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Abstract  11 

During the 21st century, Earth’s energy imbalance (EEI) at the top of the atmosphere has 12 

markedly increased, mainly due to an increase in absorbed shortwave (SW) rather than a 13 

decrease in outgoing longwave (LW) radiation. While previous studies, based on single-forcing 14 

(aerosol-only) experiments, linked reductions in anthropogenic aerosols to this positive SW 15 

trend, we find that both aerosol-radiation interactions and aerosol-cloud interactions have had 16 

a negligible impact on recent increases in the EEI. We estimate recent trends in effective 17 

radiative forcing due to aerosols using observations and reanalysis data. While aerosol 18 

concentrations have declined in the Northern Hemisphere (NH), wildfires and volcanic activity 19 

in the Southern Hemisphere (SH) have resulted in larger aerosol loading. This contrast 20 

effectively cancels out the total aerosol forcing, resulting in a negligible global impact on the 21 

EEI trend. Our findings also suggest that model-driven estimates may be overestimated, as they 22 

overlook the compensating effects of SH aerosol emissions that balance out NH reductions. 23 

 24 

Main Text 25 

1. Introduction 26 

The Earth’s energy imbalance (EEI) at the top-of-atmosphere (TOA) is a crucial metric for 27 

understanding the state of the climate system and an important indicator of climate change 28 

(Hansen et al., 2005; Trenberth et al., 2014; Hansen et al., 2017; von Schuckmann et al., 2020). 29 

It represents the net difference between the amount of solar energy absorbed by the Earth and 30 

the energy radiated back into space, encompassing both incoming shortwave (SW) and 31 

outgoing longwave (LW) radiation. Over the past few decades, observations have revealed an 32 

increasing trend in EEI, raising concerns about its potential implications for global climate 33 

change (e.g., von Schuckmann et al., 2016; Loeb et al., 2018a). Understanding the factors 34 

contributing to this trend is essential for accurately predicting future climate scenarios and for 35 

formulating effective mitigation strategies. 36 

 37 

Recent studies have highlighted a persistent positive trend in EEI over the past two decades, 38 

driven primarily by anthropogenic forcing (Kramer et al., 2021; Raghuraman et al., 2021, 2023; 39 

Hodnebrog et al., 2024). EEI can be understood as the sum of effective radiative forcing (ERF), 40 

which includes rapid adjustments to both natural and anthropogenic forcings, and the radiative 41 
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response to these forcings. The latter is influenced by global mean surface temperature changes 42 

and the associated climate feedbacks (e.g. Forster et al., 2021; Kramer et al. 2021; Raghuraman 43 

et al., 2021). 44 

 45 

One of the key factors considered in the context of EEI is the role of aerosols. Aerosols, which 46 

include both natural and anthropogenic particles suspended in the atmosphere, interact 47 

complexly with both radiation and clouds. These interactions are typically characterized by 48 

effective radiative forcing due to aerosol-radiation interactions (ARI) and aerosol-cloud 49 

interactions (ACI). ARI, also referred to as aerosol direct effects, involves the direct effects of 50 

aerosols on radiation, such as scattering and absorption of sunlight (e.g., Yu et al., 2006). ACI, 51 

also known as aerosol indirect effects, refers to the modification of cloud properties by aerosols, 52 

influencing cloud reflectivity and longevity (e.g., Twomey, 1977; Albrecht, 1989; Pincus and 53 

Baker, 1994).  54 

 55 

Analysis using single-forcing (aerosol-only) experiments indicates that effective radiative 56 

forcing due to aerosols exhibit positive trends from 2001-2020, driven largely by decays in 57 

global aerosol emission in Coupled Model Intercomparison Project Phase 6 (CMIP6) historical 58 

and SSP2-4.5 scenarios (Raghuraman et al., 2023). The reduction in aerosol emissions over the 59 

Northern Hemisphere (NH) has been identified as a key factor driving the positive trend in EEI, 60 

with aerosols’ effective radiative forcing accounting for approximately half of the SWTOA 61 

trend (Hodnebrog et al., 2024). However, these estimates are model dependent and often lack 62 

observational constraints for effective radiative forcing from aerosols, making it challenging to 63 

fully assess their impacts on the observed EEI. 64 

 65 

To address this gap, our study employs satellite observations and reanalysis data to estimate 66 

trends of effective radiative forcing due to aerosols. While previous research has predominantly 67 

emphasized the reduction of aerosol emissions in the NH, there has been less attention on the 68 

substantial increase in aerosol loading from wildfires and an unexpected volcanic eruption in 69 

the Southern Hemisphere (SH) in recent years. These events have introduced large quantities 70 

of aerosols into the atmosphere, which provide an interhemispheric contrast with the reductions 71 

observed in the NH. 72 

 73 

Our findings reveal that aerosols’ radiative effects from the SH are substantial enough to offset 74 
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those from aerosol reductions in the NH, leading to a negligible global trend from aerosol 75 

forcing. This challenges the understanding that declining aerosols in the NH would lead to the 76 

positive trend in EEI, suggesting instead that the global impact of aerosols on the EEI trend is 77 

minimal although aerosols have influenced regional variations in the EEI. By providing an 78 

observationally-based perspective, our research addresses the need for a more accurate 79 

understanding of the drivers behind the observed EEI trend. It suggests the importance of 80 

factors beyond aerosols, such as natural variability and cloud feedback, in shaping the EEI 81 

trend. 82 

 83 

2. Results 84 

2.1 Observational radiative fluxes 85 

Fig. 1a illustrates the globally averaged monthly anomalies in net TOA radiation (RTOA), 86 

SWTOA, and LWTOA, derived from the Clouds and the Earth’s Radiant Energy System 87 

(CERES) Energy Balanced and Filled (EBAF) Ed. 4.2 satellite observational product (Loeb et 88 

al., 2018b). This dataset is known to align well with in-situ observational estimates of energy 89 

uptake by Earth’s climate system (Loeb et al., 2021a). The linear trend of RTOA reveals a 90 

positive slope of 0.51 ± 0.16 W m-2 decade-1 from 2003 to 2023, indicating a growing disparity 91 

between incoming solar and outgoing terrestrial radiation. Specifically, the RTOA trend for the 92 

period 2003–2014 is 0.3 ± 0.36 W m-2 decade-1, while the trend for the more recent period of 93 

2015–2023 is substantially higher at 0.83 ± 0.53 W m-2 decade-1. This trend is driven by the 94 

radiative imbalance between the SWTOA and LWTOA components. The strong correlation 95 

between RTOA and SWTOA (r = 0.74, p < 0.001), compared to the weaker correlation with 96 

LWTOA (r = 0.28, p < 0.001), suggests that the increasing trend in RTOA is primarily driven 97 

by a strong positive trend in SWTOA (0.85 ± 0.14 W m-2 decade-1), indicating an enhanced 98 

absorption of solar radiation by the Earth system. In contrast, the LWTOA exhibits a relatively 99 

smaller negative trend of -0.33 ± 0.12 W m-2 decade-1, which corresponds to an increase in the 100 

outgoing longwave radiation that partially offsets the SW-driven warming effect but to a lesser 101 

extent. The dominance of the SWTOA in this imbalance is leading to a net positive radiative 102 

forcing at the top of the atmosphere, contributing to the ongoing global warming trend.  103 

 104 

To identify the specific components of SWTOA that contribute to the strong positive trend, 105 

observation-based radiative kernels from Kramer et al. (2019, 2021) were employed. The 106 

contributions of the RTOA and LWTOA components are also presented in Supplementary Fig. 107 
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1. The SWTOA can be decomposed into contributions from clouds, surface albedo, water vapor, 108 

aerosol-radiation interactions, and “others” (Fig. 1b). The "others" category includes 109 

contributions from solar irradiance and trace gases (Loeb et al., 2021a). In terms of the global 110 

mean, clouds account for 67% (0.57 ± 0.15 W m-2 decade-1) of the total positive trend in 111 

SWTOA (0.85 ± 0.14 W m-2 decade-1), surface albedo explains 25% (0.21 ± 0.04 W m-2 decade-
112 

1), water vapor contributes 7% (0.06 ± 0.01 W m-2 decade-1), aerosol-radiation interactions 113 

contribute 3% (0.03 ± 0.02 W m-2 decade-1), and the remaining -2% (-0.02 ± 0.02 W m-2 decade-
114 

1) is attributed to “others”. Any changes in SWTOA radiation due to aerosol-cloud interactions 115 

are implicitly included in the cloud contribution. These results align with the findings of Loeb 116 

et al. (2021a), who used the observation-based partial radiative perturbation (PRP) method to 117 

decompose SWTOA radiation from September 2002 to March 2020. They also identified 118 

strong contributions from clouds and surface albedo to the positive SWTOA trend, while the 119 

contribution of aerosol direct effects (denoted as AER in that paper) was negligible (0.01 ± 120 

0.04 W m-2 decade-1). Therefore, in the remainder of this paper, we will focus more specifically 121 

on the portion of the SWTOA cloud contribution attributable to aerosol-cloud interactions.  122 

 123 

2.2 Recent aerosol concentration trends 124 

In this section, we examine the long-term trends and vertical anomalies in aerosol 125 

concentrations, focusing on two metrics: satellite observations of the aerosol index (AI), 126 

derived from Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2015), 127 

and observationally-constrained reanalysis of sulfate aerosol mass concentration (SO4) at 925 128 

hPa, derived from the Modern-Era Retrospective Analysis for Research and Applications 129 

version 2 (MERRA-2; Randles et al., 2017; Gelaro et al., 2017). The spatial distribution of 130 

trends in the natural logarithm of AI and SO4 (Fig. 2a,b) reveals noticeable regional 131 

heterogeneity, with contrasting behaviors observed between the Northern and Southern 132 

Hemispheres. 133 

 134 

In the NH, both AI and SO4 trends show a marked decrease, particularly over East Asia and 135 

North America. This decline is largely attributed to the implementation of stringent air quality 136 

regulations aimed at reducing anthropogenic emissions, especially sulfur dioxide (SO2), a key 137 

precursor to sulfate aerosols. The reduction in SO4 is especially important given its role in 138 

influencing cloud formation and scattering solar radiation. The consistent decrease in AI and 139 

SO4 in these regions highlights the effectiveness of pollution control measures over the past 140 
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few decades. This is further supported by their vertical profile data, which show positive 141 

aerosol anomalies until around 2010, followed by a sustained decline in SO4 concentrations in 142 

both East Asia and North America (Fig. 2c,d). 143 

 144 

In contrast, the SH presents a different feature, with increasing trends observed in AI and SO4, 145 

particularly over the Southern Ocean and the Southeastern Pacific—regions typically 146 

considered relatively pristine with respect to anthropogenic aerosols. These increases have 147 

been less anticipated and have not been the focus of as much scientific attention as the NH 148 

aerosol reductions. While natural sources such as oceanic emissions of dimethyl sulfide (DMS) 149 

contribute to aerosol levels in the SH, recent trends appear to be influenced by episodic extreme 150 

events. This recent surge in SH aerosol emission is particularly evident in the vertical profiles 151 

of sulfate concentration anomalies. The Southeastern Pacific (Fig. 2e), in particular, shows 152 

noticeable peaks in sulfate concentrations in recent years, which correlates with the timing of 153 

multiple wildfires in the SH such as the Australian wildfire in 2020 and the Hunga Tonga-154 

Hunga Ha'apai volcanic eruption in 2022 (Supplementary Fig. 2). The impact of these events 155 

is further amplified by the climatological westerly winds over the Southern Ocean, which 156 

facilitate the transport of aerosols emitted in the Pacific towards the Southeastern Pacific region 157 

(Fasullo et al., 2023). This atmospheric circulation pattern enhances the aerosol burden in the 158 

Southeastern Pacific, leading to more pronounced anomalies in this area. The increase in the 159 

frequency and intensity of such extreme aerosol emission events has resulted in sharp, episodic 160 

spikes in aerosol concentrations (Fig. 2e). The vertical profiles emphasize the role of wildfires 161 

and the unexpected volcanic eruption, coupled with the climatological westerlies, in driving 162 

recent aerosol concentration increases in the SH. This also suggests that the SH could play an 163 

increasingly important role in global aerosol distribution, particularly as climate change 164 

potentially increases the frequency and severity of such extreme wildfire events (Walker et al., 165 

2019; Jones et al., 2022). 166 

 167 

2.3 Observational SW ACI estimates 168 

Now, we estimate the SW ACI using an observationally constrained approach, following the 169 

method outlined in Park et al. (2024). This approach shows good agreement of ACI from 170 

preindustrial to the present-day with the findings of Bellouin et al. (2020), which employed a 171 

process-oriented approach to constrain ACI using multiple lines of evidence from various 172 

studies.  173 
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 174 

It is important to note that our satellite observational data has limited coverage over polar 175 

regions and faces challenges in reliably retrieving aerosol-cloud interactions over land (Jia et 176 

al., 2019; Gryspeerdt et al., 2022; Jia and Quaas, 2023). Therefore, we focus on the oceanic 177 

region between 60°S and 60°N as our main domain of analysis to ensure the reliability of our 178 

findings. Furthermore, given that clouds contribute most to the positive SWTOA trend within 179 

our study domain, this focus is well-justified (Supplementary Fig. 3). 180 

 181 

The SW ACI is estimated using the following equation: 182 

 183 

SW ACI ≈ ∑ (∂SWCRE_lcld∂ ln(𝑁d) × ∂ ln(𝑁d)∂ ln(𝑋) )𝑘
10

𝑘=1 𝑊𝑘 × 𝛿ln(𝑋),                    (1) 184 

 185 

where SWCRE_lcld represents the cloud radiative effect from non-obscured (non-overlapped) 186 

low-level clouds, X represents aerosol concentration proxies either AI or SO4. Nd represents 187 

cloud droplet number concentration and 𝑊𝑘 represents the fraction of liquid water path (LWP) 188 

in state k (𝑊𝑘 =  
number in LWP state ktotal number ). We employ LWP binning to specifically separate cloud 189 

states, building on the method of Park et al. (2024).  190 

 191 

We focus on low-level clouds for aerosol-cloud interactions, as they are the dominant 192 

contributors to these interactions and ultimately to ACI (Christensen et al., 2016; Bellouin et 193 

al., 2020; Forster et al., 2021). The right-hand side of the equation consists of two main 194 

components: first, the susceptibility of the low cloud radiative effect to variations in aerosol 195 

concentration, determined through cloud controlling factor analysis while holding other 196 

environmental influences constant (Scott et al., 2020; Wall et al., 2022), and explicitly 197 

incorporating the aerosol activation rate into cloud droplets (∂ ln(𝑁d) / ∂ ln(𝑋)); and second, 198 

the corresponding monthly anomalies in aerosol concentration relative to the mean for the 199 

given time period. Further details regarding this approach and the equation can be found in 200 

Park et al. (2024).  201 

 202 

Fig. 3a and b shows the susceptibility of both the AI and SO4, indicating that increases in 203 

aerosol concentrations correlate with a negative cloud radiative adjustment, particularly in 204 
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regions dominated by low clouds, such as the mid-latitudes in the NH and the Southeastern 205 

Pacific. The strong negative susceptibility in this region highlights its important role in 206 

enhancing the overall cooling (warming) effect when aerosol concentrations increase 207 

(decrease).  208 

 209 

The SW ACI trends for both AI and SO4 (Fig. 3c,d) further illustrate the regional variability in 210 

aerosol-cloud interactions. We observe positive SW ACI trends near East Asia and North 211 

America, where major industrial regions are located, while strong negative ACI is evident in 212 

the Southeastern Pacific, driven primarily by increased aerosol concentration due to wildfires 213 

and the volcanic eruption in the SH. The domain-averaged values for both proxies indicate 214 

slight negative trends, with a mean value of -0.012 ± 0.04 W m-2 decade-1 for AI and -0.0003 ± 215 

0.04 W m-2 decade-1 for SO4. This value is sufficiently small and can be considered negligible 216 

when compared to the global SW cloud component (0.57 ± 0.15 W m-2 decade-1). It is important 217 

to emphasize that the increase in aerosol emissions in the SH, particularly due to wildfires and 218 

volcanic activity, has a substantial influence on SW ACI trends, comparable to the impact of 219 

reduced aerosol emissions observed in the NH. This strong impact from the SH highlights the 220 

hemispheric asymmetry in aerosol-cloud interactions and emphasizes the influence of 221 

increased aerosol concentration in the SH, which offset some of the positive radiative forcing 222 

from reducing emissions in the NH. 223 

 224 

2.4 Comparison with CMIP6 SW ACI 225 

We next investigate the SW ACI trends over the 2003–2023 period using outputs from five 226 

models participating in the Radiative Forcing Model Intercomparison Project (RFMIP; Pincus 227 

et al., 2016) single-forcing (aerosol-only) experiments. These experiments capture genuine 228 

aerosol-cloud interactions that are unaffected by changes in sea surface temperature. To 229 

estimate the models’ SW ACI, we use the following simplified equation, which was also 230 

employed to validate the observationally constrained ACI in Park et al. (2024): 231 

 232 SW ACI = δSWCRE_lcld,                    (2) 233 

 234 

where the low-level SW cloud radiative response (δSWCRE_lcld) is determined using the cloud 235 

classification method introduced by Webb et al. (2006) and Soden and Vecchi (2011).  236 

 237 
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Fig. 4 presents the decadal SW ACI trends especially over oceans for three key domains: near-238 

global (60°S–60°N), Northern Hemisphere (0°–60°N), and Southern Hemisphere (60°S–0°). 239 

On a near-global scale (Fig. 4a), the SW ACI trends in the observational estimates for both AI 240 

and SO4 suggest near-zero trends (-0.012 ± 0.04 W m-2 decade-1 for AI and -0.0003 ± 0.04 W 241 

m-2 decade-1 for SO4), indicating minimal change in aerosol-cloud interactions over the past 242 

two decades. In contrast, the multi-model mean (MMM) from five models shows a quite strong 243 

positive trend (0.14 W m-2 decade-1). When examining each model and its realizations 244 

individually, the positive values are notably stronger compared to the observational estimates. 245 

To better understand the global trends, it is crucial to assess the contributions from each 246 

hemisphere separately.  247 

 248 

In the NH (Fig. 4b), the RFMIP models project a strong positive SW ACI trend (0.26 W m-2 249 

decade-1 for MMM), driven primarily by areas near industrial regions such as East Asia and 250 

North America, where anthropogenic aerosol emission reductions have been observed 251 

(Supplementary Fig. 4). However, the observational estimates reveal a smaller positive trend 252 

(0.04 ± 0.09 W m-2 decade-1 for AI and 0.05 ± 0.1 W m-2 decade-1 for SO4). This discrepancy 253 

suggests that the SSP2-4.5 aerosol emission scenario, which serves as the base scenario for 254 

RFMIP experiments post-2014, may overestimate the reduction of aerosol concentrations in 255 

the NH compared to its actual values. This result is further supported by Supplementary Fig. 5, 256 

which illustrates the monthly anomalies of aerosol concentrations from observations compared 257 

to those projected under the historical plus SSP2-4.5 scenario. Over the NH, observed aerosol 258 

reduction slopes are -0.014 for AI and -0.043 for SO4, while the MMM shows steeper declines 259 

of -0.144 for AI and -0.217 for SO4, overestimating aerosol concentration reductions by at least 260 

a factor of five (Supplementary Fig. 5c,d). 261 

 262 

The SH presents more complex features (Fig. 4c). Observational estimates indicate negative 263 

SH SW ACI trends (-0.05 ± 0.09 W m⁻² decade⁻¹ for AI and (-0.03 ± 0.09 W m⁻² decade⁻¹ SO4), 264 

which is attributed to the observed increase in aerosol concentrations from wildfires and 265 

volcanic activity, particularly in the Southeastern Pacific, where cloud radiative effects exhibit 266 

strong negative susceptibility to aerosols. In contrast, the MMM from the models suggests a 267 

positive trend (0.06 W m⁻² decade⁻¹) with a broad positive spatial distribution of the SW ACI 268 

trend analyzed in the SH for MMM (Supplementary Fig. 4). These differences between 269 

observations and models reflect the absence of aerosol emissions from wildfires or volcanic 270 
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activity in the models, which are not incorporated into future projections. Some model 271 

realizations even exhibit inconsistent signs of SH SW ACI (Fig. 4c).  272 

 273 

These features are strongly supported by the aerosol concentration trends between observation 274 

data and models results (Supplementary Fig. 5e,f). Noticeable increases aerosol concentrations 275 

are observed following wildfire and the volcanic eruption events, while models predict near-276 

neutral aerosol concentration trends. These discrepancies emphasize the need to account for 277 

aerosol sources from wildfires or volcanic eruptions as well as their interactions with clouds 278 

when interpreting recent changes in EEI. Moreover, the increasing aerosol concentrations in 279 

the SH, compared to the reductions observed in the NH, points to an emerging contrast in global 280 

aerosol-cloud interactions.  281 

 282 

To assess the robustness of our observational estimates, we apply an alternative observationally 283 

constrained SW ACI estimation method introduced by Wall et al. (2022). This approach is 284 

similar to equation (1) but does not incorporate activation rate and LWP binning. The results 285 

provide additional evidence of the impact of increased aerosol concentrations in the SH, with 286 

domain averages of -0.303 ± 0.21 W m-2 decade-1 for AI and -0.059 ± 0.03 W m-2 decade-1 for 287 

SO4 (Fig. 5). These findings reveal an increase in SW ACI in the NH, contrasted by more 288 

pronounced negative SH SW ACI trends of -0.54 W m-2 decade-1 for AI and -0.16 W m-2 289 

decade-1 for SO4, resulting in an overall negative contribution of aerosol-cloud interactions to 290 

recent EEI trend. This outcome is even more negative than our near-zero estimation, 291 

emphasizing the impact of increased aerosol concentrations in the Southern Hemisphere and 292 

suggesting that other factors may contribute to the strongly positive SWTOA trend. 293 

 294 

3. Conclusion and Discussion 295 

We have examined how aerosols contribute to the recent trend in Earth’s energy imbalance 296 

through two mechanisms: aerosol-radiation interactions and aerosol-cloud interactions. 297 

Despite the recognized warming effects from reduced aerosol concentrations in the NH, the 298 

concurrent increase in aerosol concentrations in the SH appears sufficient to counterbalance 299 

the warming effects observed in the NH. As a result, while aerosols have played a role in 300 

regional EEI variations, their overall contribution to global EEI trends has been minimal over 301 

the past few decades.  302 

 303 
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We also incorporate results from the RFMIP piClim-histnat experiments, which are specifically 304 

designed to account for natural sources of aerosol emissions, such as volcanic eruptions, with 305 

a particular emphasis on stratospheric aerosols. When examining aerosol-cloud interactions in 306 

these experiments, models estimate a slightly negative trend in NH SW ACI of -0.059 W m-² 307 

decade-1. In contrast, the contribution in the in the SH is negligible, with a trend of -0.004 W 308 

m-² decade-1 (Supplementary Fig. 6). Overall, single-forcing experiments (both aerosol-only 309 

and natural-forcing-only), which employ fixed SST, fail to adequately represent the observed 310 

variations in aerosol concentrations and the influences of aerosol-cloud interactions on EEI, 311 

despite the limited number of models involved in these experiments. 312 

 313 

While our focus has been on aerosols, it is important to acknowledge that other components, 314 

such as natural variability and cloud feedback may play dominant roles in shaping the global 315 

EEI. For instance, the shift from a negative to a positive Pacific Decadal Oscillation (PDO) 316 

index in 2014 has been linked to changes in SST and cloud cover, which likely contributed to 317 

variations in EEI (Thorsen, et al., 2018; Loeb et al., 2018a; Loeb et al., 2021a). Following the 318 

shift to a positive phase of the PDO in 2014, there was pronounced SST increase, particularly 319 

over the eastern Pacific, which persisted through 2020. This warming was accompanied by a 320 

reduction in low cloud cover in the region, which led to increased SW along the eastern Pacific, 321 

further amplifying the warming (Loeb et al., 2018a). These changes in cloud cover and SW 322 

radiation are key drivers in modulating EEI during periods of positive PDO phases. In addition, 323 

Raghuraman et al. (2023) highlighted that the observed increase in EEI is driven by the 324 

decreased reflection of SW from SW cloud feedback. Unlike LW radiation, which has a 325 

stabilizing feedback, Earth’s climate system lacks compensating feedbacks in SW. This lack of 326 

SW stabilization leads to continuous heat accumulation, contributing to the increasing trend in 327 

EEI observed over time. 328 

 329 

Methods 330 

In this study, we restrict our analysis to monthly temporal resolution from January 2003 to 331 

December 2023, focusing on the geographical coverage spanning from 60°S to 60°N over the 332 

ocean, due to unreliable retrievals of satellite observations over land and polar regions (Jia et 333 

al., 2019; Gryspeerdt et al., 2022; Jia and Quaas, 2023). All data fields were interpolated onto 334 

a 2.5° × 2.5° grid.  335 

 336 
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Observation and reanalysis data 337 

We use various datasets from the Clouds and the Earth’s Radiant Energy System (CERES) for 338 

our analysis. To calculate the global trend in top-of-atmosphere (TOA) radiative fluxes, we 339 

utilize the CERES Energy Balanced and Filled (EBAF) Ed. 4.2 satellite observational product 340 

(Loeb et al., 2018b). For the estimation of shortwave (SW) effective radiative forcing due to 341 

aerosol-cloud interactions (ACI), we rely on the CERES FluxByCldTyp Ed. 4.1 dataset (Sun 342 

et al., 2022), which allows us to focus on non-obscured (non-overlapped) low-level clouds 343 

(Scott et al., 2020), where aerosol-cloud interactions are most relevant (Christensen et al., 2016; 344 

Bellouin et al., 2020; Forster et al., 2021). For SW effective radiative forcing due to aerosol-345 

radiation interactions (ARI), we use the CERES EBAF Ed. 4.2 dataset in combination with the 346 

CERES SYN1deg Ed. 4A product (Rutan et al., 2015). However, the latter is only employed to 347 

estimate aerosol direct effects under clear-sky conditions, as cloud properties derived from 348 

geostationary satellites in the SYN1deg product contain artifacts that limit its accuracy in 349 

cloudy-sky conditions. 350 

 351 

We employ the Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2015) 352 

data from both the Aqua and Terra satellites (MOD08_M and MYD08_M, respectively) for the 353 

aerosol index (AI), which serves as a proxy for aerosol concentration. By combining datasets 354 

from the two satellites, we enhance the robustness of our analysis. The AI is derived from the 355 

product of aerosol optical depth (AOD) at 550 nm and the Ångström exponent, the latter of 356 

which reflects the wavelength dependence of AOD, providing insights into aerosol size 357 

distribution (e.g., a smaller Ångström exponent indicates larger particles). AI has shown a 358 

stronger correlation with cloud condensation nuclei (CCN) compared to AOD alone (Stier, 359 

2016; Gryspeerdt et al., 2017; Hasekamp et al., 2019). Nevertheless, AI observations remain 360 

affected by near-cloud retrieval artifacts (Christensen et al., 2017). 361 

 362 

We also utilize the Modern-Era Retrospective analysis for Research and Applications, Version 363 

2 (MERRA-2) reanalysis (Randles et al., 2017; Gelaro et al., 2017). MERRA-2 integrates 364 

observations with global model simulations to provide estimates of atmospheric conditions. 365 

For example, the total aerosol optical depth is observationally constrained using MODIS 366 

satellite data, and the distribution and vertical profiles of different aerosol species are model-367 

derived. Since AI from MODIS provides aerosol species-integrated, column-integrated 368 

quantities and does not account for the vertical profile, it may not accurately capture aerosol-369 
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cloud interactions, which mainly occurs in low-level clouds. For SW ACI, we select 925 hPa 370 

instead of surface level as our reference, as conditions at 925hPa better reflect CCN 371 

concentrations near the cloud base (Painemal et al., 2017). This data is extracted from the 3-372 

hourly MERRA-2 file “inst3_3d_aer_Nv”, which we interpolate to monthly resolution for 373 

analysis.  374 

 375 

We use cloud droplet number concentration (Nd) provided by Gryspeerdt et al. (2022), which 376 

was calculated from MODIS cloud optical depth and effective radius. Data from both the Terra 377 

and Aqua satellites is combined. Nd measurements can be subject to biases under specific 378 

conditions (Zhang and Platnick, 2011; Zhang et al., 2012; Grosvenor and Wood, 2014). To 379 

enhance the accuracy and reliability of our Nd retrievals, we apply a rigorous sampling strategy. 380 

This approach selects only single-layer liquid clouds that meet predefined criteria, known as 381 

the “Z18 sampling” method in Gryspeerdt et al. (2022). These criteria, introduced by Zhu et al. 382 

(2018), demonstrate high correlation to in-situ Nd in regions with high cloud fractions 383 

(Gryspeerdt et al., 2022). However, the use of different sampling methods introduced in 384 

Gryspeerdt et al. (2022) does not affect our conclusions (not shown). Additionally, it is 385 

important to note that this dataset was derived from the variables retrieved by MODIS satellite 386 

observations and was not filtered to only include low-level clouds. This may have weakened 387 

the connection between surface aerosol sources and Nd (McCoy et al., 2018). 388 

 389 

For liquid water path (LWP), we use the MODIS MCD06COSP dataset version 6.2.0 (Pincus 390 

et al., 2023) and combine data from both the Aqua and Terra satellites. In accordance with the 391 

work by Twomey (1977), LWP is crucial in modulating the strength of aerosol-cloud 392 

interactions. Moreover, to accurately estimate the aerosol indirect effects, it is essential to 393 

control for variations in LWP (Douglas and L’Ecuyer, 2019, 2020), as the relationship between 394 

aerosol-cloud interactions and LWP is nonlinear. Isolating this dependence helps minimize its 395 

impact on our results (Gryspeerdt et al., 2019). In our analysis, we achieve this by categorizing 396 

LWP observations into ten equal bins, each covering a range of 40 g cm-2, up to a maximum of 397 

400 g cm-2. This categorization is based on the finding that over 99% of our observations do 398 

not exceed 400 g cm-2, thus allowing us to maintain LWP within a controlled and effectively 399 

constant range across our dataset. 400 

 401 

CMIP6 data 402 
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Previous studies have used Coupled Model Intercomparison Project Phase 6 (CMIP6) models 403 

to estimate aerosol contributions to the recent Earth’s energy imbalance (EEI) trend, making it 404 

essential to compare our observational estimates of aerosol-cloud interactions with those 405 

derived from CMIP6 models. To assess the true aerosol effect on the recent EEI, we use single-406 

forcing (aerosol-only) experiments from the Radiative Forcing Model Intercomparison Project 407 

(RFMIP; Pincus et al., 2016), specifically the piClim-histaer experiments. These experiments 408 

use prescribed sea surface temperatures (SST), and sea ice conditions based on a climatology 409 

of pre-industrial conditions and consist of a historical aerosol emission scenario up to 2014, 410 

followed by the SSP2-4.5 aerosol emission scenario. We analyze five models that provided 411 

extended experiments through 2023, including their available realizations.  412 

 413 

Although the piClim-histnat experiment accounts for the influence of volcanic eruptions, it 414 

primarily focuses on stratospheric aerosol concentrations from volcanic activity. Therefore, in 415 

this study, we use the piClim-histaer experiment as our reference to assess SW ERFaci 416 

estimates, employing the first realization (r1) from five models. 417 

 418 

Radiative kernel techniques 419 

Radiative kernels, first introduced by Soden and Held (2006) to analyze radiative feedbacks, 420 

quantify the differential response of radiative fluxes to small perturbations in key state variables 421 

such as clouds, surface albedo, temperature, and water vapor. This allows us to isolate the true 422 

cloud radiative response without interference from cloud masking effects. In this study, 423 

radiative kernels are applied to deseasonalized monthly anomalies from 2003 to 2023, 424 

calculated as deviations from the mean of that period. 425 

 426 

For our observational analysis, we use radiative kernels derived from CloudSat/CALIPSO data 427 

(Kramer et al., 2019, 2021). Radiative flux anomalies are sourced from the CERES EBAF Ed. 428 

4.2 product (Loeb et al., 2018b). Temperature and specific humidity anomalies are obtained 429 

from the ERA5 reanalysis (Hersbach et al., 2020), while surface temperature data is from 430 

GISTEMP v4 (Lenssen et al., 2019). Contributions from “others” factors—including solar 431 

irradiance and trace gases—are estimated as residuals from all other components (e.g., clouds, 432 

albedo, water vapor, and aerosol direct effects) in the total SWTOA. Since aerosol direct effects 433 

are not included in our radiative kernel, we estimate them separately as detailed in the section 434 

titled “Estimating SW ARI”. 435 
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 436 

For our model analysis, we use radiative kernels derived from the HadGEM3-GA7.1 model 437 

(Smith et al., 2020) for CMIP6 model simulations. The HadGEM3-GA7.1 kernel is 438 

representative of the commonly used radiative kernels in the literature for tropospheric and 439 

surface adjustments (Smith et al., 2020). Differences introduced by using different kernels are 440 

less than 0.1 W m-2 (Soden et al., 2008; Smith et al., 2018). 441 

 442 

Estimating SW ARI  443 

To estimate the aerosol direct effects, it is crucial to consider the influence of cloud presence, 444 

including factors like cloud height relative to aerosol layers. These factors influence the 445 

radiative effects of aerosols. Aerosols located above clouds reduce cloud reflectivity, leading 446 

to a relative warming at the TOA, which has a much larger impact compared to the surface 447 

(Chand et al., 2009; Wilcox, 2012; Kinne, 2019). Conversely, when clouds are positioned 448 

above aerosols, they can block aerosol interactions with solar radiation. Moreover, clouds can 449 

either enhance atmospheric heating from absorbing aerosols or can mask the cooling effect of 450 

scattering aerosols (Soden et al. 2004; Matus et al. 2015).  451 

 452 

In this study, we classify sky conditions as either cloudy or clear to capture these variations in 453 

radiative effects at the TOA. The contribution of each aerosol direct effect is weighted by both 454 

the cloud fraction and the clear-sky fraction (Matus et al., 2015). Our analysis primarily uses 455 

CERES product, and the estimation of SW ARI is based on the following equation: 456 

 457 SW ARI = δ(SW DREcld × CF) + δ(SW DREclr × (1 − CF)),                    (1) 458 

 459 

where SW DREcld refers to the SW aerosol direct radiative effects (DRE) under cloudy-sky 460 

conditions, SW DREclr refers to the SW DRE under clear-sky conditions, and CF represents 461 

the cloud fraction. The first term on the right-hand side represents the monthly anomalies of 462 

the aerosol direct effect under cloudy sky, weighted by cloud fraction, while the second term 463 

represents the effect under clear sky, weighted by clear sky fraction.  464 

 465 

Estimating aerosol direct effects requires a radiative transfer model to assess the difference 466 

between conditions with and without aerosols. The estimate of SW DREcld relies on MERRA-467 

2 due to the absence of a radiative transfer model for CERES. However, SW DREclr is estimated 468 
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using the method described in Loeb et al. (2021b), which combines calculated fluxes from the 469 

CERES SYN1deg Ed. 4A dataset (Rutan et al., 2015) with observed fluxes from the CERES 470 

EBAF Ed4.2 (Loeb et al., 2018b). This approach accounts for the masking effect of aerosols 471 

on surface albedo variations caused by the presence of aerosols.  472 

 473 

Using MERRA-2 reanalysis data for SW DREcld while relying on CERES for other components 474 

may introduce some uncertainty into our SW ARI estimates as cloudy-sky conditions can 475 

modulate the radiative forcing of aerosols differently compared to clear-sky conditions. 476 

However, given that aerosol-radiation interactions have been shown to exert a relatively 477 

negligible influence on the trend in EEI in both this study and previous study (Loeb et al., 478 

2021a), the overall uncertainty introduced by this limitation is not expected to alter our 479 

conclusions. 480 

 481 

Uncertainty from estimating SW ACI trend 482 

Unlike aerosol concentration trends observed directly, estimating aerosol-cloud interactions 483 

introduces additional uncertainties due to the complex calculations involved in the estimation 484 

process, as described in Park et al. (2024). Therefore, we account for these uncertainties by 485 

combining those arising from susceptibility with those from the observed aerosol concentration 486 

trend. 487 

 488 

To quantify the uncertainty in the regression coefficients of susceptibility, a 90% confidence 489 

interval for susceptibility at each grid box is calculated as follows: 490 

 491 

δ = 𝑡√∆𝑥T𝑪∆𝑥√𝑁nom𝑁eff  ,                    (2) 492 

 493 

where t is the critical value of the Student’s t-test at the 95% significance level with 𝑁eff  −  7 494 

degrees of freedom (Storch and Zwiers, 1999), 𝑪 represents the variance–covariance matrix of 495 

regression coefficients, 𝑁nom/𝑁eff is the ratio of the nominal to effective number of monthly 496 

anomalies of SWCRE_lcld, and 𝛥𝑥 is the regression coefficient for ∂ln(𝑁d)/ ∂ln(𝑋), where X 497 

represents either AI or SO4. 𝑪 is formulated as 𝐂 =  𝜎̂2(𝑍T𝑍)−1, where 𝑍 is the data matrix 498 

with columns composed of detrended monthly anomalies, specifically in terms of ln(𝑁d). The 499 
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term 𝜎̂2  denotes the mean of squared residuals of the regression model and we estimate 500 𝑁nom/𝑁eff as (1 +  𝑟)/(1 −  𝑟), where 𝑟 is the lag one autocorrelation of monthly anomalies 501 

of SWCRE_lcld. 502 

 503 

Uncertainty for spatially averaged regression coefficients is calculated as 504 

∆susceptibility= √∑ (𝛿𝑘𝑤𝑘)2𝑁nom∗𝑘=1(∑ 𝑤𝑘𝑁nom∗𝑘=1 )2 √𝑁nom∗𝑁eff∗   ,                     (3) 505 

where 𝛿𝑘 represents the uncertainty in the kth grid box, while 𝑤𝑘 corresponds to the cosine of 506 

the latitude. 𝑁nom∗  represents the nominal number of spatial degrees of freedom, and 𝑁eff∗  refers 507 

to the effective number of spatial degrees of freedom. The ratio 𝑁nom∗ /𝑁eff∗  is calculated using 508 

empirical orthogonal function (EOF) analysis on SWCRE_lcld anomalies across all ocean grid 509 

between 60°S and 60°N, following equation 5 from Bretherton et al. (1999). Prior to 510 

conducting the EOF analysis, the monthly anomalies of SWCRE_lcld for each grid are 511 

multiplied by √𝑤𝑘 to reduce the influence of grid geometry (North et al. 1982). The resulting 512 ∆susceptibility represents the half-width of the 90% CI for SW ACI, specifically reflecting the 513 

uncertainty associated with regression coefficients of susceptibility. 514 

 515 

To estimate the uncertainty derived from the aerosol concentration trend of ln(𝑋), we apply 516 

the method described in Santer et al. (2000), which accounts for autocorrelation in the data, 517 ∆trend. Thus, the overall 90% CI is expressed as follows: 518 

 519 SW ACI ± √∆susceptibility2 + ∆trend2 .                    (4) 520 

 521 

Data Availability  522 

The CERES data used in this study were obtained from NASA’s CERES ordering tool 523 

(https://ceres.larc.nasa.gov/data/). MODIS data were sourced from NASA’s Level-1 and 524 

Atmosphere Archive and Distribution System 525 

(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/), while MODIS Nd data are 526 

accessible through the Centre for Environmental Data Analysis 527 

(https://doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b, Gryspeerdt et al., 2022). The 528 

https://ceres.larc.nasa.gov/data/
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/
https://doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b
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MERRA-2 reanalysis data were downloaded via NASA Goddard Earth Sciences Data and 529 

Information Services Center (https://doi.org/10.5067/LTVB4GPCOTK2). CMIP6 data 530 

employed in this research can be found on the Earth System Grid Federation data portal 531 

(https://esgf-node.llnl.gov/projects/cmip6/).  532 

 533 
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 697 

Fig. 1. Global mean top-of-atmosphere (TOA) flux monthly anomalies and trends from 2003 698 

to 2023. (a) Global mean monthly anomalies of net TOA radiation (RTOA; black solid line), 699 

along with the shortwave (SWTOA; red solid line) and longwave (LWTOA; blue solid line) 700 

components. Dashed lines show the linear trends for each component. Correlation coefficients 701 

(r) and associated p-values (p) between RTOA and SWTOA, as well as RTOA and LWTOA, 702 

are provided in the upper-left corner. (b) Global mean TOA flux trends in RTOA, SWTOA, 703 

with contributions from changes in clouds, albedo, water vapor (WV), aerosol-radiation 704 

interactions (ARI), and combined effects of trace gases, and solar irradiance (labeled as 705 

"Others"), as well as trend in LWTOA calculated by observationally-based radiative kernel 706 

method (Kramer et al., 2019, 2021). Error bars represent the 5–95% confidence intervals, 707 

calculated following the methodology of Santer et al. (2000). Positive anomalies indicate Earth 708 

absorbing more energy, while negative anomalies represent energy loss. 709 

 710 

 711 

 712 

 713 

(a) 

(b) 



 25 

 714 

Fig. 2. Decadal trends and monthly anomalies in the natural logarithm of aerosol proxies. (a) 715 

Spatial maps of trends in the natural logarithm of the aerosol index (AI) and (b) sulfate aerosol 716 

mass concentration (SO4) at 925 hPa for the period 2003–2023. (c–e) Vertical distributions of 717 

ln(SO4) monthly anomalies over the boxed regions in (b): (c) East Asia, (d) North America, 718 

and (e) the Southeastern Pacific. The dashed line in each panel represents the 925 hPa pressure 719 

level. 720 
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 731 

Fig. 3. Spatial distributions of non-obscured low cloud susceptibility to variations in aerosol 732 

concentrations and decadal trends in shortwave (SW) effective radiative forcing from aerosol-733 

cloud interactions (ACI), differentiated by aerosol proxies. (a) Susceptibility for the AI. (b) 734 

Same as (a), but for SO4. (c) Observationally constrained SW ACI trend for AI from 2003 to 735 

2023. (d) Same as (c), but for SO4. The domain-averaged (60°S–60°N, ocean) SW ACI values 736 

are shown in the lower-left corners of each panel. 737 
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 750 

Fig. 4. Decadal trends in SW ACI over oceans across three different domains: (a) near-global 751 

(60°S–60°N), (b) Northern Hemisphere (NH; 0°–60°N), and (c) Southern Hemisphere (SH; 752 

60°S–0°). Observationally constrained SW ACI estimates are derived from two aerosol proxies: 753 

aerosol index (AI, blue) and sulfate aerosol mass concentrations (SO4, orange). Uncertainties 754 

are calculated by combining the methods from Park et al. (2024) and Santer et al. (2000) 755 

(Methods). The multi-model mean (MMM, black) is derived from five models in the Radiative 756 

Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016) single-forcing (aerosol-757 

only) experiments. Individual model realizations are depicted as hollow circles, with grey bars 758 

representing the mean of these realizations. 759 
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Fig. 5. Spatial distributions of observationally constrained SW ACI trends from 2003 to 2023, 773 

using an alternative method based on Wall et al. (2022). (a) SW ACI trend for AI. (b) Same as 774 

(a), but for SO4. The domain-averaged (60°S–60°N, ocean) SW ACI values are shown in the 775 

lower-left corners of each panel. 776 
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