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Abstract

During the 21st century, Earth’s energy imbalance (EEI) at the top of the atmosphere has
markedly increased, mainly due to an increase in absorbed shortwave (SW) rather than a
decrease in outgoing longwave (LW) radiation. While previous studies, based on single-forcing
(aerosol-only) experiments, linked reductions in anthropogenic aerosols to this positive SW
trend, we find that both aerosol-radiation interactions and aerosol-cloud interactions have had
a negligible impact on recent increases in the EEI. We estimate recent trends in effective
radiative forcing due to aerosols using observations and reanalysis data. While aerosol
concentrations have declined in the Northern Hemisphere (NH), wildfires and volcanic activity
in the Southern Hemisphere (SH) have resulted in larger aerosol loading. This contrast
effectively cancels out the total aerosol forcing, resulting in a negligible global impact on the
EEI trend. Our findings also suggest that model-driven estimates may be overestimated, as they

overlook the compensating effects of SH aerosol emissions that balance out NH reductions.

Main Text

1. Introduction

The Earth’s energy imbalance (EEI) at the top-of-atmosphere (TOA) is a crucial metric for
understanding the state of the climate system and an important indicator of climate change
(Hansen et al., 2005; Trenberth et al., 2014; Hansen et al., 2017; von Schuckmann et al., 2020).
It represents the net difference between the amount of solar energy absorbed by the Earth and
the energy radiated back into space, encompassing both incoming shortwave (SW) and
outgoing longwave (LW) radiation. Over the past few decades, observations have revealed an
increasing trend in EEI, raising concerns about its potential implications for global climate
change (e.g., von Schuckmann et al., 2016; Loeb et al., 2018a). Understanding the factors
contributing to this trend is essential for accurately predicting future climate scenarios and for

formulating effective mitigation strategies.

Recent studies have highlighted a persistent positive trend in EEI over the past two decades,
driven primarily by anthropogenic forcing (Kramer et al., 2021; Raghuraman et al., 2021, 2023;
Hodnebrog et al., 2024). EEI can be understood as the sum of effective radiative forcing (ERF),

which includes rapid adjustments to both natural and anthropogenic forcings, and the radiative
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response to these forcings. The latter is influenced by global mean surface temperature changes
and the associated climate feedbacks (e.g. Forster et al., 2021; Kramer et al. 2021; Raghuraman
etal., 2021).

One of the key factors considered in the context of EEI is the role of aerosols. Aerosols, which
include both natural and anthropogenic particles suspended in the atmosphere, interact
complexly with both radiation and clouds. These interactions are typically characterized by
effective radiative forcing due to aerosol-radiation interactions (ARI) and aerosol-cloud
interactions (ACI). ARI, also referred to as aerosol direct effects, involves the direct effects of
aerosols on radiation, such as scattering and absorption of sunlight (e.g., Yu et al., 2006). ACI,
also known as aerosol indirect effects, refers to the modification of cloud properties by aerosols,
influencing cloud reflectivity and longevity (e.g., Twomey, 1977; Albrecht, 1989; Pincus and
Baker, 1994).

Analysis using single-forcing (aerosol-only) experiments indicates that effective radiative
forcing due to aerosols exhibit positive trends from 2001-2020, driven largely by decays in
global aerosol emission in Coupled Model Intercomparison Project Phase 6 (CMIP6) historical
and SSP2-4.5 scenarios (Raghuraman et al., 2023). The reduction in aerosol emissions over the
Northern Hemisphere (NH) has been identified as a key factor driving the positive trend in EEI,
with aerosols’ effective radiative forcing accounting for approximately half of the SWTOA
trend (Hodnebrog et al., 2024). However, these estimates are model dependent and often lack
observational constraints for effective radiative forcing from aerosols, making it challenging to

fully assess their impacts on the observed EEI.

To address this gap, our study employs satellite observations and reanalysis data to estimate
trends of effective radiative forcing due to aerosols. While previous research has predominantly
emphasized the reduction of aerosol emissions in the NH, there has been less attention on the
substantial increase in aerosol loading from wildfires and an unexpected volcanic eruption in
the Southern Hemisphere (SH) in recent years. These events have introduced large quantities
of aerosols into the atmosphere, which provide an interhemispheric contrast with the reductions

observed in the NH.

Our findings reveal that aerosols’ radiative effects from the SH are substantial enough to offset
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those from aerosol reductions in the NH, leading to a negligible global trend from aerosol
forcing. This challenges the understanding that declining aerosols in the NH would lead to the
positive trend in EEI, suggesting instead that the global impact of aerosols on the EEI trend is
minimal although aerosols have influenced regional variations in the EEI. By providing an
observationally-based perspective, our research addresses the need for a more accurate
understanding of the drivers behind the observed EEI trend. It suggests the importance of
factors beyond aerosols, such as natural variability and cloud feedback, in shaping the EEI

trend.

2. Results

2.1 Observational radiative fluxes

Fig. 1a illustrates the globally averaged monthly anomalies in net TOA radiation (RTOA),
SWTOA, and LWTOA, derived from the Clouds and the Earth’s Radiant Energy System
(CERES) Energy Balanced and Filled (EBAF) Ed. 4.2 satellite observational product (Loeb et
al., 2018b). This dataset is known to align well with in-situ observational estimates of energy
uptake by Earth’s climate system (Loeb et al., 2021a). The linear trend of RTOA reveals a
positive slope of 0.51 £ 0.16 W m™ decade™! from 2003 to 2023, indicating a growing disparity
between incoming solar and outgoing terrestrial radiation. Specifically, the RTOA trend for the
period 2003-2014 is 0.3 = 0.36 W m™ decade™!, while the trend for the more recent period of
2015-2023 is substantially higher at 0.83 + 0.53 W m™ decade™. This trend is driven by the
radiative imbalance between the SWTOA and LWTOA components. The strong correlation
between RTOA and SWTOA (r = 0.74, p < 0.001), compared to the weaker correlation with
LWTOA (r = 0.28, p < 0.001), suggests that the increasing trend in RTOA is primarily driven
by a strong positive trend in SWTOA (0.85 + 0.14 W m™ decade™), indicating an enhanced
absorption of solar radiation by the Earth system. In contrast, the LWTOA exhibits a relatively
smaller negative trend of -0.33 + 0.12 W m™ decade™!, which corresponds to an increase in the
outgoing longwave radiation that partially offsets the SW-driven warming effect but to a lesser
extent. The dominance of the SWTOA in this imbalance is leading to a net positive radiative

forcing at the top of the atmosphere, contributing to the ongoing global warming trend.

To identify the specific components of SWTOA that contribute to the strong positive trend,
observation-based radiative kernels from Kramer et al. (2019, 2021) were employed. The
contributions of the RTOA and LWTOA components are also presented in Supplementary Fig.

4
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1. The SWTOA can be decomposed into contributions from clouds, surface albedo, water vapor,
aerosol-radiation interactions, and ‘“others” (Fig. 1b). The "others" category includes
contributions from solar irradiance and trace gases (Loeb et al., 2021a). In terms of the global
mean, clouds account for 67% (0.57 + 0.15 W m™ decade™) of the total positive trend in
SWTOA (0.85+0.14 W m™ decade™!), surface albedo explains 25% (0.21 = 0.04 W m™ decade”
1), water vapor contributes 7% (0.06 = 0.01 W m™ decade™!), aerosol-radiation interactions
contribute 3% (0.03 £ 0.02 W m2 decade™), and the remaining -2% (-0.02 + 0.02 W m™? decade”
1 is attributed to “others”. Any changes in SWTOA radiation due to aerosol-cloud interactions
are implicitly included in the cloud contribution. These results align with the findings of Loeb
et al. (2021a), who used the observation-based partial radiative perturbation (PRP) method to
decompose SWTOA radiation from September 2002 to March 2020. They also identified
strong contributions from clouds and surface albedo to the positive SWTOA trend, while the
contribution of aerosol direct effects (denoted as AER in that paper) was negligible (0.01 +
0.04 W m decade™). Therefore, in the remainder of this paper, we will focus more specifically

on the portion of the SWTOA cloud contribution attributable to aerosol-cloud interactions.

2.2 Recent aerosol concentration trends

In this section, we examine the long-term trends and vertical anomalies in aerosol
concentrations, focusing on two metrics: satellite observations of the aerosol index (Al),
derived from Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2015),
and observationally-constrained reanalysis of sulfate aerosol mass concentration (SO4) at 925
hPa, derived from the Modern-Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2; Randles et al., 2017; Gelaro et al., 2017). The spatial distribution of
trends in the natural logarithm of AI and SO4 (Fig. 2a,b) reveals noticeable regional
heterogeneity, with contrasting behaviors observed between the Northern and Southern

Hemispheres.

In the NH, both AI and SO trends show a marked decrease, particularly over East Asia and
North America. This decline is largely attributed to the implementation of stringent air quality
regulations aimed at reducing anthropogenic emissions, especially sulfur dioxide (SO»), a key
precursor to sulfate aerosols. The reduction in SOy4 is especially important given its role in
influencing cloud formation and scattering solar radiation. The consistent decrease in Al and

SOq4 in these regions highlights the effectiveness of pollution control measures over the past

5
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few decades. This is further supported by their vertical profile data, which show positive
aerosol anomalies until around 2010, followed by a sustained decline in SO4 concentrations in

both East Asia and North America (Fig. 2c,d).

In contrast, the SH presents a different feature, with increasing trends observed in Al and SOg4,
particularly over the Southern Ocean and the Southeastern Pacific—regions typically
considered relatively pristine with respect to anthropogenic aerosols. These increases have
been less anticipated and have not been the focus of as much scientific attention as the NH
aerosol reductions. While natural sources such as oceanic emissions of dimethyl sulfide (DMS)
contribute to aerosol levels in the SH, recent trends appear to be influenced by episodic extreme
events. This recent surge in SH aerosol emission is particularly evident in the vertical profiles
of sulfate concentration anomalies. The Southeastern Pacific (Fig. 2e), in particular, shows
noticeable peaks in sulfate concentrations in recent years, which correlates with the timing of
multiple wildfires in the SH such as the Australian wildfire in 2020 and the Hunga Tonga-
Hunga Ha'apai volcanic eruption in 2022 (Supplementary Fig. 2). The impact of these events
is further amplified by the climatological westerly winds over the Southern Ocean, which
facilitate the transport of aerosols emitted in the Pacific towards the Southeastern Pacific region
(Fasullo et al., 2023). This atmospheric circulation pattern enhances the aerosol burden in the
Southeastern Pacific, leading to more pronounced anomalies in this area. The increase in the
frequency and intensity of such extreme aerosol emission events has resulted in sharp, episodic
spikes in aerosol concentrations (Fig. 2e). The vertical profiles emphasize the role of wildfires
and the unexpected volcanic eruption, coupled with the climatological westerlies, in driving
recent aerosol concentration increases in the SH. This also suggests that the SH could play an
increasingly important role in global aerosol distribution, particularly as climate change
potentially increases the frequency and severity of such extreme wildfire events (Walker et al.,

2019; Jones et al., 2022).

2.3 Observational SW ACI estimates

Now, we estimate the SW ACI using an observationally constrained approach, following the
method outlined in Park et al. (2024). This approach shows good agreement of ACI from
preindustrial to the present-day with the findings of Bellouin et al. (2020), which employed a
process-oriented approach to constrain ACI using multiple lines of evidence from various

studies.
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It is important to note that our satellite observational data has limited coverage over polar
regions and faces challenges in reliably retrieving aerosol-cloud interactions over land (Jia et
al., 2019; Gryspeerdt et al., 2022; Jia and Quaas, 2023). Therefore, we focus on the oceanic
region between 60°S and 60°N as our main domain of analysis to ensure the reliability of our
findings. Furthermore, given that clouds contribute most to the positive SWTOA trend within

our study domain, this focus is well-justified (Supplementary Fig. 3).

The SW ACI is estimated using the following equation:

10

ASWCRE_Icdld @ 1n(Ny)
SW ACI ~ Z — W, x 8In(X), )
k

d1In(Ny) d1In(X)

k=1

where SWCRE Icld represents the cloud radiative effect from non-obscured (non-overlapped)
low-level clouds, X represents aerosol concentration proxies either AI or SO4. Ny represents

cloud droplet number concentration and W), represents the fraction of liquid water path (LWP)

number in LWP state k

in state k (W, = ). We employ LWP binning to specifically separate cloud

total number

states, building on the method of Park et al. (2024).

We focus on low-level clouds for aerosol-cloud interactions, as they are the dominant
contributors to these interactions and ultimately to ACI (Christensen et al., 2016; Bellouin et
al., 2020; Forster et al., 2021). The right-hand side of the equation consists of two main
components: first, the susceptibility of the low cloud radiative effect to variations in aerosol
concentration, determined through cloud controlling factor analysis while holding other
environmental influences constant (Scott et al., 2020; Wall et al., 2022), and explicitly
incorporating the aerosol activation rate into cloud droplets (3 In(Ngy) /0 In(X)); and second,
the corresponding monthly anomalies in aerosol concentration relative to the mean for the
given time period. Further details regarding this approach and the equation can be found in

Park et al. (2024).

Fig. 3a and b shows the susceptibility of both the Al and SOs, indicating that increases in

aerosol concentrations correlate with a negative cloud radiative adjustment, particularly in
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regions dominated by low clouds, such as the mid-latitudes in the NH and the Southeastern
Pacific. The strong negative susceptibility in this region highlights its important role in
enhancing the overall cooling (warming) effect when aerosol concentrations increase

(decrease).

The SW ACI trends for both Al and SO4 (Fig. 3c,d) further illustrate the regional variability in
aerosol-cloud interactions. We observe positive SW ACI trends near East Asia and North
America, where major industrial regions are located, while strong negative ACI is evident in
the Southeastern Pacific, driven primarily by increased aerosol concentration due to wildfires
and the volcanic eruption in the SH. The domain-averaged values for both proxies indicate
slight negative trends, with a mean value of -0.012 + 0.04 W m™? decade™! for Al and -0.0003 =+
0.04 W m? decade™! for SO4. This value is sufficiently small and can be considered negligible
when compared to the global SW cloud component (0.57 =0.15 W m™ decade™!). It is important
to emphasize that the increase in aerosol emissions in the SH, particularly due to wildfires and
volcanic activity, has a substantial influence on SW ACI trends, comparable to the impact of
reduced aerosol emissions observed in the NH. This strong impact from the SH highlights the
hemispheric asymmetry in aerosol-cloud interactions and emphasizes the influence of
increased aerosol concentration in the SH, which offset some of the positive radiative forcing

from reducing emissions in the NH.

2.4 Comparison with CMIP6 SW ACI

We next investigate the SW ACI trends over the 2003—2023 period using outputs from five
models participating in the Radiative Forcing Model Intercomparison Project (RFMIP; Pincus
et al., 2016) single-forcing (aerosol-only) experiments. These experiments capture genuine
aerosol-cloud interactions that are unaffected by changes in sea surface temperature. To
estimate the models’ SW ACI, we use the following simplified equation, which was also

employed to validate the observationally constrained ACI in Park et al. (2024):

SW ACI = 8SWCRE _lcld, 2)

where the low-level SW cloud radiative response (8SWCRE _Icld) is determined using the cloud
classification method introduced by Webb et al. (2006) and Soden and Vecchi (2011).
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Fig. 4 presents the decadal SW ACI trends especially over oceans for three key domains: near-
global (60°S—60°N), Northern Hemisphere (0°—60°N), and Southern Hemisphere (60°S—0°).
On a near-global scale (Fig. 4a), the SW ACI trends in the observational estimates for both Al
and SO4 suggest near-zero trends (-0.012 = 0.04 W m decade™ for Al and -0.0003 = 0.04 W
m decade™! for SO4), indicating minimal change in aerosol-cloud interactions over the past
two decades. In contrast, the multi-model mean (MMM) from five models shows a quite strong
positive trend (0.14 W m™? decade'). When examining each model and its realizations
individually, the positive values are notably stronger compared to the observational estimates.
To better understand the global trends, it is crucial to assess the contributions from each

hemisphere separately.

In the NH (Fig. 4b), the REMIP models project a strong positive SW ACI trend (0.26 W m™
decade! for MMM), driven primarily by areas near industrial regions such as East Asia and
North America, where anthropogenic aerosol emission reductions have been observed
(Supplementary Fig. 4). However, the observational estimates reveal a smaller positive trend
(0.04 £ 0.09 W m decade™! for AI and 0.05 + 0.1 W m™ decade™! for SO4). This discrepancy
suggests that the SSP2-4.5 aerosol emission scenario, which serves as the base scenario for
RFMIP experiments post-2014, may overestimate the reduction of aerosol concentrations in
the NH compared to its actual values. This result is further supported by Supplementary Fig. 5,
which illustrates the monthly anomalies of aerosol concentrations from observations compared
to those projected under the historical plus SSP2-4.5 scenario. Over the NH, observed aerosol
reduction slopes are -0.014 for Al and -0.043 for SO4, while the MMM shows steeper declines
of'-0.144 for Al and -0.217 for SO4, overestimating aerosol concentration reductions by at least

a factor of five (Supplementary Fig. 5c,d).

The SH presents more complex features (Fig. 4c). Observational estimates indicate negative
SH SW ACI trends (-0.05 = 0.09 W m 2 decade ! for Al and (-0.03 £ 0.09 W m 2 decade ! SO4),
which is attributed to the observed increase in aerosol concentrations from wildfires and
volcanic activity, particularly in the Southeastern Pacific, where cloud radiative effects exhibit
strong negative susceptibility to aerosols. In contrast, the MMM from the models suggests a
positive trend (0.06 W m2 decade™) with a broad positive spatial distribution of the SW ACI
trend analyzed in the SH for MMM (Supplementary Fig. 4). These differences between

observations and models reflect the absence of aerosol emissions from wildfires or volcanic

9
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activity in the models, which are not incorporated into future projections. Some model

realizations even exhibit inconsistent signs of SH SW ACI (Fig. 4c¢).

These features are strongly supported by the aerosol concentration trends between observation
data and models results (Supplementary Fig. Se,f). Noticeable increases aerosol concentrations
are observed following wildfire and the volcanic eruption events, while models predict near-
neutral aerosol concentration trends. These discrepancies emphasize the need to account for
aerosol sources from wildfires or volcanic eruptions as well as their interactions with clouds
when interpreting recent changes in EEL. Moreover, the increasing aerosol concentrations in
the SH, compared to the reductions observed in the NH, points to an emerging contrast in global

aerosol-cloud interactions.

To assess the robustness of our observational estimates, we apply an alternative observationally
constrained SW ACI estimation method introduced by Wall et al. (2022). This approach is
similar to equation (1) but does not incorporate activation rate and LWP binning. The results
provide additional evidence of the impact of increased aerosol concentrations in the SH, with
domain averages of -0.303 = 0.21 W m™ decade™! for Al and -0.059 + 0.03 W m™ decade! for
SO4 (Fig. 5). These findings reveal an increase in SW ACI in the NH, contrasted by more
pronounced negative SH SW ACI trends of -0.54 W m™ decade™! for Al and -0.16 W m™
decade™! for SO4, resulting in an overall negative contribution of aerosol-cloud interactions to
recent EEI trend. This outcome is even more negative than our near-zero estimation,
emphasizing the impact of increased aerosol concentrations in the Southern Hemisphere and

suggesting that other factors may contribute to the strongly positive SWTOA trend.

3. Conclusion and Discussion

We have examined how aerosols contribute to the recent trend in Earth’s energy imbalance
through two mechanisms: aerosol-radiation interactions and aerosol-cloud interactions.
Despite the recognized warming effects from reduced aerosol concentrations in the NH, the
concurrent increase in aerosol concentrations in the SH appears sufficient to counterbalance
the warming effects observed in the NH. As a result, while aerosols have played a role in
regional EEI variations, their overall contribution to global EEI trends has been minimal over

the past few decades.

10
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We also incorporate results from the REMIP piClim-histnat experiments, which are specifically
designed to account for natural sources of aerosol emissions, such as volcanic eruptions, with
a particular emphasis on stratospheric aerosols. When examining aerosol-cloud interactions in
these experiments, models estimate a slightly negative trend in NH SW ACI of -0.059 W m™
decade™. In contrast, the contribution in the in the SH is negligible, with a trend of -0.004 W
m decade™! (Supplementary Fig. 6). Overall, single-forcing experiments (both aerosol-only
and natural-forcing-only), which employ fixed SST, fail to adequately represent the observed
variations in aerosol concentrations and the influences of aerosol-cloud interactions on EEI,

despite the limited number of models involved in these experiments.

While our focus has been on aerosols, it is important to acknowledge that other components,
such as natural variability and cloud feedback may play dominant roles in shaping the global
EEIL For instance, the shift from a negative to a positive Pacific Decadal Oscillation (PDO)
index in 2014 has been linked to changes in SST and cloud cover, which likely contributed to
variations in EEI (Thorsen, et al., 2018; Loeb et al., 2018a; Loeb et al., 2021a). Following the
shift to a positive phase of the PDO in 2014, there was pronounced SST increase, particularly
over the eastern Pacific, which persisted through 2020. This warming was accompanied by a
reduction in low cloud cover in the region, which led to increased SW along the eastern Pacific,
further amplifying the warming (Loeb et al., 2018a). These changes in cloud cover and SW
radiation are key drivers in modulating EEI during periods of positive PDO phases. In addition,
Raghuraman et al. (2023) highlighted that the observed increase in EEI is driven by the
decreased reflection of SW from SW cloud feedback. Unlike LW radiation, which has a
stabilizing feedback, Earth’s climate system lacks compensating feedbacks in SW. This lack of
SW stabilization leads to continuous heat accumulation, contributing to the increasing trend in

EEI observed over time.

Methods

In this study, we restrict our analysis to monthly temporal resolution from January 2003 to
December 2023, focusing on the geographical coverage spanning from 60°S to 60°N over the
ocean, due to unreliable retrievals of satellite observations over land and polar regions (Jia et
al., 2019; Gryspeerdt et al., 2022; Jia and Quaas, 2023). All data fields were interpolated onto
a2.5°x2.5° grid.

11
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Observation and reanalysis data

We use various datasets from the Clouds and the Earth’s Radiant Energy System (CERES) for
our analysis. To calculate the global trend in top-of-atmosphere (TOA) radiative fluxes, we
utilize the CERES Energy Balanced and Filled (EBAF) Ed. 4.2 satellite observational product
(Loeb et al., 2018b). For the estimation of shortwave (SW) effective radiative forcing due to
aerosol-cloud interactions (ACI), we rely on the CERES FluxByCldTyp Ed. 4.1 dataset (Sun
et al., 2022), which allows us to focus on non-obscured (non-overlapped) low-level clouds
(Scott et al., 2020), where aerosol-cloud interactions are most relevant (Christensen et al., 2016;
Bellouin et al., 2020; Forster et al., 2021). For SW effective radiative forcing due to aerosol-
radiation interactions (ARI), we use the CERES EBAF Ed. 4.2 dataset in combination with the
CERES SYNldeg Ed. 4A product (Rutan et al., 2015). However, the latter is only employed to
estimate aerosol direct effects under clear-sky conditions, as cloud properties derived from
geostationary satellites in the SYNI1deg product contain artifacts that limit its accuracy in

cloudy-sky conditions.

We employ the Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2015)
data from both the Aqua and Terra satellites (MOD08 M and MYDO08 M, respectively) for the
aerosol index (AI), which serves as a proxy for aerosol concentration. By combining datasets
from the two satellites, we enhance the robustness of our analysis. The Al is derived from the
product of aerosol optical depth (AOD) at 550 nm and the Angstrdm exponent, the latter of
which reflects the wavelength dependence of AOD, providing insights into aerosol size
distribution (e.g., a smaller Angstrom exponent indicates larger particles). Al has shown a
stronger correlation with cloud condensation nuclei (CCN) compared to AOD alone (Stier,
2016; Gryspeerdt et al., 2017; Hasekamp et al., 2019). Nevertheless, Al observations remain
affected by near-cloud retrieval artifacts (Christensen et al., 2017).

We also utilize the Modern-Era Retrospective analysis for Research and Applications, Version
2 (MERRA-2) reanalysis (Randles et al., 2017; Gelaro et al., 2017). MERRA-2 integrates
observations with global model simulations to provide estimates of atmospheric conditions.
For example, the total aerosol optical depth is observationally constrained using MODIS
satellite data, and the distribution and vertical profiles of different aerosol species are model-
derived. Since Al from MODIS provides aerosol species-integrated, column-integrated

quantities and does not account for the vertical profile, it may not accurately capture aerosol-
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cloud interactions, which mainly occurs in low-level clouds. For SW ACI, we select 925 hPa
instead of surface level as our reference, as conditions at 925hPa better reflect CCN
concentrations near the cloud base (Painemal et al., 2017). This data is extracted from the 3-
hourly MERRA-2 file “inst3 3d aer Nv”, which we interpolate to monthly resolution for

analysis.

We use cloud droplet number concentration (Ng) provided by Gryspeerdt et al. (2022), which
was calculated from MODIS cloud optical depth and effective radius. Data from both the Terra
and Aqua satellites is combined. N¢ measurements can be subject to biases under specific
conditions (Zhang and Platnick, 2011; Zhang et al., 2012; Grosvenor and Wood, 2014). To
enhance the accuracy and reliability of our Nq retrievals, we apply a rigorous sampling strategy.
This approach selects only single-layer liquid clouds that meet predefined criteria, known as
the “Z18 sampling” method in Gryspeerdt et al. (2022). These criteria, introduced by Zhu et al.
(2018), demonstrate high correlation to in-situ Ng in regions with high cloud fractions
(Gryspeerdt et al., 2022). However, the use of different sampling methods introduced in
Gryspeerdt et al. (2022) does not affect our conclusions (not shown). Additionally, it is
important to note that this dataset was derived from the variables retrieved by MODIS satellite
observations and was not filtered to only include low-level clouds. This may have weakened

the connection between surface aerosol sources and Nq (McCoy et al., 2018).

For liquid water path (LWP), we use the MODIS MCDO06COSP dataset version 6.2.0 (Pincus
et al., 2023) and combine data from both the Aqua and Terra satellites. In accordance with the
work by Twomey (1977), LWP is crucial in modulating the strength of aerosol-cloud
interactions. Moreover, to accurately estimate the aerosol indirect effects, it is essential to
control for variations in LWP (Douglas and L’Ecuyer, 2019, 2020), as the relationship between
aerosol-cloud interactions and LWP is nonlinear. Isolating this dependence helps minimize its
impact on our results (Gryspeerdt et al., 2019). In our analysis, we achieve this by categorizing
LWP observations into ten equal bins, each covering a range of 40 g cm™, up to a maximum of
400 g cm™. This categorization is based on the finding that over 99% of our observations do
not exceed 400 g cm™, thus allowing us to maintain LWP within a controlled and effectively

constant range across our dataset.

CMIP6 data
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Previous studies have used Coupled Model Intercomparison Project Phase 6 (CMIP6) models
to estimate aerosol contributions to the recent Earth’s energy imbalance (EEI) trend, making it
essential to compare our observational estimates of aerosol-cloud interactions with those
derived from CMIP6 models. To assess the true aerosol effect on the recent EEI, we use single-
forcing (aerosol-only) experiments from the Radiative Forcing Model Intercomparison Project
(RFMIP; Pincus et al., 2016), specifically the piClim-histaer experiments. These experiments
use prescribed sea surface temperatures (SST), and sea ice conditions based on a climatology
of pre-industrial conditions and consist of a historical aerosol emission scenario up to 2014,
followed by the SSP2-4.5 aerosol emission scenario. We analyze five models that provided

extended experiments through 2023, including their available realizations.

Although the piClim-histnat experiment accounts for the influence of volcanic eruptions, it
primarily focuses on stratospheric aerosol concentrations from volcanic activity. Therefore, in
this study, we use the piClim-histaer experiment as our reference to assess SW ERFaci

estimates, employing the first realization (r1) from five models.

Radiative kernel techniques

Radiative kernels, first introduced by Soden and Held (2006) to analyze radiative feedbacks,
quantify the differential response of radiative fluxes to small perturbations in key state variables
such as clouds, surface albedo, temperature, and water vapor. This allows us to isolate the true
cloud radiative response without interference from cloud masking effects. In this study,
radiative kernels are applied to deseasonalized monthly anomalies from 2003 to 2023,

calculated as deviations from the mean of that period.

For our observational analysis, we use radiative kernels derived from CloudSat/CALIPSO data
(Kramer et al., 2019, 2021). Radiative flux anomalies are sourced from the CERES EBAF Ed.
4.2 product (Loeb et al., 2018b). Temperature and specific humidity anomalies are obtained
from the ERAS reanalysis (Hersbach et al., 2020), while surface temperature data is from
GISTEMP v4 (Lenssen et al., 2019). Contributions from “others” factors—including solar
irradiance and trace gases—are estimated as residuals from all other components (e.g., clouds,
albedo, water vapor, and aerosol direct effects) in the total SWTOA. Since aerosol direct effects
are not included in our radiative kernel, we estimate them separately as detailed in the section
titled “Estimating SW ARI”.

14



436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

For our model analysis, we use radiative kernels derived from the HadGEM3-GA7.1 model
(Smith et al., 2020) for CMIP6 model simulations. The HadGEM3-GA7.1 kernel is
representative of the commonly used radiative kernels in the literature for tropospheric and
surface adjustments (Smith et al., 2020). Differences introduced by using different kernels are

less than 0.1 W m (Soden et al., 2008; Smith et al., 2018).

Estimating SW ARI

To estimate the aerosol direct effects, it is crucial to consider the influence of cloud presence,
including factors like cloud height relative to aerosol layers. These factors influence the
radiative effects of aerosols. Aerosols located above clouds reduce cloud reflectivity, leading
to a relative warming at the TOA, which has a much larger impact compared to the surface
(Chand et al., 2009; Wilcox, 2012; Kinne, 2019). Conversely, when clouds are positioned
above aerosols, they can block aerosol interactions with solar radiation. Moreover, clouds can
either enhance atmospheric heating from absorbing aerosols or can mask the cooling effect of

scattering aerosols (Soden et al. 2004; Matus et al. 2015).

In this study, we classify sky conditions as either cloudy or clear to capture these variations in
radiative effects at the TOA. The contribution of each aerosol direct effect is weighted by both
the cloud fraction and the clear-sky fraction (Matus et al., 2015). Our analysis primarily uses

CERES product, and the estimation of SW ARI is based on the following equation:
SW ARI = 6(SW DREq X CF) + S(SW DRE, x (1 — CF)), @Y

where SW DRE.4 refers to the SW aerosol direct radiative effects (DRE) under cloudy-sky
conditions, SW DRE. refers to the SW DRE under clear-sky conditions, and CF represents
the cloud fraction. The first term on the right-hand side represents the monthly anomalies of
the aerosol direct effect under cloudy sky, weighted by cloud fraction, while the second term

represents the effect under clear sky, weighted by clear sky fraction.

Estimating aerosol direct effects requires a radiative transfer model to assess the difference
between conditions with and without aerosols. The estimate of SW DRE_.i4 relies on MERRA-

2 due to the absence of a radiative transfer model for CERES. However, SW DRE. is estimated
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using the method described in Loeb et al. (2021b), which combines calculated fluxes from the
CERES SYNldeg Ed. 4A dataset (Rutan et al., 2015) with observed fluxes from the CERES
EBAF Ed4.2 (Loeb et al., 2018b). This approach accounts for the masking effect of aerosols

on surface albedo variations caused by the presence of aerosols.

Using MERRA-2 reanalysis data for SW DRE_ci4 while relying on CERES for other components
may introduce some uncertainty into our SW ARI estimates as cloudy-sky conditions can
modulate the radiative forcing of aerosols differently compared to clear-sky conditions.
However, given that aerosol-radiation interactions have been shown to exert a relatively
negligible influence on the trend in EEI in both this study and previous study (Loeb et al.,
2021a), the overall uncertainty introduced by this limitation is not expected to alter our

conclusions.

Uncertainty from estimating SW ACI trend

Unlike aerosol concentration trends observed directly, estimating aerosol-cloud interactions
introduces additional uncertainties due to the complex calculations involved in the estimation
process, as described in Park et al. (2024). Therefore, we account for these uncertainties by
combining those arising from susceptibility with those from the observed aerosol concentration

trend.

To quantify the uncertainty in the regression coefficients of susceptibility, a 90% confidence

interval for susceptibility at each grid box is calculated as follows:

N
§ = ty/AxTCAx |—22 (2)

Nefr

where t is the critical value of the Student’s t-test at the 95% significance level with Neg — 7
degrees of freedom (Storch and Zwiers, 1999), C represents the variance—covariance matrix of
regression coefficients, Nyom/Negr 18 the ratio of the nominal to effective number of monthly
anomalies of SWCRE_Icld, and Ax is the regression coefficient for dln(Ny)/ dIn(X), where X
represents either Al or SOa. C is formulated as C = 62(Z7Z)~1, where Z is the data matrix

with columns composed of detrended monthly anomalies, specifically in terms of In(Ng). The
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term 62 denotes the mean of squared residuals of the regression model and we estimate
Npom/Negs as (1 + r)/(1 — r), where r is the lag one autocorrelation of monthly anomalies

of SWCRE_Icld.

Uncertainty for spatially averaged regression coefficients is calculated as

N*
12277 6kewi)? [Niom
Asusceptibility_ N 2 N* ’ (3)
( Miom Wk) eff

where &), represents the uncertainty in the k™ grid box, while wy, corresponds to the cosine of

the latitude. Npop, represents the nominal number of spatial degrees of freedom, and N refers
to the effective number of spatial degrees of freedom. The ratio Ny /Ny is calculated using
empirical orthogonal function (EOF) analysis on SWCRE Icld anomalies across all ocean grid
between 60°S and 60°N, following equation 5 from Bretherton et al. (1999). Prior to
conducting the EOF analysis, the monthly anomalies of SWCRE Icld for each grid are
multiplied by \/W_k to reduce the influence of grid geometry (North et al. 1982). The resulting
Agusceptibility represents the half-width of the 90% CI for SW ACI, specifically reflecting the

uncertainty associated with regression coefficients of susceptibility.

To estimate the uncertainty derived from the aerosol concentration trend of In(X), we apply
the method described in Santer et al. (2000), which accounts for autocorrelation in the data,

Atreng- Thus, the overall 90% CI is expressed as follows:

2
susceptibility + Atrend' (4')

SW ACI + \/ A?
Data Availability

The CERES data used in this study were obtained from NASA’s CERES ordering tool
(https://ceres.larc.nasa.gov/data/). MODIS data were sourced from NASA’s Level-1 and

Atmosphere Archive and Distribution System

(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/), while MODIS Ny data are

accessible through the Centre for Environmental Data Analysis

(https://doi.org/10.5285/864a46cc65054008857eeSbb772a2a2b, Gryspeerdt et al., 2022). The
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MERRA-2 reanalysis data were downloaded via NASA Goddard Earth Sciences Data and
Information Services Center (https://doi.org/10.5067/LTVB4GPCOTK?2). CMIP6 data

employed in this research can be found on the Earth System Grid Federation data portal

(https://esgt-node.llnl.gov/projects/cmip6/).
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(a) Global mean TOA flux monthly anomalies
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Fig. 1. Global mean top-of-atmosphere (TOA) flux monthly anomalies and trends from 2003
to 2023. (a) Global mean monthly anomalies of net TOA radiation (RTOA; black solid line),
along with the shortwave (SWTOA; red solid line) and longwave (LWTOA; blue solid line)
components. Dashed lines show the linear trends for each component. Correlation coefficients
() and associated p-values (p) between RTOA and SWTOA, as well as RTOA and LWTOA,
are provided in the upper-left corner. (b) Global mean TOA flux trends in RTOA, SWTOA,
with contributions from changes in clouds, albedo, water vapor (WV), aerosol-radiation
interactions (ARI), and combined effects of trace gases, and solar irradiance (labeled as
"Others"), as well as trend in LWTOA calculated by observationally-based radiative kernel
method (Kramer et al., 2019, 2021). Error bars represent the 5-95% confidence intervals,
calculated following the methodology of Santer et al. (2000). Positive anomalies indicate Earth

absorbing more energy, while negative anomalies represent energy loss.
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Fig. 2. Decadal trends and monthly anomalies in the natural logarithm of aerosol proxies. (a)
Spatial maps of trends in the natural logarithm of the aerosol index (Al) and (b) sulfate aerosol
mass concentration (SO4) at 925 hPa for the period 2003-2023. (c—e) Vertical distributions of
In(SO4) monthly anomalies over the boxed regions in (b): (c) East Asia, (d) North America,
and (e) the Southeastern Pacific. The dashed line in each panel represents the 925 hPa pressure

level.
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Fig. 3. Spatial distributions of non-obscured low cloud susceptibility to variations in aerosol
concentrations and decadal trends in shortwave (SW) effective radiative forcing from aerosol-
cloud interactions (ACI), differentiated by aerosol proxies. (a) Susceptibility for the Al (b)
Same as (a), but for SO4. (c) Observationally constrained SW ACI trend for Al from 2003 to
2023. (d) Same as (c), but for SO4. The domain-averaged (60°S—60°N, ocean) SW ACI values

are shown in the lower-left corners of each panel.
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Fig. 4. Decadal trends in SW ACI over oceans across three different domains: (a) near-global
(60°S—60°N), (b) Northern Hemisphere (NH; 0°-60°N), and (c) Southern Hemisphere (SH;
60°S—0°). Observationally constrained SW ACI estimates are derived from two aerosol proxies:
aerosol index (Al blue) and sulfate aerosol mass concentrations (SOs4, orange). Uncertainties
are calculated by combining the methods from Park et al. (2024) and Santer et al. (2000)
(Methods). The multi-model mean (MMM, black) is derived from five models in the Radiative
Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016) single-forcing (aerosol-
only) experiments. Individual model realizations are depicted as hollow circles, with grey bars

representing the mean of these realizations.
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Fig. 5. Spatial distributions of observationally constrained SW ACI trends from 2003 to 2023,
using an alternative method based on Wall et al. (2022). (a) SW ACI trend for Al. (b) Same as
(a), but for SO4. The domain-averaged (60°S—60°N, ocean) SW ACI values are shown in the

lower-left corners of each panel.
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