
1

Supplementary Methods

Minta Kärkkäinen & Joonas Tuomikoski

2024

Contents

Introduction ... 1

Contact Information ... 1

Weighted Correlation Network Analysis .. 2

Install packages and import data ... 2

Determine Soft threshold .. 2

WGCNA ... 4

Lasso Cox regression survival model .. 6

Feature selection using Lasso Cox regression .. 6

Fit Cox regression model .. 7

Model validation ... 12

Introduction

This R-script supplementary file was used to compute computational analyses related to the research.

Here we present the two main analyses of the study. The Weighted Correlation Network Analysis was

used to study omics-level co-expression networks. The Cox Regression Survival Model was used to study

cancer-predicting biomarkers among multi-omics datasets and to test the predictive accuracy of the found

biomarkers.

Contact Information

The script has been written by Minta Kärkkäinen (Uni. of Jyväskylä) and Joonas Tuomikoski (Uni. of

Jyväskylä). Correspondence to: minta.e.m.karkkainen@jyu.fi or tiina.a.jokela@jyu.fi

2

Weighted Correlation Network Analysis

Install packages and import data

Step1: Install needed packages and import data (cmiR)

library(magrittr) #provides the %>% operator

library(WGCNA)

library(GO.db)

#Load normalized cmiR countdata

cmiR <- read.table("normalized_miR_counts.txt")

Determine Soft threshold

##Step 2. Pick soft threshold for WGCNA

#When you pick up a soft threshold it should only contain expression values.
 A correlation network will be a complete network (all genes are connected to all other genes).
 We will need to pick a threshold value (if the correlation is below threshold, remove the edge).
To do that, WGCNA will try a range of soft thresholds and create a diagnostic plot:

allowWGCNAThreads() #optional, allows few threads

Choose a set of soft-thresholding powers
powers = c(c(1:10), seq(from = 12, to = 20, by = 2))

Call the network topology analysis function
sft = pickSoftThreshold(
 cmiR,
 powerVector = powers,
 verbose = 5
)

par(mfrow = c(1,2));
cex1 = 0.9;

3

plot(sft$fitIndices[, 1],
 -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2],
 xlab = "Soft Threshold (power)",
 ylab = "Scale Free Topology Model Fit, signed R^2",
 main = paste("Scale independence")
)
text(sft$fitIndices[, 1],
 -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2],
 labels = powers, cex = cex1, col = "red"
)
abline(h = 0.90, col = "red")
plot(sft$fitIndices[, 1],
 sft$fitIndices[, 5],
 xlab = "Soft Threshold (power)",
 ylab = "Mean Connectivity",
 type = "n",
 main = paste("Mean connectivity")
)
text(sft$fitIndices[, 1],
 sft$fitIndices[, 5],
 labels = powers,
 cex = cex1, col = "red")

#The Scale-Free Topology Model Fit (signed R^2) plot generated by pickSoftThreshold in

 WGCNA is used to assess the goodness of fit of the network to a scale-free topology under different

 soft-thresholding powers.
 Ideally, you want to choose a soft-thresholding power at which the model fit (R^2) is high and the curve

 reaches a plateau, indicating that the network follows a scale-free topology.
If your Scale-Free Topology Model Fit plot shows a scattered or irregular pattern with data points it

 may indicate that the data does not exhibit a clear scale-free network structure across the tested

 soft-thresholding powers.

#Here, we chose soft thresholding power of 6:

4

WGCNA

##Step 3. Compute Weighted Correlation Networks

picked_power = 6 # <= selected soft threshold here
temp_cor <- cor
cor <- function(...) WGCNA::cor(method = "spearman", ...) # force it to use WGCNA cor function

 (fix a namespace conflict issue)
netwk <- blockwiseModules(cmiR, # <= input here

 # == Adjacency Function ==
 power = picked_power, # <= power here
 networkType = "signed", #allows positive and negative correlations

 # == Tree and Block Options ==
 deepSplit = 2,
 pamRespectsDendro = F,
 # detectCutHeight = 0.75,
 minModuleSize = 5, #determine minimum module size
 maxBlockSize = 317, #max module size was set as the number of cmiRs in the data

 # == Module Adjustments ==
 reassignThreshold = 0,
 mergeCutHeight = 0.25,

 # == TOM == Archive the run results in TOM file
 saveTOMs = T,
 saveTOMFileBase = "ER",

 # == Output Options
 numericLabels = T,
 verbose = 3)

cor <- temp_cor # return cor function to original namespace

Convert labels to colors for plotting
mergedColors = labels2colors(netwk$colors)
Plot the dendrogram and the module colors underneath
plotDendroAndColors(
 netwk$dendrograms[[1]],
 mergedColors[netwk$blockGenes[[1]]],
 "Module colors",
 dendroLabels = FALSE,
 hang = 0.03,
 addGuide = TRUE,
 guideHang = 0.05)

5

#We have written a tab-delimited file listing the genes and their modules.
 WGCNA will calculate an Eigengene (hypothetical central gene) for each module, so it is easier

 to determine if modules are associated with a trait of interest.

module_df <- data.frame(
 gene_id = names(netwk$colors),
 colors = labels2colors(netwk$colors)
)

Get Module Eigengenes per cluster
MEs0 <- moduleEigengenes(cmiR, mergedColors)$eigengenes

Reorder modules so similar modules are next to each other
MEs0 <- orderMEs(MEs0)
module_order = names(MEs0) %>% gsub("ME","", .)

#We have now calculated module eigengenes (MEs) for each study subject which can now be used in

module-trait association analyses.

6

Lasso Cox regression survival model

Feature selection using Lasso Cox regression

#Step 1. Download packages and import data

#Install libraries

library(glmnet)

library(survival)
library(mixOmics) # to impute missing values

library(SurvMetrics) # to get all the metrics

library(pec) # to make predictions based on the Cox model

#Import data

totalx <- read.delim("multi_omics_Filtered2.txt", header = TRUE)

#Impute missing values, NIPALS is used to decompose the dataset.
totalx <- impute.nipals(X = totalx, ncomp = 10)

#Step 2. Feature selection for cmiRs

Extract predictors (cmiR expression levels)
x0 <- data.matrix(totalx[,c(7:21)]) %>%
 scale(center = T) %>%
 na.omit()

Extract response variable (time and status)
y0 <- totalx[,c(5,6)] %>%
 na.omit() %>%
 as.matrix()

Fit the LASSO model (Lasso: Alpha = 1)

Inspect Lasso fit lambdas
fit0 <- glmnet(x0,y0, family = "cox", alpha = 1, maxit=1000000)
plot(fit0, xvar="lambda")
print(fit0)
lambda0 <- coef(fit0, s = 0.040680) #select Lambda where the number of features is thresholded to 5

#The selected features and their coefficients can be obtained:
nonZeroIdx0<-which(lambda0[,1]!= 0)

7

features0<-rownames(lambda0)[nonZeroIdx0]
features0

#Step 3. Feature selection for cMets

Extract predictors
x1 <- data.matrix(totalx[,c(22:85)]) %>%
 scale(center = T) %>%
 na.omit()

Inspect Lasso fit lambdas
fit1 <- glmnet(x1,y0, family = "cox", alpha = 1, maxit=1000000)
plot(fit1, xvar="lambda")
print(fit1)
lambda1 <- coef(fit1, s = 0.051400)

nonZeroIdx1<-which(lambda1[,1]!= 0)
features1<-rownames(lambda1)[nonZeroIdx1]
features1

Fit Cox regression model

#Step 1. Fit the cmiRs and cMets to Cox regression model using predictive features from the feature

selection

#Scale cmiRs and cMets

total1[, -c(1, 2)] <- scale(total1[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
#Fit the model

full.cox <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p + hsa.miR.47

32.3p + hsa.miR.148b.3p + HDL_TG + Tyr + Glucose + Acetate + GlycA, data = total1, x=TRUE)

summary(full.cox)

Call:
coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +
hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG +
Tyr + Glucose + Acetate + GlycA, data = total1, x = TRUE)

n= 116, number of events= 17

coef exp(coef) se(coef) z Pr(>|z|)
hsa.miR.101.3p 0.54142 1.71844 0.34455 1.571 0.116
hsa.miR.182.5p 0.23665 1.26699 0.40600 0.583 0.560
hsa.miR.183.5p 0.22955 1.25803 0.45463 0.505 0.614

8

hsa.miR.4732.3p -0.01475 0.98536 0.21581 -0.068 0.946
hsa.miR.148b.3p -0.47138 0.62414 0.33372 -1.413 0.158
HDL_TG 0.46815 1.59703 0.32727 1.430 0.153
Tyr 0.10789 1.11392 0.28337 0.381 0.703
Glucose 0.44125 1.55465 0.29130 1.515 0.130
Acetate 0.44192 1.55569 0.28270 1.563 0.118
GlycA 0.53485 1.70719 0.35023 1.527 0.127

exp(coef) exp(-coef) lower .95 upper .95
hsa.miR.101.3p 1.7184 0.5819 0.8747 3.376
hsa.miR.182.5p 1.2670 0.7893 0.5717 2.808
hsa.miR.183.5p 1.2580 0.7949 0.5161 3.067
hsa.miR.4732.3p 0.9854 1.0149 0.6455 1.504
hsa.miR.148b.3p 0.6241 1.6022 0.3245 1.200
HDL_TG 1.5970 0.6262 0.8409 3.033
Tyr 1.1139 0.8977 0.6392 1.941
Glucose 1.5546 0.6432 0.8784 2.752
Acetate 1.5557 0.6428 0.8939 2.707
GlycA 1.7072 0.5858 0.8593 3.392

Concordance= 0.815 (se = 0.045)
Likelihood ratio test= 26.78 on 10 df, p=0.003
Wald test = 22.08 on 10 df, p=0.01
Score (logrank) test = 24.72 on 10 df, p=0.006

#Test the model assumptions using Schoenfeld residuals

cox.zph(full.cox)

#Remove the least significant covariates

anova(full.cox)

Analysis of Deviance Table
Cox model: response is Surv(time, status)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)
NULL -78.946
hsa.miR.101.3p -76.029 5.8342 1 0.015718 *
hsa.miR.182.5p -74.995 2.0677 1 0.150444
hsa.miR.183.5p -73.605 2.7811 1 0.095382 .
hsa.miR.4732.3p -72.922 1.3662 1 0.242474
hsa.miR.148b.3p -72.768 0.3070 1 0.579549
HDL_TG -69.110 7.3166 1 0.006832 **
Tyr -68.673 0.8744 1 0.349729
Glucose -67.655 2.0343 1 0.153787
Acetate -66.725 1.8610 1 0.172515
GlycA -65.555 2.3400 1 0.126091

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Plot the results
ggforest(full.cox, data = total1)

9

#Step 2. Fit the model again using covariates based on Anova results (highest Chisq-values)

 full.cox.1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = total1, x=

TRUE)

summary(full.cox.1)
Call:
coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +
HDL_TG, data = total1, x = TRUE)

n= 116, number of events= 17

coef exp(coef) se(coef) z Pr(>|z|)
hsa.miR.101.3p 0.7000 2.0137 0.3038 2.304 0.0212 *
hsa.miR.183.5p 0.5811 1.7881 0.2809 2.069 0.0385 *
HDL_TG 0.6876 1.9889 0.2758 2.493 0.0127 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
hsa.miR.101.3p 2.014 0.4966 1.110 3.652
hsa.miR.183.5p 1.788 0.5593 1.031 3.101
HDL_TG 1.989 0.5028 1.158 3.415

Concordance= 0.764 (se = 0.04)
Likelihood ratio test= 17.15 on 3 df, p=7e-04
Wald test = 13.81 on 3 df, p=0.003
Score (logrank) test = 15.34 on 3 df, p=0.002

anova(full.cox.1)
Analysis of Deviance Table
Cox model: response is Surv(time, status)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)
NULL -78.946
hsa.miR.101.3p -76.029 5.8342 1 0.01572 *
hsa.miR.183.5p -73.607 4.8440 1 0.02774 *
HDL_TG -70.372 6.4697 1 0.01097 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Test the model assumptions using Schoenfeld residuals

cox.zph(full.cox.1)

10

#Step 3. Train the full and reduced model for CRC

#Make data frame containing only CRC
total2 <- total1[!(rownames(total1) %in% c("LSME0160", "LSME0152", "LSME0105", "LSME0095",

"LSME0078", "LSME0045", "LSME0039", "LSME0004", "LSJ126")),]

#Fit the model for CRC with all 10 predictors

full.cox.CRC <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.182.5p + hsa.miR.183.5p +

 hsa.miR.4732.3p + hsa.miR.148b.3p + HDL_TG + Tyr +

 Glucose + Acetate + GlycA, data = total2, x=TRUE)

summary(full.cox.CRC)

Call:
coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.182.5p +
hsa.miR.183.5p + hsa.miR.4732.3p + hsa.miR.148b.3p +

HDL_TG + Tyr + Glucose + Acetate + GlycA,

data = total2, x = TRUE)

n= 107, number of events= 8

coef exp(coef) se(coef) z Pr(>|z|)
hsa.miR.101.3p 1.9688 7.1619 0.8532 2.307 0.0210 *
##hsa.miR.182.5p -1.3121 0.2693 1.0609 -1.237 0.2162

hsa.miR.183.5p 0.2898 3.6319 1.3106 0.984 0.3251
hsa.miR.4732.3p 0.5705 1.7691 0.5246 1.087 0.2769
hsa.miR.148b.3p -0.9391 0.3910 0.5242 -1.863 0.0625 .
HDL_TG 0.2666 1.3055 0.5270 0.506 0.6130
Tyr 0.3678 1.4446 0.4687 0.785 0.4326
Glucose 1.2748 3.5779 0.6353 2.006 0.0448 *
Acetate 0.9691 2.6357 0.5331 1.818 0.0691 .
GlycA 0.8590 2.3608 0.5233 1.642 0.1007

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
hsa.miR.101.3p 7.1619 0.1396 1.34508 38.133
##hsa.miR.182.5p 0.2693 3.7140 0.03366 2.154

hsa.miR.183.5p 3.6319 0.2753 0.27831 47.395
hsa.miR.4732.3p 1.7691 0.5653 0.63270 4.946
hsa.miR.148b.3p 0.3910 2.5576 0.14555 1.050
HDL_TG 1.3055 0.7660 0.46468 3.668
Tyr 1.4446 0.6922 0.57648 3.620
Glucose 3.5779 0.2795 1.02997 12.429
Acetate 2.6357 0.3794 0.92715 7.493
GlycA 2.3608 0.4236 0.84654 6.584

Concordance= 0.898 (se = 0.041)
Likelihood ratio test= 21.01 on 10 df, p=0.02
Wald test = 9.77 on 10 df, p=0.5
Score (logrank) test = 14.56 on 10 df, p=0.1

11

anova(full.cox.CRC)
ggforest(full.cox.CRC, data = total2)
cox.zph(full.cox.CRC)

#Fit the model for CRC with 3 predictors

full.cox.CRC2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = total2

, x=TRUE)

summary(full.cox.CRC2)
Call:
coxph(formula = Surv(time, status) ~ hsa.miR.101.3p + hsa.miR.183.5p +
HDL_TG, data = total2, x = TRUE)

n= 107, number of events= 8

coef exp(coef) se(coef) z Pr(>|z|)
hsa.miR.101.3p 0.9491 2.5834 0.4441 2.137 0.0326 *
hsa.miR.183.5p 0.4801 1.6162 0.3980 1.206 0.2278
HDL_TG 0.4067 1.5018 0.4292 0.948 0.3434

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
hsa.miR.101.3p 2.583 0.3871 1.0819 6.169
hsa.miR.183.5p 1.616 0.6187 0.7408 3.526
HDL_TG 1.502 0.6659 0.6476 3.483

Concordance= 0.796 (se = 0.045)
Likelihood ratio test= 8.32 on 3 df, p=0.04
Wald test = 6.88 on 3 df, p=0.08
Score (logrank) test = 7.45 on 3 df, p=0.06

anova(full.cox.CRC2)
cox.zph(full.cox.CRC2)
ggforest(full.cox.CRC2, data = total2)

12

Model validation

#Step 1. Import 5 data splits

train0 <- read.csv("train_set_0.csv")
train1 <- read.csv("train_set_1.csv")
train2 <- read.csv("train_set_2.csv")
train3 <- read.csv("train_set_3.csv")
train4 <- read.csv("train_set_4.csv")

#Step 2. Fit the Cox Proportional Hazards Model on train data and make predictions

with the test data

Iteration 0:

Standardize the data (excluding the response variables)
train_data_scaled0 <- scale(train_data0[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
train_means0 <- attr(train_data_scaled0, "scaled:center") #save train means for scaling the test data
train_sds0 <- attr(train_data_scaled0, "scaled:scale") #save train sds for scaling the test data

#Convert the scaled matrix to a data frame
train_data_scaled0 <- as.data.frame(train_data_scaled0)

#Add the unscaled 'time' and 'status' variables back to the scaled data frame
train_data_scaled0 <- cbind(train_data0[, c("time", "status")], train_data_scaled0)

#Train the model with predictive features
full.cox0 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_

scaled0, x=TRUE)

summary(full.cox0)

cox.zph(full.cox0)
ggforest(full.cox0, data = train_data_scaled0)

#Make model predictions with test data

test_data0 <- read.csv("test_set_0.csv")

Scale the test data using the mean and sd from the training data
test_data0[, -c(1, 2)] <- scale(test_data0[, -c(1, 2)],
 center = train_means0,
 scale = train_sds0)

#Use the SurvMetrics package to validate the predictions
event_times <- full.cox0$y[, "time"]

13

event_indicator <- full.cox0$y[, "status"] # this indicates if the event occurred (1) or was censored (0)
distime <- event_times[event_indicator == 1]
distime <- sort(unique(distime))
mat_cox <- predictSurvProb(full.cox0, test_data0, distime) #get the survival probability matrix
med_index <- median(1:length(distime)) #the index of median survival time of events
vec_cox <- mat_cox[,med_index]

vec_cox # print probabilities

times <- test_data0$time #extract survival time of events
status <- test_data0$status #extract survival status of events

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox <- Cindex(Surv(times, status), vec_cox)
BS_cox <- Brier(Surv(times, status), vec_cox, distime[med_index])
IBS_cox <- IBS(Surv(times, status), mat_cox, distime)
IAE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[1]
ISE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[2]

Iteration 1:

train_data_scaled1 <- scale(train_data1[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
train_means1 <- attr(train_data_scaled1, "scaled:center")
train_sds1 <- attr(train_data_scaled1, "scaled:scale")
train_data_scaled1 <- as.data.frame(train_data_scaled1)
train_data_scaled1 <- cbind(train_data1[, c("time", "status")], train_data_scaled1)

#Train the model
full.cox1 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG, data = train_data_

scaled1, x=TRUE)

summary(full.cox1)

cox.zph(full.cox1)

#Plot predictive features' impact on event hazard
ggforest(full.cox1, data = train_data_scaled1)

#Make model predictions with test data
test_data1 <- read.csv("test_set_1.csv")

#Scale the test data using the mean and sd from the training data
test_data1[, -c(1, 2)] <- scale(test_data1[, -c(1, 2)],
 center = train_means1,
 scale = train_sds1)

Extract event times and event indicators

14

event_times1 <- full.cox1$y[, "time"]
event_indicator1 <- full.cox1$y[, "status"]
distime1 <- event_times1[event_indicator1 == 1]
distime1 <- sort(unique(distime1))
mat_cox1 <- predictSurvProb(full.cox1, test_data1, distime1)
med_index1 <- median(1:length(distime1))
vec_cox1 <- mat_cox1[,med_index1]

times1 <- test_data1$time
status1 <- test_data1$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox1 <- Cindex(Surv(times1, status1), vec_cox1)
BS_cox1 <- Brier(Surv(times1, status1), vec_cox1, distime1[med_index1])
IBS_cox1 <- IBS(Surv(times1, status1), mat_cox1, distime1)
IAE_cox1 <- IAEISE(Surv(times1, status1), mat_cox1, distime1)[1]
ISE_cox1 <- IAEISE(Surv(times1, status1), mat_cox1, distime1)[2]

Iteration 2:

Standardize the data (excluding the response variable)
train_data_scaled2 <- scale(train_data2[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
train_means2 <- attr(train_data_scaled2, "scaled:center")
train_sds2 <- attr(train_data_scaled2, "scaled:scale")
train_data_scaled2 <- as.data.frame(train_data_scaled2)
train_data_scaled2 <- cbind(train_data2[, c("time", "status")], train_data_scaled2)

#Train the model with predictive features
full.cox2 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,

 data = train_data_ scaled2, x=TRUE)

summary(full.cox2)
cox.zph(full.cox2)
ggforest(full.cox2, data = train_data_scaled2)

#Make model predictions with test data
test_data2 <- read.csv("test_set_2.csv")

#Scale the test data using the mean and sd from the training data
test_data2[, -c(1, 2)] <- scale(test_data2[, -c(1, 2)],
 center = train_means2,
 scale = train_sds2)

Extract event times and event indicators
event_times2 <- full.cox2$y[, "time"]
event_indicator2 <- full.cox2$y[, "status"]
distime2 <- event_times2[event_indicator2 == 1]

15

distime2 <- sort(unique(distime2))
mat_cox2 <- predictSurvProb(full.cox2, test_data2, distime2)
med_index2 <- median(1:length(distime2))
vec_cox2 <- mat_cox2[,med_index2]

times2 <- test_data2$time
status2 <- test_data2$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox2 <- Cindex(Surv(times2, status2), vec_cox2)
BS_cox2 <- Brier(Surv(times2, status2), vec_cox2, distime2[med_index2])
IBS_cox2 <- IBS(Surv(times2, status2), mat_cox2, distime2)
IAE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[1]
ISE_cox2 <- IAEISE(Surv(times2, status2), mat_cox2, distime2)[2]

Iteration 3:

Standardize the data (excluding the response variable)
train_data_scaled3 <- scale(train_data3[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
train_means3 <- attr(train_data_scaled3, "scaled:center")
train_sds3 <- attr(train_data_scaled3, "scaled:scale")
train_data_scaled3 <- as.data.frame(train_data_scaled3)
train_data_scaled3 <- cbind(train_data3[, c("time", "status")], train_data_scaled3)

#Train the model with predictive features
full.cox3 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,

 data = train_data_scaled3, x=TRUE)

summary(full.cox3)
cox.zph(full.cox3)
ggforest(full.cox3, data = train_data_scaled3)

#Make model predictions with test data
test_data3 <- read.csv("test_set_3.csv")

#Scale the test data using the mean and sd from the training data
test_data3[, -c(1, 2)] <- scale(test_data3[, -c(1, 2)],
 center = train_means3,
 scale = train_sds3)

Extract event times and event indicators
event_times3 <- full.cox3$y[, "time"]
event_indicator3 <- full.cox3$y[, "status"]
distime3 <- event_times3[event_indicator3 == 1]
distime3 <- sort(unique(distime3))

16

mat_cox3 <- predictSurvProb(full.cox3, test_data3, distime3)
med_index3 <- median(1:length(distime3))
vec_cox3 <- mat_cox3[,med_index3]

times3 <- test_data3$time
status3 <- test_data3$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox3 <- Cindex(Surv(times3, status3), vec_cox3)
BS_cox3 <- Brier(Surv(times3, status3), vec_cox3, distime3[med_index3])
IBS_cox3 <- IBS(Surv(times3, status3), mat_cox3, distime3)
IAE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[1]
ISE_cox3 <- IAEISE(Surv(times3, status3), mat_cox3, distime3)[2]

Iteration 4:

Standardize the data (excluding the response variable)
train_data_scaled4 <- scale(train_data4[, -c(1, 2)],
 center = TRUE,
 scale = TRUE)
train_means4 <- attr(train_data_scaled4, "scaled:center")
train_sds4 <- attr(train_data_scaled4, "scaled:scale")
train_data_scaled4 <- as.data.frame(train_data_scaled4)
train_data_scaled4 <- cbind(train_data4[, c("time", "status")], train_data_scaled4)

#Train the model with predictive features
full.cox4 <- coxph(Surv(time,status) ~ hsa.miR.101.3p + hsa.miR.183.5p + HDL_TG,

 data = train_data_scaled4, x=TRUE)

summary(full.cox4)
cox.zph(full.cox4)
ggforest(full.cox4, data = train_data_scaled4)

#Make model predictions with test data
test_data4 <- read.csv("test_set_4.csv")

#Scale the test data using the mean and sd from the training data
test_data4[, -c(1, 2)] <- scale(test_data4[, -c(1, 2)],
 center = train_means4,
 scale = train_sds4)

Extract event times and event indicators
event_times4 <- full.cox4$y[, "time"]
event_indicator4 <- full.cox4$y[, "status"]
distime4 <- event_times4[event_indicator4 == 1]
distime4 <- sort(unique(distime4))

17

mat_cox4 <- predictSurvProb(full.cox4, test_data4, distime4)
med_index4 <- median(1:length(distime4))
vec_cox4 <- mat_cox4[,med_index4]

times4 <- test_data4$time
status4 <- test_data4$status

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox4 <- Cindex(Surv(times4, status4), vec_cox4)
BS_cox4 <- Brier(Surv(times4, status4), vec_cox4, distime4[med_index4])
IBS_cox4 <- IBS(Surv(times4, status4), mat_cox4, distime4)
IAE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[1]
ISE_cox4 <- IAEISE(Surv(times4, status4), mat_cox4, distime4)[2]

