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Table S1. MAPDI; device dimensions

#1 Au/Au #2 Pb/Au #3 Pb/Au #4 Pb/Au
MAPDI; thickness 1.0 13 0.6 0.9
(mm)
Elec(t;’ii)area 9.8 4.68 10.50 6.82
Electrode thickness 100 100 100 100
(nm)
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Figure S1. MAPDbI; Single crystal characterizations. a. photo of a typical single crystal device.
b. absorption spectrum and c¢. photoluminescence spectrum for MAPDI; single crystal.
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Figure S2. Surface characterizations for the MAPbDI; single crystal. a. optical microscope
image for MAPbI3 single crystal’s surface after polishing. b. photoluminescence height map for a

typical crystal after polishing.
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Figure S3. Energy band diagram of different device architectures for charge injection
analysis. a. Pb/p-type MAPbI3/Au at reverse bias. b. Pb/p-type MAPbI3/Au at forward bias. c.
Au/p-type MAPDI3/Au
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Figure S4. X-ray photon attenuation in MAPbI; signal crystal.
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Attenuation efficiency =1 -e , where £ is the mass attenuation coefficient of MAPbI;, p is

o
the density of MAPDI3;, and x is the MAPbI; single crystal thickness. The mass attenuation
coefficient of MAPDI; can be calculated as (%) MAPBI3 = i Wi (%)l- where w; and (%)i are the

fraction by weight and the mass attenuation coefficient of the i atomic constituent, respectively.

The attenuation efficiencies of MAPbI; to two X-ray photon energies are calculated. The 22.2 keV
and 50 keV are the most probable energy and the maximum energy, respectively, of the X-ray tube
used in this work (see Figure S8). It can be effectively treated that the charge carriers are generated
at the surface of the MAPbI;3 single crystal due to the limited penetration depth of the X-ray
photons, i.e., less than 0.2 mm for 22.2 keV X-ray photons.
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Figure S5. Sensitivity measurement of reversely biased Pb/Au devices at charge collection
mode. Current response (hole-dominantly induced signal) of a. #2 Pb/Au device, b. #3 Pb/Au
device ¢. #4 Pb/Au device, to increased X-ray dose rate in air at different reverse voltage.
Photocurrent density as function of X-ray dose rate in air of d. #2 Pb/Au device, e. #3 Pb/Au
device f. #4 Pb/Au device, at different reverse voltage.

Photocurrent is calculated as the difference between the signal current when X-ray is turned on
and the dark current. sensitivity is obtained as the slope of linear fitting to photocurrent density as
function of X-ray dose rate in air.
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Figure S6. Sensitivity measurement of forward biased Pb/Au devices and Au/Au device at
charge injection mode. Current response (hole-dominantly induced signal) of a. forward biased
#2 Pb/Au device, b. c. #1 Au/Au device, to increased X-ray dose rate in air at different voltage. d.
Photocurrent density as function of X-ray dose rate in air of #1 Au/Au device.
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Figure S7. Posterior check of the detectability. a. Current response of reversely biased #2 Pb/Au
device at different reverse voltage. The X-ray dose rate shown in the figures are confirmed to be
detected by posterior check method, which supports the prior calculated detection limit. b. Current

response of forward biased #2 Pb/Au device at different forward voltage. ¢. Current response of
#1 Au/Au device at different voltage.
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Figure S8. X-ray tube ( with Ag target) energy spectrum and dose rate calibration a. X-ray
tube energy spectrum at tube voltage 50 kV and tube current of 50 pA, measured by a Si P-I-N
detector. b. X-ray tube dose rate in air at tube voltage 30 kV and different tube current from 5 pA
to 130 pA. A dosimeter (Fluke Biomedical RaySafe 452) was used for dose rate calibration.

The X-ray tube has a most probable X-ray photon energy of 22.2 keV, corresponding to one of the
Ag characteristic X-ray energies when the X-ray tube is operated at voltage higher than 22.2 kV.
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Figure S9. Statistical distribution of the current values. a. dark current of a Pb/Au device
measured as a function of time. The measurement was performed at OV to avoid the interference
of dark current drift. b. Current value distribution fitting to Normal distribution, supporting the

assumption of Normal distribution.



