ME","",.)

#We have now calculated module eigengenes (MEs) for each study subject which can now be used in
module-trait association analyses.

Lasso Cox regression survival model

Feature selection using Lasso Cox regression
#Step 1. Download packages and import data

#Install libraries

library(glmnet)

library(survival)

library(mixOmics) # to impute missing values
library(SurvMetrics) # to get all the metrics

library(pec) # to make predictions based on the Cox model

#Import data
totalx <- read.delim("multi_omics_Filtered2.txt", header = TRUE)

#Impute missing values, NIPALS is used to decompose the dataset.
totalx <- impute.nipals(X = totalx, ncomp = 10)

#Step 2. Feature selection for cmiRs

Extract predictors (cmiR expression levels)
X0 <- data.matrix(totalx[,c(7:21)]) %>%
scale(center = T) %>%
na.omit()

Extract response variable (time and status)
y0 <- totalx[,c(5,6)] %>%

na.omit() %6>%

as.matrix()

Fit the LASSO model (Lasso: Alpha = 1)

Inspect Lasso fit lambdas

fit0 <- glmnet(x0,y0, family = "cox", alpha = 1, maxit=1000000)

plot(fit0, xvar="lambda")

print(fit0)

lambda0 <- coef(fit0, s = 0.040680) #select Lambda where the number of features is thresholded to 5

#The selected features and their coefficients can be obtained:
nonZeroldx0<-which(lambda0[,1]'!= 0)

featuresO<-rownames(lambda0)[nonZeroldxQ]
featuresO

#Step 3. Feature selection for cMets

Extract predictors

x1 <- data.matrix(totalx[,c(22:85)]) %>%
scale(center = T) %>%
na.omit()

Inspect Lasso fit lambdas

fitl <- glmnet(x1,y0, family = "cox", alpha = 1, maxit=1000000)
plot(fitl, xvar="lambda")

print(fitl)

lambdal <- coef(fitl, s = 0.051400)

nonZeroldx1<-which(lambdal[,1]!= 0)
featuresl<-rownames(lambdal)[nonZeroldx1]
featuresl

Fit Cox regression model

#Step 1. Fit the cmiRs and cMets to Cox regression model using predictive features from the feature
selection

#Scale cmiRs and cMets
totall[, -c(1, 2)] <- scale(totall[, -c(1, 2)],
center = TRUE,
scale = TRUE)
#Fit the model
full.cox <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p + hsa.miR.47
32.3p + hsa.miR.148b.3p + HDL_TG + Tyr + Glucose + Acetate + GlycA, data = totall, x=TRUE)

summary(full.cox)

Call:

coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +

it hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG +
H## Tyr + Glucose + Acetate + GlycA, data = totall, x = TRUE)

H

n= 116, number of events= 17

HH

coef exp(coef) se(coef) z Pr(>|z|)

hsa.miR.101.3p 0.54142 1.71844 0.34455 1.571 0.116
hsa.miR.182.5p 0.23665 1.26699 0.40600 0.583 0.560
hsa.miR.183.5p 0.22955 1.25803 0.45463 0.505 0.614

7

hsa.miR.4732.3p
hsa.miR.148b.3p

-0.01475 0.98536 0.21581 -0.068 0.946
-0.47138 0.62414 0.33372-1.413 0.158

HDL_TG 0.46815 1.59703 0.32727 1.430 0.153
#H Tyr 0.10789 1.11392 0.28337 0.381 0.703
Glucose 0.44125 1.55465 0.29130 1.515 0.130
Acetate 0.44192 1.55569 0.28270 1.563 0.118
GlycA 0.53485 1.70719 0.35023 1.527 0.127
#i

exp(coef) exp(-coef) lower .95 upper .95
hsa.miR.101.3p 1.7184 0.5819 0.8747 3.376

hsa.miR.182.5p 1.2670 0.7893 0.5717 2.808

hsa.miR.183.5p 1.2580 0.7949 0.5161 3.067

hsa.miR.4732.3p 0.9854 1.0149 0.6455 1.504

hsamiR.148b.3p 0.6241 1.6022 0.3245 1.200

HDL_TG 15970 0.6262 0.8409 3.033

Tyr 1.1139 0.8977 0.6392 1.941

Glucose 1.5546 0.6432 0.8784 2.752

Acetate 15557 0.6428 0.8939 2.707

GlycA 1.7072 0.5858 0.8593 3.392

#H#

Concordance= 0.815 (se =0.045)

Likelihood ratio test= 26.78 on 10 df, p=0.003

Wald test = 22.08 on 10 df, p=0.01

Score (logrank) test = 24.72 on 10 df, p=0.006

#Test the model assumptions using Schoenfeld residuals
cox.zph(full.cox)

#Remove the least significant covariates
anova(full.cox)

Analysis of Deviance Table

Cox model: response is Surv(time, status)
Terms added sequentially (first to last)

Hi

i loglik Chisq Df Pr(>|Chil)

NULL -78.946

hsa.miR.101.3p -76.0295.8342 1 0.015718 *
hsa.miR.182.5p -74.995 2.0677 1 0.150444
hsa.miR.183.5p -73.6052.7811 1 0.095382.
##t hsamiR.4732.3p -72.922 1.3662 1 0.242474
hsa.miR.148b.3p -72.768 0.3070 1 0.579549
##HDL_TG -69.110 7.3166 1 0.006832 **
Tyr -68.673 0.8744 1 0.349729
Glucose -67.655 2.0343 1 0.153787
Acetate -66.7251.8610 1 0.172515
GlycA -65.5552.3400 1 0.126091
Hit -

Signif. codes: 0 ***'(0.001 **'0.01™*'0.05"'0.1"'"1

#Plot the results

ggforest(full.cox, data = totall)

#Step 2. Fit the model again using covariates based on Anova results (highest Chisg-values)
full.cox.1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = totall, x=
TRUE)

summary(full.cox.1)

Call:

coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +
#H# HDL_TG, data = total1, x = TRUE)
#H#

n= 116, number of events= 17

HH

coef exp(coef) se(coef) z Pr(>z|)

hsa.miR.101.3p 0.7000 2.0137 0.30382.304 0.0212 *

hsa.miR.183.5p 0.5811 1.7881 0.2809 2.069 0.0385*

HDL_TG 0.6876 1.9889 0.2758 2.493 0.0127 *
#H# ---

Signif. codes: 0 '***'(0.001 **'0.01™*'0.05"''0.1"'"'1

#H

exp(coef) exp(-coef) lower .95 upper .95

hsa.miR.101.3p 2.014 0496 1.110 3.652
hsa.miR.183.5p 1.788 05593 1.031 3.101
HDL_TG 1.989 0.5028 1.158 3.415
#H#

Concordance= 0.764 (se =0.04)

Likelihood ratio test=17.15 on 3 df, p=7e-04

Wald test = 13.81 on 3 df, p=0.003

Score (logrank) test = 15.34 on 3 df, p=0.002

anova(full.cox.1)

Analysis of Deviance Table

Cox model: response is Surv(time, status)
Terms added sequentially (first to last)

#H#
i loglik Chisq Df Pr(>|Chil)
NULL -78.946

hsa.miR.101.3p -76.0295.8342 1 0.01572 *
hsa.miR.183.5p -73.607 4.8440 1 0.02774 *
HDL_TG -70.372 6.4697 1 0.01097 *
i ---

Signif. codes: 0 '***'(0.001 **'0.01™*'0.05"''0.1"'"'1

#Test the model assumptions using Schoenfeld residuals
cox.zph(full.cox.1)

#Step 3. Train the full and reduced model for CRC

#Make data frame containing only CRC
total2 <- total1[!(rownames(totall) %in% c("LSMEOQ0160", "LSME0152", "LSMEO0105", "LSME0095",
"LSMEQ0078", "LSME0045", "LSME0039", "LSME0004", "LSJ126")),]

#Fit the model for CRC with all 10 predictors

full.cox.CRC <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p +
hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG + Tyr +
Glucose + Acetate + GlycA, data = total2, x=TRUE)

summary(full.cox.CRC)

Call:

coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +

i hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p +
i HDL_TG + Tyr + Glucose + Acetate + GlycA,

data = total2, x = TRUE)

n= 107, number of events= 8

#H

coef exp(coef) se(coef) z Pr(>z|)

hsa.miR.101.3p 1.9688 7.1619 0.8532 2.307 0.0210 *

##hsa.miR.182.5p -1.3121 0.2693 1.0609 -1.237 0.2162

hsa.miR.183.5p 0.2898 3.6319 1.3106 0.984 0.3251
hsamiR.4732.3p 0.5705 1.7691 0.5246 1.087 0.2769
##hsamiR.148b.3p -0.9391 0.3910 0.5242-1.863 0.0625.

HDL_TG 0.2666 1.3055 0.5270 0.506 0.6130
Tyr 0.3678 1.4446 0.4687 0.785 0.4326
Glucose 1.2748 3.5779 0.6353 2.006 0.0448 *
Acetate 0.9691 2.6357 0.5331 1.818 0.0691.
GlycA 0.8590 2.3608 0.5233 1.642 0.1007
#H# ---

Signif. codes: 0 '***'(0.001 **'0.01™*'0.05"'0.1"'"1

#H#

exp(coef) exp(-coef) lower .95 upper .95

hsa.miR.101.3p 7.1619 0.1396 1.34508 38.133
##hsa.miR.182.5p 0.2693 3.7140 0.03366 2.154
hsa.miR.183.5p 3.6319 0.2753 0.27831 47.395
##hsamiR.4732.3p 1.7691 0.5653 0.63270 4.946
hsa.miR.148b.3p 0.3910 2.5576 0.14555 1.050

HDL_TG 1.3055 0.7660 0.46468 3.668
Tyr 1.4446 0.6922 0.57648 3.620
Glucose 3.5779 0.2795 1.02997 12.429
Acetate 2.6357 0.3794 0.92715 7.493
GlycA 2.3608 0.4236 0.84654 6.584
##

Concordance= 0.898 (se =0.041)

Likelihood ratio test= 21.01 on 10 df, p=0.02
Wald test = 9.77 on 10 df, p=0.5

Score (logrank) test = 14.56 on 10 df, p=0.1

10

anova(full.cox.CRC)
ggforest(full.cox.CRC, data = total2)
cox.zph(full.cox.CRC)

#Fit the model for CRC with 3 predictors
full.cox.CRC2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = total2
, X=TRUE)

summary(full.cox.CRC2)

Call:

coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +
#H# HDL_TG, data = total2, x = TRUE)
#H#

n= 107, number of events= 8

#Hi

coef exp(coef) se(coef) z Pr(>|z|)

hsa.miR.101.3p 0.9491 2.5834 0.44412.137 0.0326 *

hsa.miR.183.5p 0.4801 1.6162 0.39801.206 0.2278

HDL_TG 0.4067 1.5018 0.42920.948 0.3434
#H# ---

Signif. codes: 0 '***'(0.001 **'0.01™*'0.05"''0.1"'"1

#H#

exp(coef) exp(-coef) lower .95 upper .95

hsa.miR.101.3p 2.583 0.3871 1.0819 6.169
hsa.miR.183.5p 1.616 0.6187 0.7408 3.526
#HDL_TG 1.502 0.6659 0.6476 3.483
#i

Concordance= 0.796 (se =0.045)

Likelihood ratio test=8.32 on 3 df, p=0.04

Wald test = 6.88 on 3 df, p=0.08

Score (logrank) test = 7.45 on 3 df, p=0.06

anova(full.cox.CRC2)
cox.zph(full.cox.CRC2)
ggforest(full.cox.CRC2, data = total2)

11

Model validation

#Step 1. Import 5 data splits

train0 <- read.csv("train_set 0.csv")
trainl <- read.csv("train_set_1.csv")
train2 <- read.csv("train_set_2.csv")
train3 <- read.csv("train_set_3.csv")
train4 <- read.csv("train_set 4.csv")

#Step 2. Fit the Cox Proportional Hazards Model on train data and make predictions
with the test data

Iteration O:

Standardize the data (excluding the response variables)
train_data_scaledO <- scale(train_dataO[, -c(1, 2)],
center = TRUE,
scale = TRUE)
train_means0 <- attr(train_data_scaled0, "scaled:center") #save train means for scaling the test data
train_sds0O <- attr(train_data_scaled0, "scaled:scale") #save train sds for scaling the test data

#Convert the scaled matrix to a data frame
train_data_scaledO <- as.data.frame(train_data_scaled0)

#Add the unscaled 'time’ and 'status' variables back to the scaled data frame
train_data_scaledO <- cbind(train_dataO[, c("'time", "status™)], train_data_scaled0)

#Train the model with predictive features
full.cox0 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_
scaled0, x=TRUE)

summary/(full.cox0)
cox.zph(full.cox0)
ggforest(full.cox0, data = train_data_scaled0)

#Make model predictions with test data
test_dataO <- read.csv("test_set 0.csv")

Scale the test data using the mean and sd from the training data
test_dataO[, -c(1, 2)] <- scale(test_dataO[, -c(1, 2)],

center = train_means0,

scale = train_sds0)

#Use the SurvMetrics package to validate the predictions
event_times <- full.cox0$y[, "time"]

12

event_indicator <- full.cox0$y[, "status™] # this indicates if the event occurred (1) or was censored (0)
distime <- event_times[event_indicator == 1]

distime <- sort(unique(distime))

mat_cox <- predictSurvProb(full.cox0, test_data0, distime) #get the survival probability matrix
med_index <- median(1:length(distime)) #the index of median survival time of events

vec_cox <- mat_cox[,med_index]

vec_cox # print probabilities

times <- test_dataO$time #extract survival time of events
status <- test_dataO$status #extract survival status of events

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox <- Cindex(Surv(times, status), vec_cox)

BS_cox <- Brier(Surv(times, status), vec_cox, distime[med_index])
IBS_cox <- IBS(Surv(times, status), mat_cox, distime)

IAE_cox <- |AEISE(Surv(times, status), mat_cox, distime)[1]

ISE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[2]

Iteration 1:

train_data_scaledl <- scale(train_datal[, -c(1, 2)],
center = TRUE,
scale = TRUE)
train_meansl <- attr(train_data_scaledl, "scaled:center")
train_sdsl <- attr(train_data_scaledl, "scaled:scale")
train_data_scaledl <- as.data.frame(train_data_scaledl)
train_data_scaledl <- cbind(train_datal[, c("time", "status")], train_data_scaled1)

#Train the model
full.cox1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_
scaledl, x=TRUE)

summary(full.cox1)
cox.zph(full.cox1)

#Plot predictive features' impact on event hazard
ggforest(full.cox1, data = train_data_scaledl)

#Make model predictions with test data
test_datal <- read.csv("test_set 1.csv")

#Scale the test data using the mean and sd from the training data
test datal[, -c(1, 2)] <- scale(test_datall, -c(1, 2)],

center = train_meansl1,

scale = train_sdsl)

Extract event times and event indicators

13

event_timesl <- full.cox1$y[, "time"]

event_indicatorl <- full.cox1$y[, "status"]

distimel <- event_times1[event_indicatorl == 1]

distimel <- sort(unigue(distimel))

mat_cox1 <- predictSurvProb(full.coxl, test_datal, distimel)
med_index1 <- median(1:length(distimel))

vec_coxl <- mat_cox1[,med_index1]

times1 <- test_datal$time
statusl <- test_datal$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox1 <- Cindex(Surv(timesl, statusl), vec_cox1)

BS_cox1 <- Brier(Surv(timesl, statusl), vec_cox1, distimel[med_index1])
IBS_cox1 <- IBS(Surv(timesl, statusl), mat_cox1, distimel)

IAE_cox1 <- IAEISE(Surv(timesl, statusl), mat_coxl, distimel)[1]
ISE_cox1 <- IAEISE(Surv(times1, statusl), mat_cox1, distimel)[2]

Iteration 2:

Standardize the data (excluding the response variable)
train_data_scaled2 <- scale(train_data2[, -c(1, 2)],
center = TRUE,
scale = TRUE)
train_means2 <- attr(train_data_scaled2, "scaled:center")
train_sds2 <- attr(train_data_scaled2, "scaled:scale")
train_data_scaled2 <- as.data.frame(train_data_scaled2)
train_data_scaled2 <- cbind(train_data2[, c("'time", "status")], train_data_scaled?)

#Train the model with predictive features
full.cox2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,
data = train_data_ scaled2, x=TRUE)

summary(full.cox2)
cox.zph(full.cox2)
ggforest(full.cox2, data = train_data_scaled?2)

#Make model predictions with test data
test_data2 <- read.csv("test_set 2.csv")

#Scale the test data using the mean and sd from the training data
test_data2?[, -c(1, 2)] <- scale(test_data2][, -c(1, 2)],

center = train_means2,

scale = train_sds2)

Extract event times and event indicators
event_times2 <- full.cox2$y[, "time"]
event_indicator2 <- full.cox2$y[, "status"]
distime2 <- event_times2[event_indicator2 == 1]

14

distime2 <- sort(unigue(distime2))

mat_cox2 <- predictSurvProb(full.cox2, test_data2, distime2)
med_index2 <- median(1:length(distime2))

vec_cox2 <- mat_cox2[,med_index2]

times2 <- test_data2$time
status2 <- test_data2$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox2 <- Cindex(Surv(times2, status2), vec_cox2)

BS_cox2 <- Brier(Surv(times2, status2), vec_cox2, distime2[med_index2])
IBS_cox2 <- IBS(Surv(times2, status2), mat_cox2, distime2)

IAE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[1]
ISE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[2]

Iteration 3:

Standardize the data (excluding the response variable)
train_data_scaled3 <- scale(train_data3[, -c(1, 2)],
center = TRUE,
scale = TRUE)
train_means3 <- attr(train_data_scaled3, "scaled:center")
train_sds3 <- attr(train_data_scaled3, "scaled:scale")
train_data_scaled3 <- as.data.frame(train_data_scaled3)
train_data_scaled3 <- cbind(train_data3][, c("'time", "status")], train_data_scaled3)

#Train the model with predictive features
full.cox3 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,
data = train_data_scaled3, x=TRUE)

summary(full.cox3)
cox.zph(full.cox3)
ggforest(full.cox3, data = train_data_scaled3)

#Make model predictions with test data
test_data3 <- read.csv("test_set 3.csv")

#Scale the test data using the mean and sd from the training data
test_data3|[, -c(1, 2)] <- scale(test_data3][, -c(1, 2)],

center = train_means3,

scale = train_sds3)

Extract event times and event indicators
event_times3 <- full.cox3$y[, "time"]
event_indicator3 <- full.cox3$y[, "status"]
distime3 <- event_times3[event_indicator3 == 1]
distime3 <- sort(unique(distime3))

15

mat_cox3 <- predictSurvProb(full.cox3, test_data3, distime3)
med_index3 <- median(1:length(distime3))
vec_cox3 <- mat_cox3[,med_index3]

times3 <- test_data3$time
status3 <- test_data3%status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox3 <- Cindex(Surv(times3, status3), vec_cox3)

BS_cox3 <- Brier(Surv(times3, status3), vec_cox3, distime3[med_index3])
IBS_cox3 <- IBS(Surv(times3, status3), mat_cox3, distime3)

IAE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[1]
ISE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[2]

Iteration 4:

Standardize the data (excluding the response variable)
train_data_scaled4 <- scale(train_data4[, -c(1, 2)],
center = TRUE,
scale = TRUE)
train_means4 <- attr(train_data_scaled4, "scaled:center")
train_sds4 <- attr(train_data_scaled4, "scaled:scale")
train_data_scaled4 <- as.data.frame(train_data_scaled4)
train_data_scaled4 <- cbind(train_data4[, c("'time", "status™)], train_data_scaled4)

#Train the model with predictive features
full.cox4 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,
data = train_data_scaled4, x=TRUE)

summary(full.cox4)
cox.zph(full.cox4)
ggforest(full.cox4, data = train_data_scaled4)

#Make model predictions with test data
test_datad <- read.csv("test_set 4.csv")

#Scale the test data using the mean and sd from the training data
test_datad[, -c(1, 2)] <- scale(test_data4][, -c(1, 2)],

center = train_means4,

scale = train_sds4)

Extract event times and event indicators
event_times4 <- full.cox4$y[, "time"]
event_indicator4 <- full.cox4$y[, "status"]
distime4 <- event_times4[event_indicator4 == 1]
distime4 <- sort(unique(distime4))

16

mat_cox4 <- predictSurvProb(full.cox4, test_data4, distime4)
med_index4 <- median(1:length(distime4))
vec_cox4 <- mat_cox4[,med_index4]

times4 <- test_data4$time
status4 <- test_data4$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox4 <- Cindex(Surv(times4, status4), vec_cox4)

BS_cox4 <- Brier(Surv(times4, status4), vec_cox4, distime4[med_index4])
IBS_cox4 <- IBS(Surv(times4, status4), mat_cox4, distime4)

IAE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[1]
ISE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[2]

17

